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I. Systems of term equations



Systems of term equations

Let A be an algebra.
TERMSYSSAT(A) is the following problem:

Given:

Terms s1(z1,. .., Tn), t1(T1, -y Tn)s ooy SK(T1, ooy ) te(T1, ooy ).
Asked:

Is there a € A" with s#*(a) = t#(a), ..., s (a) = t{(a)?
Remarks:

» The answer is always yes if A has a one-element subuniverse: groups, lattices.

» Allowing constants yields POLSYSSAT(A ), which can be harder.



Computational complexity of TERMSYSSAT(A)

One can solve the equations by solving a constraint satisfaction problem.
Idea: (Larose, Zadori 2006)
Instead of solving

fg(z1,22)) = f(21),

solve
(w1, 22,91) € ¢°, (Y1,92) € f°, (71,92) € f°, where

9° ={(a1,a2,b) € A* | g(ay, a2) = b}

is the graph of g.
This reduces TERMSYSSAT(A4; f, g) to CSP(A4; f°,¢°).



Computational complexity of TERMSYSSAT(A)

For an algebra A = (A; F), let A°:= (A;{f°| f € F}).

As a consequence of the Bulatov-Zhuk-Dichotomy (2017) (in the form of Barto,
Krokhin, Willard (2017)), one obtains:

Theorem (cf. [Mayr, MFCS 2023]).
(Assume P # NP).

Let A be a finite algebra. Then TERMSYSSAT(A) € P <= A° has a (not
necessarily idempotent) Taylor polymorphism.

Otherwise TERMSYSSAT(A) is NP-complete.



Computational complexity of TERMSYSSAT(A)

Question: Algebraic description when A° has a (not necessarily idempotent)
Taylor polymorphism.

Definition. Let A be a finite algebra.

Core(A) is a minimal endomorphic image of A w.r.t C.

(Defined up to isomorphism)

Examples.
» G group. Core(G) = {1}.
> G group. G* := (G;x, 71, (cy)gec)) its expansions with all constants from G.
Then Core(G*) = G.
» Core((Ss;0, 7 1,id, (1 2))) = {id, (1 2)}.
——

nullary



Computational complexity of TERMSYSSAT(A)

Theorem Larose, Zadori 2006 Theorem Mayr 2023
Let A be a finite algebra in a congruence Let A be a finite algebra in a congruence
modular variety. TFAE: modular variety. TFAE:
1. POLSYSSAT(A) = 1. TERMSYSSAT(A) € P.
TERMSYSSAT(A®) € P. 2. Core(A) is abelian.

2. A is abelian.

Both results also hold also if 1 € typ(V(A)) and 5 & typ({A}).



TERMSYSSAT(A) vs. POLSYSSAT(A)

Theorem Mayr 2023.

Let A be a finite algebra of finite type. The following three problems are reducible
to each other in constant time:

1. TERMSYSSAT(A).
2. TERMSYSSAT(Core(A)).
3. PoLSysSAaT(Core(A)).



The meta-problem for systems of term equations



The meta-problem for TERMSYSSAT

Meta-problem for TERMSYSSAT (Assume P # NP)

Given: A = (A4; f1,..., fr)
Asked: Is TERMSYSSAT(A) € P?
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Asked: Does Core(A°) have a Siggers polymorphism?



The meta-problem for TERMSYSSAT

Meta-problem for TERMSYSSAT (Assume P # NP)
Given: A = (A4; f1,..., fr)

Asked: Is TERMSYSSAT(A) € P?

Asked: Does Core(A°) have a Siggers polymorphism?

In cm varieties: Asked: Does A have an abelian core?

Theorem Mayr 2023

There is a quasi-polynomial algorithm that decides whether a given finite A in a
cm variety has an abelian core.

g(n) is quasi-polynomial if J¢,d, N >0Vn > N : ¢(n) < c2log(m)?



Solving CSPs by solving term equations



Solving CSP’s through systems of equations

Theorem.

For every finite relational structure D of finite type, there is a finite algebra A (D)
such that CSP(D) and TERMSYSSAT(A(D)) are polynomial time reducible to each
other.

