Punctured and Structured Nullstellensätze

Erhard Aichinger

Institute for Algebra Johannes Kepler University Linz Linz, Austria

Joint work with John R. Schmitt and Henry Zhan (Middlebury College, VT, USA)

ÖMG-DMV Annual Meeting 2025 Linz, Austria

Nullstellensätze

Nullstellensätze

Theorem (Hilbert 1893).

Let $f_1, \ldots, f_s, g \in \mathbb{C}[x_1, \ldots, x_n]$. Then g vanishes on all common zeros of f_1, \ldots, f_n iff there are $a_1, \ldots, a_s \in \mathbb{C}[x]$ and $r \in \mathbb{N}$ such that $g^r = a_1 f_1 + \cdots + a_s f_s$.

Nullstellensätze

Theorem (Hilbert 1893).

Let $f_1, \ldots, f_s, g \in \mathbb{C}[x_1, \ldots, x_n]$. Then g vanishes on all common zeros of f_1, \ldots, f_n iff there are $a_1, \ldots, a_s \in \mathbb{C}[x]$ and $r \in \mathbb{N}$ such that $g^r = a_1 f_1 + \cdots + a_s f_s$.

Theorem (Clark's Finitesatz, 2014).

Let \mathbb{F} be a field, let $f_1, \ldots, f_r, g \in \mathbb{F}[x_1, \ldots, x_n]$, and let $X \subseteq_{\text{fin}} \mathbb{F}^n$. Then g vanishes on all common zeros of f_1, \ldots, f_n in X iff there are $a_1, \ldots, a_s, h \in \mathbb{F}[x]$ such that

$$g = a_1 f_1 + \dots + a_r f_r + h$$

and h vanishes on X.

Combinatorial Nullstellensätze

Alon's Combinatorial Nullstellensatz I

Theorem (Alon's Nullstellensatz I).

Let \mathbb{K} be a field, $S = \times_{i=1}^n S_i$ with $S_i \subseteq_{\text{fin}} \mathbb{K}$. Then $f \in \mathbb{K}[x]$ vanishes on S iff there are $a_1, \ldots, a_s \in \mathbb{K}[x]$ such that

$$f = a_1 g_1 + \dots + a_r g_r,$$

where $g_i = \prod_{a \in S_i} (x_i - a)$ and $\deg(a_i g_i) \leq \deg(f)$ for all i.

Alon's Combinatorial Nullstellensatz II

Theorem (Alon's Combinatorial Nullstellensatz II).

Let \mathbb{K} be a field, $S = \times_{i=1}^n S_i$ with $S_i \subseteq_{\text{fin}} \mathbb{K}$.

Let $f \in \mathbb{K}[x]$ be such that f contains a monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ with $\alpha_i < |S_i|$ for all i.

If for all monomials $x_1^{\gamma_1} \cdots x_n^{\gamma_n}$ of f with $\alpha \neq \gamma$ we have

$$\sum_{i=1}^{n} \gamma_i \le \sum_{i=1}^{n} \alpha_i, \tag{Alon's Condition}$$

then there is $s \in S$ with $f(s) \neq 0$.

Improvements: Replace (Alon's Condition) with weaker conditions.

Improved Combinatorial Nullstellensatz II

Theorem (Combinatorial Nullstellensatz II).

Suppose that $f \in \mathbb{K}[x]$ contains a monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ with $\alpha_i < |S_i|$ for all i. If for all monomials $x_1^{\gamma_1} \cdots x_n^{\gamma_n}$ of f with $\alpha \neq \gamma$ we have

$$\sum_{i=1}^{n} \gamma_i \le \sum_{i=1}^{n} \alpha_i, \tag{Alon's Condition}$$

then there is $s \in S$ with $f(s) \neq 0$.

Improvements: Replace (Alon's Condition) with the following weaker conditions.

- 1. (Tao-Vu-Lasoń's Condition 2006) $\exists i \in \underline{n} : \gamma_i \in [0, \alpha_i 1].$
- 2. (Schauz's Condition 2008) $\exists i \in \underline{n} : \gamma_i \in [0, \alpha_i 1] \cup [\alpha_i + 1, |S_i| 1].$

Structured Grids

Structured Grids

Definition (Nica 2023).

 $S \subseteq_{\text{fin}} \mathbb{K}$ is λ -null : \Leftrightarrow in $\prod_{a \in S} (x-a)$, the coefficients of $x^{|S|-1}, \dots, x^{|S|-\lambda}$ are zero.

