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I. Systems of term equations



Systems of term equations

Let A be an algebra.

TermSysSat(A) is the following problem:

Given:

Terms s1(x1, . . . , xn), t1(x1, . . . , xn), . . . , sk(x1, . . . , xn), tk(x1, . . . , xn).

Asked:

Is there a ∈ An with sA1 (a) = tA1 (a), . . . , sAk (a) = tAk (a)?

Remarks:

▶ The answer is always yes if A has a one-element subuniverse: groups, lattices.

▶ Allowing constants yields PolSysSat(A), which can be harder.



Computational complexity of TermSysSat(A)

One can solve the equations by solving a constraint satisfaction problem.

Idea: (Larose, Zádori 2006)

Instead of solving

f(g(x1, x2)) = f(x1),

solve

(x1, x2, y1) ∈ g◦, (y1, y2) ∈ f◦, (x1, y2) ∈ f◦, where

g◦ = {(a1, a2, b) ∈ A3 | g(a1, a2) = b}

is the graph of g.

This reduces TermSysSat(A; f, g) to CSP(A; f◦, g◦).



Computational complexity of TermSysSat(A)

For an algebra A = (A;F ), let A◦ := (A; {f◦ | f ∈ F}).

As a consequence of the Bulatov-Zhuk-Dichotomy (2017) (in the form of Barto,

Krokhin, Willard (2017)), one obtains:

Theorem (cf. [Mayr, MFCS 2023]).

(Assume P ̸= NP).

Let A be a finite algebra. Then TermSysSat(A) ∈ P ⇐⇒ A◦ has a (not

necessarily idempotent) Taylor polymorphism.

Otherwise TermSysSat(A) is NP-complete.



Computational complexity of TermSysSat(A)

Question: Algebraic description when A◦ has a (not necessarily idempotent)

Taylor polymorphism.

Definition. Let A be a finite algebra.

Core(A) is a minimal endomorphic image of A w.r.t ⊆.

(Defined up to isomorphism)

Examples.

▶ G group. Core(G) = {1}.

▶ G group. G∗ := (G; ∗,−1, (cg)g∈G)) its expansions with all constants from G.

Then Core(G∗) = G.

▶ Core((S5; ◦,−1, id, (1 2)︸ ︷︷ ︸
nullary

)) = {id, (1 2)}.



Computational complexity of TermSysSat(A)

Theorem Larose, Zádori 2006

Let A be a finite algebra in a congruence

modular variety. TFAE:

1. PolSysSat(A) =

TermSysSat(A∗) ∈ P.

2. A is abelian.

Theorem Mayr 2023

Let A be a finite algebra in a congruence

modular variety. TFAE:

1. TermSysSat(A) ∈ P.

2. Core(A) is abelian.

Both results also hold also if 1 ̸∈ typ(V (A)) and 5 ̸∈ typ({A}).



TermSysSat(A) vs. PolSysSat(A)

Theorem Mayr 2023.

Let A be a finite algebra of finite type. The following three problems are reducible

to each other in constant time:

1. TermSysSat(A).

2. TermSysSat(Core(A)).

3. PolSysSat(Core(A)).



The meta-problem for systems of term equations



The meta-problem for TermSysSat

Meta-problem for TermSysSat (Assume P ̸= NP)

Given: A = (A; f1, . . . , fk)

Asked: Is TermSysSat(A) ∈ P?

Asked: Does Core(A◦) have a Siggers polymorphism?

In cm varieties: Asked: Does A have an abelian core?

Theorem Mayr 2023

There is a quasi-polynomial algorithm that decides whether a given finite A in a

cm variety has an abelian core.

q(n) is quasi-polynomial if ∃c, d,N > 0 ∀n ≥ N : q(n) ≤ c2log(n)
d
.
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Solving CSPs by solving term equations



Solving CSP’s through systems of equations

Theorem.
For every finite relational structure D of finite type, there is a finite algebra A(D)

such that CSP(D) and TermSysSat(A(D)) are polynomial time reducible to each

other.

1. Kĺıma, Tesson, Thérien 2007:

Assume D = (D, ρ) is a digraph. A(D) is a semigroup with 5|D| + |ρ| + 1

elements that satisfies x2 ≈ x and xyz ≈ yxz.

2. Broniek 2015:

Assume D = (D,R) with R ⊆ Dr. A(D) is a unary algebra with |D| + |R| + 2

elements and r + 4 unary operations.