1. Klima, Tesson, Thérien 2007:
Assume D = (D, p) is a digraph. A(D) is a semigroup with 5|D| + |p| + 1
elements that satisfies 22 ~ = and zyz ~ yzz.

2. Broniek 2015:
Assume D = (D, R) with R C D". A(D) is a unary algebra with |D| + |R| + 2
elements and r + 4 unary operations.



Solving systems over modules



Solving systems over modules

Let A be an R-module.

» The polynomial algorithm provided by the theory uses the
Bulatov-Dalmau-algorithm (2006) to solve instances of CSP(A°), which has
the Mal’cev term of A as a polymorphism.

» In practice, Hermite-decomposition is useful.



Solving systems over modules

We solve

(12 ;i 30())'@):(;6)

over Z.



Solving systems over modules

(12 ;Z 300)'@):(646)

over Z. To this end, we compute a Z-Basis of the row module of

We solve

-4 —66 1 0 0 O
10 15 01 0 O
6 24 0 0 1 O
0 30 0 0 0 1

using the Hermite normal form (1851, polynomial time since 1979).



Solving systems over modules

(12 ;2 300>'(§):<646>

We solve

over Z. We have

-4 —66 1 0 0 O 2 3 05 -3 0

10 15 0 1 0 O 030 00 0 1
row ( ) = row(

16 24 0 0 1 O 0 0 1 2 -1 2

0 30 0 0 0 1 0 0 O

and thus S = {(2,-1,2) +¢(8,-5,0) | t € Z}.



Solving systems over modules

Problem: Find all (z1, 20, 23) € Z[x,y]® with
(10y)z1 + 0z + (47) 23 = 4.

Solution: Compute the (reduced strong) Grobner basis (with respect to a certain
order) of the row module of

—42® 1 0 0 0
o | 1y 0100
0 0010
2 0 0 0 1



Solving systems over modules

We solve (10y)z1 + 022 + (4x)z3 = 4a3.

—423 1 0 0 0

ow(| 10 0L 00
0 0010
dz 0 0 0 1

Hence S = (0,0,22) + ((2z,0, —5y), (0,1,0)).

22y
4x
10y

o O O

S O = O O O

o = O 8

o O o O



II. One equation



Supernilpotent algebras

Theorem (Coordinatization, EA 2019).

Let A be supernilpotent of order p® in a cm variety. Then there are operations
+,x on A and D € N such that

1. F=(A;+, x) is a field,
2. for all n € N and p € Pol,,(A), there is by P € F[X1,..., X,,] with PF = p&
and deg(f) < D.

Corollary Kompatscher 2018.

Let A be supernilpotent in a cm variety. Then one equation

s(x1y .oy xn) =t(xr, .., 2p)

can be solved in polynomial time.



Supernilpotent algebras

Corollary Kompatscher 2018.

Let A be supernilpotent in a cm variety. Then one equation

s(z1,...,xn) = t(x1,...,zy,) can be solved in polynomial time.
> Assume |A| =p® =: q.
> 35, T € Fy[X1,...,X,]: S¥ =54 and TF = ¢4 with deg(S) < D, deg(T) < D.
> deg(l— (S -T)7"") < (¢—1)D.
» Let (ai,...,a,) be the nonzero of P :=1— (S — T)9"! with the smallest
number of nonzero entries. WLOG (aq,...,a,) = (a1,...,a;,0,...,0).
> Q(Xy,...,Xg) = P(Xy,...,X;,0,...,0) satisfies deg(Q) > k.
» Hence k < (¢ —1)D.
» Look for a solution of s = ¢t with at most (¢ — 1)D entries different from a € A.



Supernilpotent algebras

Why was it easy to solve equations?
» We could reduce the search space from |A|™ to a hitting set of size c(|A|) nF.

» There are either no or many solutions.

Theorem Warning 1935.

feF,[Xy,...,X,).

If the polynomial f with deg(f) < n has a zero, then the number of zeros of f is at
least ¢"—des(f),

Consequence: if there is a solution, picking a at random yields a solution with
probability at least ¢~ deg(f) ~ linear time Monte Carlo-algorithm (Kawalek,
Krzackowski 2020).