Examples

- \triangleright Every finite S is 0-null.
- ▶ $\{0\}$, \emptyset are μ -null for all $\mu \in \mathbb{N}$.
- ightharpoonup S is 1-null if $\sum_{a \in S} a = 0$.

Theorem (Nica 2023).

Let \mathbb{K} be a field, $S = \times_{i=1}^n S_i$ such that $S_i \subseteq_{\text{fin}} \mathbb{K}$ and S_i is λ_i -null.

Let $f \in \mathbb{K}[x]$ be such that f contains a monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ with $\alpha_i < |S_i|$ for all i.

If for all monomials $x_1^{\gamma_1} \cdots x_n^{\gamma_n}$ of f with $\alpha \neq \gamma$ we have

$$\sum_{i=1}^{n} \gamma_i \le \min(\lambda_1, \dots, \lambda_n) + \sum_{i=1}^{n} \alpha_i,$$
 (Nica's Condition)

then there is $s \in S$ with $f(s) \neq 0$.

Improvements:

► (EA-Schmitt-Zhan's Condition) $\exists i \in n : \gamma_i \in [0, \alpha_i - 1] \cup [\alpha_i + 1, \max(|S_i| - 1, \alpha_i + \lambda_i)].$

Comparison of the Nullstellensätze

These theorems have in common:

- ▶ they guarantee a nonzero in a grid.
- ▶ the condition ensuring this is:
 - 1. there is a monomial x^{α} in f with $\alpha_i < |S_i|$ for all i.
 - 2. all other monomials x^{γ} of f are innocuous.

The more monomials one can declare innocuous, the better.

Comparison of the Nullstellensätze

Example. $S = \{(a, b) \in \mathbb{C}^2 \mid a^5 = b^5 = 1\}, \ \lambda_1 = \lambda_2 = 4$. Suppose f contains the monomial $x_1^2 x_2^3$. Then the following monomials are declared innocuous:

Figure: $x_1^2x_2^3$ + any linear combination of the dotted monomials does not vanish on $S = \{(x_1, x_2) \in \mathbb{C}^2 \mid x_1^5 = x_2^5 = 1\}.$

Improved Nullstellensätze

Generalisations and Improvements:

- ▶ Multiplicity: c is a t-fold zero of f if all monomials of $f' := f(c_1 + x_1, \ldots, c_n + x_n)$ have total degree at least t. Ball and Serra (2009) provide theorems with bottom line: "Then there is $s \in S$ such that s is not a t-fold zero of f."
- ▶ Multisets (Kós and Rónyai 2012).
- ▶ Beyond grids: Punctured Grids $X \setminus Y$, where X, Y are grids. (Ball and Serra 2009)
- ▶ Structured grids: Use the property that an edge of the grid is λ -null. (Nica 2023)

Our recent manuscript provides combinations of these, for example a

Structured Nullstellensatz for punctured grids.

Manuscript: E.Aichinger, J.R.Schmitt, H.Zhan, Structured and punctured Nullstellensätze, arxiv 2025.

Structured Nullstellensätze for punctured grids

Theorem (A structured Nullstellensatz for punctured grids),

EA-Schmitt-Zhan 2025.

Let $X = \times_{i=1}^n X_i, Y = \times_{i=1}^n Y_i$ be grids over \mathbb{K} with $Y_i \subseteq X_i$ and X_i, Y_i λ -null for all i. Let

$$P := X \setminus Y$$
.

Let $f \in \mathbb{K}[x_1, \dots, x_n]$ with a monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ such that

- 1. for all $i: \alpha_i < |X_i|$,
- 2. there exists i such that $\alpha_i < |X_i| |Y_i|$,
- 3. $\sum_{i=1}^{n} \alpha_i \ge \deg(f) \lambda.$

Then there is $z \in P$ with $f(z) \neq 0$.

Proofs

Proof Ideas

- ▶ Given $S \subseteq_{\text{fin}} \mathbb{K}^n$, find generators G of the ideal $\mathbb{I}(S) = \{ f \in \mathbb{K}[\boldsymbol{x}] \mid f(\boldsymbol{a}) = 0 \text{ for all } \boldsymbol{a} \in S \}.$
- ▶ We want to show that $f \notin \mathbb{I}(S)$.
- Show that \boldsymbol{x}^{α} cannot disappear during multivariate polynomial division by G because
 - $ightharpoonup x^{\alpha}$ cannot be reduced by G.
 - All other monomials x^{γ} cannot produce x^{α} in the course of the division not in the first and not in any further step.
- ▶ f has nonzero remainder by G: Then $f \notin \langle G \rangle$ if G is a Gröbner basis.
- \triangleright Use the S-Polynomial Theorem (Buchberger 1965) to show that G is indeed a Gröbner basis.