Solving systems over modules



Solving systems over modules

Let A be an R-module.

▶ The polynomial algorithm provided by the theory uses the

Bulatov-Dalmau-algorithm (2006) to solve instances of CSP(A◦), which has

the Mal’cev term of A as a polymorphism.

▶ In practice, Hermite-decomposition is useful.



Solving systems over modules

We solve (
10 16 0

15 24 30

)
·
(

x
y
z

)
=

(
4

66

)
over Z.



Solving systems over modules

We solve (
10 16 0

15 24 30

)
·
(

x
y
z

)
=

(
4

66

)
over Z. To this end, we compute a Z-Basis of the row module of

−4 −66 1 0 0 0

10 15 0 1 0 0

16 24 0 0 1 0

0 30 0 0 0 1


using the Hermite normal form (1851, polynomial time since 1979).



Solving systems over modules

We solve (
10 16 0

15 24 30

)
·
(

x
y
z

)
=

(
4

66

)
over Z. We have

row(


−4 −66 1 0 0 0

10 15 0 1 0 0

16 24 0 0 1 0

0 30 0 0 0 1

) = row(


2 3 0 5 −3 0

0 30 0 0 0 1

0 0 1 2 −1 2

0 0 0 8 −5 0

)

and thus S = {(2,−1, 2) + t (8,−5, 0) | t ∈ Z}.



Solving systems over modules

Problem: Find all (z1, z2, z3) ∈ Z[x, y]3 with

(10y)z1 + 0z2 + (4x)z3 = 4x3.

Solution: Compute the (reduced strong) Gröbner basis (with respect to a certain

order) of the row module of

A′ :=


−4x3 1 0 0 0

10y 0 1 0 0

0 0 0 1 0

4x 0 0 0 1

 .



Solving systems over modules

We solve (10y)z1 + 0z2 + (4x)z3 = 4x3.

row(


−4x3 1 0 0 0

10y 0 1 0 0

0 0 0 1 0

4x 0 0 0 1

) = row(



2xy 0 x 0 −2y

4x 0 0 0 1

10y 0 1 0 0

0 1 0 0 x2

0 0 2x 0 −5y

0 0 0 1 0


).

Hence S = (0, 0, x2) + ⟨(2x, 0,−5y), (0, 1, 0)⟩.



II. One equation



Supernilpotent algebras

Theorem (Coordinatization, EA 2019).

Let A be supernilpotent of order pα in a cm variety. Then there are operations

+,× on A and D ∈ N such that

1. F = (A; +,×) is a field,

2. for all n ∈ N and p ∈ Poln(A), there is by P ∈ F[X1, . . . , Xn] with P F = pA

and deg(f) ≤ D.

Corollary Kompatscher 2018.

Let A be supernilpotent in a cm variety. Then one equation

s(x1, . . . , xn) = t(x1, . . . , xn)

can be solved in polynomial time.



Supernilpotent algebras

Corollary Kompatscher 2018.

Let A be supernilpotent in a cm variety. Then one equation

s(x1, . . . , xn) = t(x1, . . . , xn) can be solved in polynomial time.

▶ Assume |A| = pα =: q.

▶ ∃S, T ∈ Fq[X1, . . . , Xn] : SF = sA and T F = tA with deg(S) ≤ D, deg(T ) ≤ D.

▶ deg(1 − (S − T )q−1) ≤ (q − 1)D.

▶ Let (a1, . . . , an) be the nonzero of P := 1 − (S − T )q−1 with the smallest

number of nonzero entries. WLOG (a1, . . . , an) = (a1, . . . , ak, 0, . . . , 0).

▶ Q(X1, . . . , Xk) := P (X1, . . . , Xk, 0, . . . , 0) satisfies deg(Q) ≥ k.

▶ Hence k ≤ (q − 1)D.

▶ Look for a solution of s = t with at most (q− 1)D entries different from a ∈ A.



Supernilpotent algebras

Why was it easy to solve equations?

▶ We could reduce the search space from |A|n to a hitting set of size c(|A|)nk.

▶ There are either no or many solutions.

Theorem Warning 1935.

f ∈ Fq[X1, . . . , Xn].

If the polynomial f with deg(f) < n has a zero, then the number of zeros of f is at

least qn−deg(f).

Consequence: if there is a solution, picking a at random yields a solution with

probability at least q− deg(f) ⇝ linear time Monte Carlo-algorithm (Kawa lek,

Krzackowski 2020).



