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Nullstellensätze



Nullstellensätze

Theorem (Hilbert 1893).

Let f1, . . . , fs, g ∈ C[x1, . . . , xn]. Then g vanishes on all common zeros of f1, . . . , fn
iff there are a1, . . . , as ∈ C[x ] and r ∈ N such that gr = a1f1 + · · · asfs.

Theorem (Clark’s Finitesatz, 2014).

Let F be a field, let f1, . . . , fr, g ∈ F[x1, . . . , xn], and let X ⊆fin Fn. Then g vanishes

on all common zeros of f1, . . . , fn in X iff there are a1, . . . , as, h ∈ F[x ] such that

g = a1f1 + · · · arfr + h

and h vanishes on X.
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Combinatorial Nullstellensätze



Alon’s Combinatorial Nullstellensatz I

Theorem (Alon’s Nullstellensatz I).

Let K be a field, S =×n
i=1 Si with Si ⊆fin K. Then f ∈ K[x ] vanishes on S iff there

are a1, . . . , as ∈ K[x ] such that

f = a1g1 + · · ·+ argr,

where gi =
∏

a∈Si
(xi − a) and deg(aigi) ≤ deg(f) for all i.



Alon’s Combinatorial Nullstellensatz II

Theorem (Alon’s Combinatorial Nullstellensatz II).

Let K be a field, S =×n
i=1 Si with Si ⊆fin K.

Let f ∈ K[x ] be such that f contains a monomial xα1
1 · · ·xαn

n with αi < |Si| for all i.
If for all monomials xγ11 · · ·xγnn of f with α ̸= γ we have

n∑
i=1

γi ≤
n∑

i=1

αi, (Alon’s Condition)

then there is s ∈ S with f(s) ̸= 0.

Improvements: Replace (Alon’s Condition) with weaker conditions.



Improved Combinatorial Nullstellensatz II

Theorem (Combinatorial Nullstellensatz II).

Suppose that f ∈ K[x ] contains a monomial xα1
1 · · ·xαn

n with αi < |Si| for all i.
If for all monomials xγ11 · · ·xγnn of f with α ̸= γ we have

n∑
i=1

γi ≤
n∑

i=1

αi, (Alon’s Condition)

then there is s ∈ S with f(s) ̸= 0.

Improvements: Replace (Alon’s Condition) with the following weaker conditions.

1. (Tao-Vu-Lasoń’s Condition 2006) ∃i ∈ n : γi ∈ [0, αi − 1].

2. (Schauz’s Condition 2008) ∃i ∈ n : γi ∈ [0, αi − 1] ∪ [αi + 1, |Si| − 1].



Structured Grids



Structured Grids

Definition (Nica 2023).

S ⊆fin K is λ-null :⇔ in
∏

a∈S(x− a), the coefficients of x|S|−1, . . . , x|S|−λ are zero.

Examples

▶ Every finite S is 0-null.

▶ {x ∈ C | xn = 1} is n− 1-null.

▶ {0}, ∅ are µ-null for all µ ∈ N.
▶ S is 1-null if

∑
a∈S a = 0.



Theorem (Nica 2023).

Let K be a field, S =×n
i=1 Si such that Si ⊆fin K and Si is λi-null.

Let f ∈ K[x ] be such that f contains a monomial xα1
1 · · ·xαn

n with αi < |Si| for all i.
If for all monomials xγ11 · · ·xγnn of f with α ̸= γ we have

n∑
i=1

γi ≤ min(λ1, . . . , λn) +

n∑
i=1

αi, (Nica’s Condition)

then there is s ∈ S with f(s) ̸= 0.

Improvements:

▶ (EA-Schmitt-Zhan’s Condition)

∃i ∈ n : γi ∈ [0, αi − 1] ∪ [αi + 1,max(|Si| − 1, αi + λi)].



Comparison of the Nullstellensätze

These theorems have in common:

▶ they guarantee a nonzero in a grid.

▶ the condition ensuring this is:

1. there is a monomial xα in f with αi < |Si| for all i.
2. all other monomials xγ of f are innocuous.

The more monomials one can declare innocuous, the better.



Comparison of the Nullstellensätze

Example. S = {(a, b) ∈ C2 | a5 = b5 = 1}, λ1 = λ2 = 4. Suppose f contains the

monomial x21x
3
2. Then the following monomials are declared innocuous:
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Figure: x2
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3
2 + any linear combination of the dotted monomials does not vanish on

S = {(x1, x2) ∈ C2 | x5
1 = x5

2 = 1}.



Improved Nullstellensätze



Generalisations and Improvements:

▶ Multiplicity: c is a t-fold zero of f if all monomials of

f ′ := f(c1 + x1, . . . , cn + xn) have total degree at least t. Ball and Serra (2009)

provide theorems with bottom line:

“Then there is s ∈ S such that s is not a t-fold zero of f .”

▶ Multisets (Kós and Rónyai 2012).