Solving equations over groups



Solving equations over groups
G a finite group. POLSAT(G) asks whether

s(xla"'axkvgla"'ygl) :t(l'ly--'vxkaglw-'agl)

has a solution in G*.
Input size: lengths of terms s and t.
» G nilpotent = POLSAT(G) € P (Horvath, 2011).
» G not solvable = POLSAT(G) is NP-complete (Goldmann and Russell, 1999).
» G not solvable = there exists e € Pol;(A) such that POLSAT(A + ¢) has no
subexponential algorithm, or the exponential time hypothesis fails (Rossi, EA
2024).
» G = P x A with P p-group and A abelian = PoLSAT(G) € P. (Foldvéri,

Horvath 2019).
Even solving a fixed number of equations is in P (Nuspl 2021).



Solving equations over groups

Theorem Idziak, Kawatek, Krzaczkowski; Weif§ 2020

If POLSAT(S4) € P, then for every € > 0, we can solve 3-SAT in time O(2°"),
contradicting the Exponential Time Hypothesis by Impagliazzo and Paturi from
1999.

» The result is not just about Sy, but about all groups of Fitting length (length
of shortest composition series with nilpotent quotients) at least 3.

» An algorithm with running time O(nc(log(”))d) is consistent with ETH, where
n is the length of the input terms.



Solving equations over groups

» We make a (still unsuccessful) attempt to find an O(nc°8(m)") algorithm for
POLSAT(S)).

» Easier problem: POLEQV(Sy):
Input: p, g polynomial terms over Sy.
Output: Is Va € S4" : p(a) = q(a) true?



Identity checking for groups

We want to check whether p(z1,...,2,) =1 for all x € S4".

Definition. p € Polg(Sy) is absorbing if for all z: 1 € {z1,..., 25} =
p(:cl,...,xk) =1.

>

vV vyVvyVvYyy

Suppose we can prove: every nonconstant absorbing polynomial has length at
least 2¢k'/7.

Then pick a with p(a) # 1 with maximal amount of 1’s. WLOG
a=(ay,...,a,1,...,1).

Then ¢(x1,...,zx) = p(x1,..., 2, 1,...,1) is absorbing.

Hence length(p) > gck!/?,

Then k < L(logy(length(p)))?.

Input size m : greater than max(n,length(p)).

c2 log?(

There are at most m ™) tuples with at most k entries # 1 ~» algorithm of

complexity O(m* log*(m) )



Finite fields



Absorbing polynomial functions over finite fields

Definition. Let F be a field, f € F[X,..., X,] is absorbing at a for S : <
V(z1,...,zn) € S"ra € {x1,...,2n} = f(x1,...,2,) = 0.

Theorem (Griinbacher, Hametner, EA 2024).

SCF,N\{0},aeS. If f e Fy[Xy,...,X,] is absorbing at a for S and f is not

identically 0 on S, then f contains at least (g%;)" monomials.

Examples:

1. w := primitive element of Fy,
S :={l,w}. Then f:=][~,(X; —w) is
absorbing at w for S and has 2"
monomials.

2. (Griinbacher) There is an absorbing i DAL @)
function with at most ( *¢q — 1)" : : = ~ (@-1)/(@-2)
monomials (if ¢ — 2 | n).




Equation solving over finite fields

Intuition: If there is a solution, there is one in the neighborhood.

Theorem Griinbacher, Hametner, EA 2024
Let ¢ >2,neN, feF,[Xy,...,X,]\ {0} with M(f) monomials, S C F, \ {0},
t:= 9L Tet

q—2

V(f)={x € S5" | f(=) =0}
If V(f) # @, then for every a € S™, there is b € V(f) with

dH(a7 b) < logi(t) (1 + (q - 1) logz(M(f))).
This gives quasi-polynomial time algorithms for the following questions:
1. Does f have a zero in S™7

2. Does f vanish identically on S™?



II1I. Quasi-identities



Quasi-identities in universal algebra

v

A algebra, s;,t;,u,v terms.

We ask whether S = {z € A" | \;¢;, si(x) = t;(z)} is contained in
U={xec A" |u(z) =v(z)}.