Proof Ideas

A (probably new) criterion using the idea of unnecessary S-polynomials:

Theorem Buchberger 1970.

Let \leq_a be an admissible ordering of monomials, and let $g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n] \setminus \{0\}$ be such that for $i, j \in \underline{s}$ with $i \neq j$,

$$gcd(LM(g_i), LM(g_j)) = 1.$$

Then

$$G:=\{g_1,\ldots,g_s\}$$

is a Gröbner basis of the ideal $\langle G \rangle$ with respect to \leq_a .

Proof Ideas

A (probably new) criterion using the idea of unnecessary S-polynomials:

Theorem EA-Schmitt-Zhan 2025.

Let \leq_a be an admissible ordering of monomials, and let $g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n] \setminus \{0\}$ be such that for $i, j \in \underline{s}$ with $i \neq j$,

$$gcd(LM(g_i), LM(g_j)) = 1.$$

Then

$$G^t := \{ g_1^{\alpha_1} \cdots g_s^{\alpha_s} \mid \alpha_1, \dots, \alpha_s \in \mathbb{N}_0, \sum_{i=1}^s \alpha_i = t \}$$

is a Gröbner basis of the ideal $\langle G \rangle^t$ with respect to \leq_a .

Lower bounds for the number of nonzeros

Alon-Füredi Nonzero Counting Theorem for punctured grids

- ► The Alon-Füredi Theorem gives a lower bound for the number of nonzeros of a polynomial on a grid.
- ▶ Alon-Füredi implies Warning's Second Theorem (Schmitt).
- ▶ We have a version for punctured grids.

Alon-Füredi Nonzero Counting Theorem for punctured grids

Theorem (Alon-Füredi for punctured grids), EA-Schmitt-Zhan 2025.

Let $X = \times_{i=1}^n X_i$ and $Y = \times_{i=1}^n Y_i$ be grids over the field \mathbb{K} with $Y_i \subseteq X_i$ for all i, $P := X \setminus Y$, $f \in \mathbb{K}[x_1, \dots, x_n] \setminus \{0\}$.

Let $a_i := |X_i|, b_i := |Y_i|$ and

$$A := \{ (y_1, \dots, y_n) \in \mathbb{N}^n \mid \\ \forall i \in \underline{n} : 1 \le y_i \le a_i, \ \exists i \in \underline{n} : y_i > b_i, \text{ and } \sum_{i=1}^n y_i \ge \sum_{i=1}^n a_i - \deg(f) \}.$$

If $P \setminus \mathbb{V}(f) \neq \emptyset$, then

$$|P \setminus V(f)| \ge \min\{\prod_{i=1}^n y_i - \prod_{i=1}^n \min(y_i, b_i) \mid (y_1, \dots, y_n) \in A\}.$$

Alon-Füredi Nonzero Counting Theorem for punctured grids

The proof is based on:

Clark's Monomial Alon-Füredi Theorem (Clark 2024).

Let X be a finite subset of \mathbb{K}^n , let $f \in \mathbb{K}[x_1, \dots, x_n]$, and let $g \in \mathbb{I}(X) + \langle f \rangle$ with $g \neq 0$. Then

$$|X \setminus \mathbb{V}(f)| \ge |\Delta(\mathbb{I}(X)) \cap \{LM(g)\}\uparrow|.$$

For $G \subseteq \mathbb{K}[x_1, \dots, x_n]$ and an admissible monomial ordering \leq_a , we define

$$\begin{array}{ll} G\!\!\uparrow &:=& \{\boldsymbol{x}^\alpha \mid \alpha \in \mathbb{N}_0^n \text{ and } \exists g \in G : \operatorname{Lm}(g) \text{ divides } \boldsymbol{x}^\alpha \}, \\ \Delta(G) &:=& \{\boldsymbol{x}^\alpha \mid \alpha \in \mathbb{N}_0^n \} \setminus (G\!\!\uparrow) = \\ &\qquad \qquad \{\boldsymbol{x}^\alpha \mid \alpha \in \mathbb{N}_0^n \text{ and there is no } g \in G \text{ such that } \operatorname{Lm}(g) \text{ divides } \boldsymbol{x}^\alpha \}. \end{array}$$