▶ Beyond grids: Punctured Grids X \ Y , where X,Y are grids. (Ball and Serra

2009)

▶ Structured grids: Use the property that an edge of the grid is λ-null. (Nica

2023)

Our recent manuscript provides combinations of these, for example a

Structured Nullstellensatz for punctured grids.

Manuscript: E.Aichinger, J.R.Schmitt, H.Zhan, Structured and punctured

Nullstellensätze, arxiv 2025.



Structured Nullstellensätze for punctured grids

Theorem (A structured Nullstellensatz for punctured grids),

EA-Schmitt-Zhan 2025.
Let X =×n

i=1Xi, Y =×n
i=1 Yi be grids over K with Yi ⊆ Xi and Xi, Yi λ-null for

all i. Let

P := X \ Y.

Let f ∈ K[x1, . . . , xn] with a monomial xα1
1 · · ·xαn

n such that

1. for all i : αi < |Xi|,

2. there exists i such that αi < |Xi| − |Yi|,

3.
∑n

i=1 αi ≥ deg(f)− λ.

Then there is z ∈ P with f(z ) ̸= 0.



Proofs



Proof Ideas

▶ Given S ⊆fin Kn, find generators G of the ideal

I(S) = {f ∈ K[x ] | f(a) = 0 for all a ∈ S}.
▶ We want to show that f ̸∈ I(S).
▶ Show that xα cannot disappear during multivariate polynomial division by G

because

▶ xα cannot be reduced by G.

▶ All other monomials xγ cannot produce xα in

the course of the division – not in the first and

not in any further step. 0 2 4 6 8 10 12 14
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▶ f has nonzero remainder by G: Then f ̸∈ ⟨G⟩ if G is a Gröbner basis.

▶ Use the S-Polynomial Theorem (Buchberger 1965) to show that G is indeed a

Gröbner basis.



Proof Ideas

A (probably new) criterion using the idea of unnecessary S-polynomials:

Theorem Buchberger 1970.

Let ≤a be an admissible ordering of monomials, and let

g1, . . . , gs ∈ K[x1, . . . , xn] \ {0} be such that for i, j ∈ s with i ̸= j,

gcd(Lm(gi),Lm(gj)) = 1.

Then

G := {g1, . . . , gs}

is a Gröbner basis of the ideal ⟨G⟩ with respect to ≤a.



Proof Ideas

A (probably new) criterion using the idea of unnecessary S-polynomials:

Theorem EA-Schmitt-Zhan 2025 .
Let ≤a be an admissible ordering of monomials, and let

g1, . . . , gs ∈ K[x1, . . . , xn] \ {0} be such that for i, j ∈ s with i ̸= j,

gcd(Lm(gi),Lm(gj)) = 1.

Then

Gt := {gα1
1 · · · gαs

s | α1, . . . , αs ∈ N0,

s∑
i=1

αi = t}

is a Gröbner basis of the ideal ⟨G⟩t with respect to ≤a.



Lower bounds for the number of nonzeros



Alon-Füredi Nonzero Counting Theorem for punctured grids

▶ The Alon-Füredi Theorem gives a lower bound for the number of nonzeros of

a polynomial on a grid.

▶ Alon-Füredi implies Warning’s Second Theorem (Schmitt).

▶ We have a version for punctured grids.



Alon-Füredi Nonzero Counting Theorem for punctured grids

Theorem (Alon-Füredi for punctured grids), EA-Schmitt-Zhan 2025.

Let X =×n
i=1Xi and Y =×n

i=1 Yi be grids over the field K with Yi ⊆ Xi for all i,

P := X \ Y , f ∈ K[x1, . . . , xn] \ {0}.
Let ai := |Xi|, bi := |Yi| and

A := {(y1, . . . , yn) ∈ Nn |

∀i ∈ n : 1 ≤ yi ≤ ai, ∃i ∈ n : yi > bi, and

n∑
i=1

yi≥
n∑

i=1

ai − deg(f)}.

If P \ V(f) ̸= ∅, then

|P \ V (f)| ≥ min{
n∏

i=1

yi −
n∏

i=1

min(yi, bi) | (y1, . . . , yn) ∈ A}.



Alon-Füredi Nonzero Counting Theorem for punctured grids

The proof is based on:

Clark’s Monomial Alon-Füredi Theorem (Clark 2024).

Let X be a finite subset of Kn, let f ∈ K[x1, . . . , xn], and let g ∈ I(X) + ⟨f⟩ with
g ̸= 0. Then

|X \ V(f)| ≥ |∆(I(X)) ∩ {Lm(g)}↑ | .

For G ⊆ K[x1, . . . , xn] and an admissible monomial ordering ≤a, we define

G↑ := {xα | α ∈ Nn
0 and ∃g ∈ G : Lm(g) divides xα},

∆(G) := {xα | α ∈ Nn
0} \ (G↑) =

{xα | α ∈ Nn
0 and there is no g ∈ G such that Lm(g) divides xα}.
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