» This holds if the formula

v

ick

holds in A.

Such a formula is called a conditional identity or quasi-identity.

v

> We want to determine the validity of this formula.



Quasi-identities in universal algebra

v

A algebra, s;,t;,u,v terms.

We ask whether S = {z € A" | A\, sA(z) = tA(z)} is contained in
U={xc A" |u’(z) =vA(x)}.

» This holds if the formula

v

Ve - (/\ si(z) = ti(z)) = u(z) = v(z)

ick

holds in A.

Such a formula is called a conditional identity or quasi-identity.

v

> We want to determine the validity of this formula.



Algebras that satisfy the same quasi-identities

Some facts on quasi-identities:

» Classes of algebras defined by quasi-identities are called quasivarieties. The
quasivariety generated by K is ISP, Pg, K.

> Generalization: infinite pre-condition, finitely many variables:
Considered in Universal Algebraic Geometry. Closure operator: LSP.

» Generalization: infinite pre-condition, arbitrary many variables:
Closure operator ISP.

» A, B finite, of finite type, |A| =n. Then A € Q(B) < A c IS {B(2)}



Quasi-identity validity

Let A be an algebra. QUASIIDVAL(A) is the problem:

Given: A quasi-identity ® := Vz : (/\16& si(z) = ti(x)) = u(x) = v(z).
Here, s;,t;, u,v are terms in the language of A over the variables x.

Asked: Does ® hold in A?



Quasi-identity validity

Let A be an algebra. QUASIIDVAL(A) is the problem:

Given: A quasi-identity ® := Vz : (/\16& si(z) = ti(x)) = u(x) = v(z).

Here, s;,t;, u,v are terms in the language of A over the variables x.

Asked: Does @ hold in A?

Computational Complexity: For finite A of finite type, QUASIIDVAL(A) is in

co-NP:
a € A" witnesses failure of @ if (/\zek st(a) =tP(a)) Aut(a) # v2(a).



Quasi-identity validity

Let A be an algebra. QUASIIDVAL(A) is the problem:
Given: A quasi-identity ® := Vz : (/\16& si(z) = ti(x)) = u(x) = v(z).
Here, s;,t;, u,v are terms in the language of A over the variables x.

Asked: Does ® hold in A?

Computational Complexity: For finite A of finite type, QUASIIDVAL(A) is in
co-NP:
a € A" witnesses failure of @ if (/\zek st(a) =tP(a)) Aut(a) # v2(a).

Exponential time method: A quasi-identity of length £ contains at most £
different variables that can take at most |A|® values.

Question: For which algebras do we have faster methods (e.g. polynomial time)?



Quasi-identity validity and polynomial systems

Relations to other problems:

» If we can decide solvability of polynomial systems, then we can check the
validity of quasi-identities.



Quasi-identity validity and polynomial systems

Relations to other problems:
» If we can decide solvability of polynomial systems, then we can check the
validity of quasi-identities.

» We search for a counter-example: V& : (/\zek si(z) = ti(x)) = u(x) = v(x)
holds iff for all a,b € A with a # b,

/\ si(x) = ti(x), u(x) =a,v(x)=">
ick

has no solution.

» These systems use constants: a and b.
Therefore they are polynomial systems and not just term systems.



Quasi-identity validity and polynomial systems

Relations to other problems:
» If we can decide solvability of polynomial systems, then we can check the
validity of quasi-identities.

» We search for a counter-example: V& : (/\zek si(z) = ti(x)) = u(x) = v(x)
holds iff for all a,b € A with a # b,

/\ si(x) = ti(x), u(x) =a,v(x)=">
i€k
has no solution.

» These systems use constants: a and b.
Therefore they are polynomial systems and not just term systems.

» Conclusion: QUASIIDVAL(A) <{uth table POLSYSSAT(A).



Quasi-identity validity and systems of term equations

» If we can check the validity of quasi-identities, then we can decide solvability
of term equations.



Quasi-identity validity and systems of term equations

» If we can check the validity of quasi-identities, then we can decide solvability
of term equations.

» The system s; = t1,..., s, = t; has no solution iff
S1=UN...Nspy=tp, = y==2

is valid in A. (y,z ...new variables, |A| > 1).



