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Main question in this talk

Question

Are subvarieties of finitely generated varieties again finitely generated?

Answer

Sometimes.

Goal

Improve.
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Classes of algebras

We will study:

classes of algebras of with the same operation symbols (of the

same type) F .

Example: F := {·,−1,1}, K := class of all groups.

identities: s(x1, . . . , xk ) ≈ t(x1, . . . , xk ).

Example:

Φ = {(x · y) · z ≈ x · (y · z), 1 · x ≈ x , x−1 · x ≈ 1, x6 ≈ y15}.

Validity of identities in an algebra A of type F .

Example: A |= Φ ⇔ A is a group of exponent 1 or 3.
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Varieties

Theorem [Birkhoff, 1935, Theorem 10]

Let K be a nonempty class of algebras of the same type F . TFAE:

1 ∃ set of identities Φ : K = {A |||A is of type F and A |= Φ}.

(Meaning: K can defined using identities.)
2 K is closed under taking

H homomorphic images

S subalgebras
P cartesian products.

A class K of algebras that can be defined by a set of identities is called

a variety.
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Finitely generated varieties

Definition

A algebra. V(A) := the smallest variety that contains A.

Theorem

V(A) = HSP(A).

Theorem

B ∈ V(A) if and only if ∀s, t : A |= s ≈ t ⇒ B |= s ≈ t .

Definition

A variety V is finitely generated :⇔ there is a finite algebra A with

V = V(A).
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Finite Generation of Subvarieties

Theorem (follows from [Jónsson, 1967])

Let L be a finite lattice. Then every subvariety of V(L) is finitely

generated.

Proof: V(L) contains, up to isomorphism, only finitely many subdirectly

irreducible lattices (Jónsson’s Lemma).

Theorem [Oates and Powell, 1964]

Let G be a finite group. Then every subvariety of V(G) is finitely

generated.

Proof: V(G) contains, up to isomorphism, only finitely many groups H

with H 6∈ V({A ||| A ∈ V(H), |A| < |H|}). (Long proof using “critical

groups”.)

Note that both V(G) and V(L) contain only finitely many subvarieties.
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Finite Generation of Subvarieties

Theorem [Bryant, 1982]

There is an expansion of a finite group with one constant operation

such that the variety generated by this algebra has infinitely many

subvarieties.

They might all be finitely generated, though.

Theorem [Oates MacDonald and Vaughan-Lee, 1978]

There is a three-element algebra M = (M, ∗, c) such that V(M) has

subvarieties that are not f.g.
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Recognizing f.g. subvarieties

Lemma [Oates MacDonald and Vaughan-Lee, 1978]

V f.g. variety. TFAE:

1 The subvarieties of V , ordered by ⊆, satisfy (ACC).

2 Every subvariety of V is f.g.

Lemma

V f.g. variety. TFAE:

1 The subvarieties of V , ordered by ⊆, satisfy (DCC).

2 For every subvariety W of V there is a finite set of identities Φ with

W = {A ∈ V |||A |= Φ}. (W is finitely based relative to V .)
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Equational theory of W in A

Definition [Aichinger and Mayr, 2014]

A algebra, W subvariety of V(A).

ThA(W ) := {(a1, . . . ,ak ) 7→

(

sA(a)

tA(a)

)

||| k ∈ N,

s, t are k-variable terms in the language of A

with W |= s ≈ t}.

Examples

1 ThA(V(A)) = {(t , t) ||| t ∈ Clo(A)}.

2 A := S3, W := {G ∈ V(S3) |||G is abelian}. Then

(( π1
π2
) 7→

(

π
−1
1

◦π2◦π1
π2

)

) ∈ ThS3
(W ).

3 W := class of one element algebras of type F . Then

ThA(W ) = {(s, t) ||| k ∈ N, s, t ∈ Clok (A)}.
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Distinguishing subvarieties of V(A) inside A

Lemma

A be algebra, W1 and W2 subvarieties of V(A). Then we have:

W1 ⊆ W2 if and only if ThA(W2) ⊆ ThA(W1).
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Clonoids

What is

ThA(W ) = {(a1, . . . ,ak ) 7→

(

sA(a)

tA(a)

)

||| k ∈ N,

s, t are k-variable terms in the language of A

with W |= s ≈ t} ?

ThA(W ) is a clonoid with source set A and target algebra A × A.
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Definition of Clonoids

A . . . set

B . . . algebra

C . . . finitary functions from A to B

C ⊆
⋃

n∈N BAn

C[k ] := C ∩ BAk
(k-ary functions in C).
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Definition of Clonoids

Definition

B algebra, A nonempty set, C ⊆
⋃

n∈N BAn
. C is a clonoid with source

set A and target algebra B if

1 for all k ∈ N: C[k ] is a subalgebra of BAk
, and

2 for all k ,n ∈ N, for all (i1, . . . , ik ) ∈ {1, . . . ,n}k , and for all c ∈ C[k ],

the function c′ : An → B defined by

c′(a1, . . . ,an) := c(ai1 , . . . ,aik )

satisfies c′ ∈ C[n].
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Representation of Clonoids

We represent a clonoid C with source set A = {a1, . . . ,at} and target

algebra B using forks.