Quasi-identity validity and systems of term equations

» If we can check the validity of quasi-identities, then we can decide solvability
of term equations.

» The system s; = t1,..., s, = t; has no solution iff
S1=UN...Nspy=tp, = y==2

is valid in A. (y,z ...new variables, |A| > 1).
» Conclusion: co-TERMSYSSAT(A) <p QUASIIDVAL(A).



Quasi-identity validity and checking term equivalence

» If we can check the validity of quasi-identities, we can check whether two
terms induce the same function.



Quasi-identity validity and checking term equivalence

» If we can check the validity of quasi-identities, we can check whether two
terms induce the same function.

> Vo s(x) =t(x) is valid iff

y=y = s(z)=t(z)

is valid in A.



Quasi-identity validity and checking term equivalence

» If we can check the validity of quasi-identities, we can check whether two
terms induce the same function.

> Vo s(x) =t(x) is valid iff
y=y=>s(x)=t(z)

is valid in A.

» Conclusion: TERMEQV(A) <p QUASIIDVAL(A).



Quasi-identity validity: connections with well-studied problems.

Connections:
» QUASIIDVAL(A) <truth table POLSYSSAT(A).
» co-TERMSYSSAT(A) <p QUASIIDVAL(A).
» TERMEQV(A) <p QUASIIDVAL(A).



Quasi-identity validity: connections with well-studied problems.

Connections:
» QUASIIDVAL(A) <truth table POLSYSSAT(A).
» co-TERMSYSSAT(A) <p QUASIIDVAL(A).
» TERMEQV(A) <p QUASIIDVAL(A).

> In 2004, M. Volkov constructed a 10-element semigroup Q with
TErRMEQV(Q) € P, and QUASIIDVAL(Q) co-NP-complete because it solves
3-COLORABILITY for graphs.
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(Reason: POLSYSSAT, which is analyzed in [Larose, Zadori 2006])
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Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal’cev term.
Consequences:
> A is abelian = QUASIIDVAL(A) € P.
(Reason: POLSYSSAT, which is analyzed in [Larose, Zadori 2006])

» Core(A) is nonabelian = QUASIIDVAL(A) is co-NP-complete.
(Reason: TERMSYSSAT, which is analyzed in [Mayr 2023])

» A non-solvable group = QUASIIDVAL(A) is co-NP-complete.
(Reason: TERMEQV, which is analyzed in [Horvéath, Lawrence, Mérai, Szabd
2007])



Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal’cev term.
Consequences:
> A is abelian = QUASIIDVAL(A) € P.
(Reason: POLSYSSAT, which is analyzed in [Larose, Zadori 2006])
» Core(A) is nonabelian = QUASIIDVAL(A) is co-NP-complete.
(Reason: TERMSYSSAT, which is analyzed in [Mayr 2023])
» A non-solvable group = QUASIIDVAL(A) is co-NP-complete.
(Reason: TERMEQV, which is analyzed in [Horvéath, Lawrence, Mérai, Szabd
2007])

Open: nonabelian nilpotent groups, nonzero nilpotent rings.



A reduction of graph coloring to quasi-identities



Quasi-identity validity

Theorem Aichinger, Griunbacher, STACS 2023
A finite algebra of finite type with a Mal’cev term. Then

1. QuasiIDVAL(A) € P if A is abelian.
2. QUASIIDVAL(A) is co-NP-complete if A is nonabelian.

New content: item (2).
Proof idea: we reduce the H-coloring problem to QUASIIDVAL(A).



H-coloring of graphs

H-COLORING:
Given: a graph G.
Asked: Is there a graph homomorphism A from G to H (G — H)?

> H:K22

O—

G — H iff G is bipartite: edges in G only go from h~1({1}) to h~1({2}).



H-coloring of graphs

H-COLORING:
Given: a graph G.
Asked: Is there a graph homomorphism A from G to H (G — H)?

> H =Ky

G — H if the vertices of G can be coloured with 4 colors such that no
adjacent vertices have the same colour.



H-coloring of graphs

H-COLORING:
Given: a graph G.
Asked: Is there a graph homomorphism h from G to H (G — H)?