Definition (forks of BAn
at a)

For a ∈ An, let

ϕ(C,a) := {
(

f1(a), f2(a)
)

∈ B × B |||

f1(z) = f2(z) for all z ∈ An with z <lex a}.

Use of forks

[Berman et al., 2010, Corollary 3.9]

[Aichinger, 2000, Proof of Proposition 3.1]
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Mal’cev and edge terms

Mal’cev terms

A ternary term t is a Mal’cev term on A if for all a,b ∈ A:

tA(a,a,b) = tA(b,a,a) = b.

Edge terms

For k ≥ 3, a (k + 1)-ary term is a k-edge term on A if for all a,b ∈ A:

tA(a, a, b, b, b, . . . , b) = b

tA(b, a, a, b, b, . . . , b) = b

tA(b, b, b, a, b, . . . , b) = b
. . .

tA(b, b, b, b, b, . . . , a) = b

(still wrong!)
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Edge terms and few subpowers

Theorem [Berman et al., 2010]

A finite algebra. A has an edge term ⇔ ∃ polynomial p ∈ R[t]∀n ∈ N :

|Sub(An)| ≤ 2p(n).
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Representation of Clonoids by forks

Lemma (cf., e.g., [Aichinger, 2010])

A finite set, B finite algebra with Mal’cev term, C,D clonoids with

source set A and target algebra B. If

1 C ⊆ D,

2 ϕ(C,a) = ϕ(D,a) for all a ∈ A∗,

then C = D.

Lemma [Aichinger and Mayr, 2014]

A finite set, B finite algebra with k-edge term, C,D clonoids with

source set A and target algebra B. If

1 C ⊆ D,

2 ϕ(C,a) = ϕ(D,a) for all a ∈ A∗,

3 C[|A|k−1] = D[|A|k−1],

then C = D.
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Connection between different arities

“Definition”

v,w ∈ A∗. v ≤E w :⇔ w can be obtained from v by inserting letters.

The insertion xy → xay is allowed only if a appears in x.

1 abab ≤E aabaabb, since

abab → aabab → aabaab → aabaabb = aabaabb.

2 aab 6≤E abab.

Theorem [Higman, 1952], [Aichinger et al., 2011]

A finite. (A∗,≤E ) has no infinite antichains.

Theorem - the connection between forks of different arity
[Aichinger and Mayr, 2014]

C clonoid with source A and target B, a ∈ Am, b ∈ An. If a ≤E b, then

ϕ(C,b) ⊆ ϕ(C,a).
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Outline of the order theoretic argument

Let C be a clonoid with finite source A and finite target algebra B with

an edge term. Suppose that we have

C1 ⊃ C2 ⊃ · · · (descending chain of subclonoids).

From this chain, we construct (using edge terms and the “fork”

lemmas)

U1 ⊂ U2 ⊂ · · · (ascending chain of upward closed subsets of (A∗,≤E )).

Now let

M := minimal elements of
⋃

Ui w.r.t ≤E .

Then M is an infinite antichain in (A∗,≤E ).

This contradicts Higman’s Theorem (its modification by

Aichinger/Mayr/McKenzie).
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Subvarieties of f.g. varieties

Theorem [Aichinger and Mayr, 2014]

A finite set, B finite algebra with edge term.

C := {C |||C is clonoid with source A and target B}.

Then (C,⊆) satisfies the (DCC).

Theorem [Aichinger and Mayr, 2014]

A finite algebra with edge term, W := subvarieties of V(A). Then:

(W,⊆) satisfies the (ACC).

Every subvariety of V(A) is f.g.

Proof: From W1 ⊂ W2 ⊂ · · · ,
we obtain ThA(W1) ⊃ ThA(W2) ⊃ · · · ,
which is an infinite descending chains of clonoids with source A and

target B := A × A. Contradiction.
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(DCC) for subvarieties

Theorem [Aichinger and Mayr, 2014]

A finite algebra with edge term. Then every subvariety of V(A) is f.g.

Corollary [Aichinger and Mayr, 2014]

A finite algebra with an edge term. Then the following are equivalent:

1 There is no infinite descending chain of subvarieties of V(A).

2 Each B ∈ V(A) is finitely based relative to V(A).

3 V(A) has only finitely many subvarieties.

4 V(A) contains, up to isomorphism, only finitely many cardinality

critical members.

B is cardinality critical :⇔ B 6∈ V({C |||C ∈ V(B), |C| < |B|}).
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