> H a graph with loops:

G — H holds for every graph G: use h(v) = 3 for each vertex v of G.



Theorem Hell, Nesetiil 1990.

Let H be a finite loopless graph that contains a triangle. Then H-COLORING is
NP-complete.

A consequence stated in Csp-language:

Theorem

Let H = (H, p) be a relational structure with an antireflexive and symmetric
binary relation p.

If H has K3 = ({1, 2,3};#) as a substructure, then Csp(H) is NP-complete.



Proof of the Theorem

Plan:

> We want to prove that checking the validity of quasi-identities of
R := (3Za7,+,—,-,0) is co-NP-complete.
> We will show: there is a graph H such that

for every graph G : G — H <= the quasi-identity ®(G) is not valid.

» This will imply that QUASIIDVAL(R) is co-NP-complete.
Details:
» R = {[0]a7,[3]a7, - - -, [24]27}-

> H is the “difference graph” or “apartness graph” on R :
(r,s) is an edge if r — s & {[0]27, [9]27, [18]27}-



Proof of the Theorem

The graph H for 3Zs7 E(H) = {(x,y) |z —y & {0,9,18} }.




Proof of the Theorem

» non-edges of H




Proof of the Theorem

» (G graph. We want to find out whether
(G — H using a quasi-identity on R.

><I>:( /\ a:zu7q,-(xu—xv)):>a:0.
(u,w)EE(Q)

The graph H for 3Zor




Proof of the Theorem

The graph H for 3Zor

v

vV vyVvyVvVvyy

G graph. We want to find out whether
(G — H using a quasi-identity on R.

(IJ:( /\ a:zu7q,-(xu—xv)):>a:0.
(u,w)EE(Q)
Suppose ® is invalid. Then a # 0.

Let (u,v) € E(G). Then x, — x, ¢ {0,9, 18}.
Thus (x4, z,) is an edge of H.

U > Xy is & homomorphism from G to H.
Hence if @ is invalid, G — H.



Proof of the Theorem

» (G graph. We want to find out whether
(G — H using a quasi-identity on R.
><I>:( /\ a:zu7q,-(xu—xv)):>a:0.
(u,0)€E(G)
Suppose G — H.

The graph H for 3Zor

This is a counterexample to .

Hence & is invalid.




Proof of the Theorem

» Hence ® is not valid iff G — H.
» H-coloring is NP-complete [Hell, Nesetfil 1990].
» Thus QUASIIDVAL(R) is co-NP-complete.



Proof for Mal’cev algebras

Theorem
Let A be a finite nonabelian algebra of finite type with a Mal’cev term. Then
QUASIIDVAL(A) is co-NP-complete.

» Instead of the ring multiplication, use commutators [Smith 1976, Hagemann,
Herrmann 1979].

This works for subdirectly irreducible A.

For arbitrary A, use “difference graphs” for several congruences of A.

Order these graphs and pick a maximal one.

EA and Simon Griinbacher. The Complexity of Checking Quasi-Identities
over Finite Algebras with a Mal’cev Term, STACS 2023.

vVvyVYyy



IV. Open questions



Polynomial equations on Sy

Problem: Solve POLSAT(S4) or POLEQV(S,) in time melos” (m),

Possible approaches:

» Show: every nonconstant absorbing polynomial in k arguments has length at
least 2%,
» The following problems are — in some sense — equivalent:

» Does a fully expanded polynomial p € Mats(F3) (X1,..., X,) vanish on all 6™
invertible inputs?
» (Griinbacher) Let w be primitive in Fy, p1,...,p, expanded polynomials in

Z3[X1,...,X,]. Does
pri(X17~~-vXn)
i=1

vanish on {—1,1}"?



Circuit equivalence

» The polynomials p, ¢ may be given as circuits.

» We want to test whether they compute the same function.

Problem 1 from [Kawalek, Kompatscher, Krzaczkowski, STACS 2024]

Let A be a finite algebra from a congruence modular variety with supernilpotent
rank 2. Is there a deterministic polynomial time algorithm solving circuit

equivalence on A7

Dékuji za pozvéani a pozornost!
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