Solving equations over groups



Solving equations over groups

G a finite group. PolSat(G) asks whether

s(x1, . . . , xk, g1, . . . , gl) = t(x1, . . . , xk, g1, . . . , gl)

has a solution in Gk.

Input size: lengths of terms s and t.

▶ G nilpotent ⇒ PolSat(G) ∈ P (Horváth, 2011).

▶ G not solvable ⇒ PolSat(G) is NP-complete (Goldmann and Russell, 1999).

▶ G not solvable ⇒ there exists e ∈ Pol1(A) such that PolSat(A + e) has no

subexponential algorithm, or the exponential time hypothesis fails (Rossi, EA

2024).

▶ G = P ⋊A with P p-group and A abelian ⇒ PolSat(G) ∈ P. (Földvári,

Horváth 2019).

Even solving a fixed number of equations is in P (Nuspl 2021).



Solving equations over groups

Theorem Idziak, Kawa lek, Krzaczkowski; Weiß 2020

If PolSat(S4) ∈ P, then for every ε > 0, we can solve 3-Sat in time O(2εn),

contradicting the Exponential Time Hypothesis by Impagliazzo and Paturi from

1999.

▶ The result is not just about S4, but about all groups of Fitting length (length

of shortest composition series with nilpotent quotients) at least 3.

▶ An algorithm with running time O(nc(log(n))d) is consistent with ETH, where

n is the length of the input terms.



Solving equations over groups

▶ We make a (still unsuccessful) attempt to find an O(nc(log(n))d) algorithm for

PolSat(S4).

▶ Easier problem: PolEqv(S4):

Input: p, q polynomial terms over S4.

Output: Is ∀a ∈ S4
n : p(a) = q(a) true?



Identity checking for groups

We want to check whether p(x1, . . . , xn) = 1 for all x ∈ S4
n.

Definition. p ∈ Polk(S4) is absorbing if for all x : 1 ∈ {x1, . . . , xk} ⇒
p(x1, . . . , xk) = 1.

▶ Suppose we can prove: every nonconstant absorbing polynomial has length at

least 2ck
1/d

.

▶ Then pick a with p(a) ̸= 1 with maximal amount of 1’s. WLOG

a = (a1, . . . , ak, 1, . . . , 1).

▶ Then q(x1, . . . , xk) := p(x1, . . . , xk, 1, . . . , 1) is absorbing.

▶ Hence length(p) ≥ 2ck
1/d

.

▶ Then k ≤ 1
c (log2(length(p)))d.

▶ Input size m : greater than max(n, length(p)).

▶ There are at most mc2 log
d(m) tuples with at most k entries ̸= 1 ⇝ algorithm of

complexity O(mc logd(m)).



Finite fields



Absorbing polynomial functions over finite fields

Definition. Let F be a field, f ∈ F[X1, . . . , Xn] is absorbing at a for S : ⇔
∀(x1, . . . , xn) ∈ Sn : a ∈ {x1, . . . , xn} ⇒ f(x1, . . . , xn) = 0.

Theorem (Grünbacher, Hametner, EA 2024).

S ⊆ Fq \ {0}, a ∈ S. If f ∈ Fq[X1, . . . , Xn] is absorbing at a for S and f is not

identically 0 on S, then f contains at least ( q−1
q−2)n monomials.

Examples:

1. ω := primitive element of F4,

S := {1, ω}. Then f :=
∏n

i=1(Xi − ω) is

absorbing at ω for S and has 2n

monomials.

2. (Grünbacher) There is an absorbing

function with at most ( q−2
√
q − 1)n

monomials (if q − 2 | n).
15 20

1.2

1.4

1.6

1.8

2.0



Equation solving over finite fields

Intuition: If there is a solution, there is one in the neighborhood.

Theorem Grünbacher, Hametner, EA 2024

Let q > 2, n ∈ N, f ∈ Fq[X1, . . . , Xn] \ {0} with M(f) monomials, S ⊆ Fq \ {0},

t := q−1
q−2 . Let

V (f) := {x ∈ Sn | f(x ) = 0}.

If V (f) ̸= ∅, then for every a ∈ Sn, there is b ∈ V (f) with

dH(a , b) ≤ 1
log2(t)

(
1 + (q − 1) log2(M(f))

)
.

This gives quasi-polynomial time algorithms for the following questions:

1. Does f have a zero in Sn?

2. Does f vanish identically on Sn?



III. Quasi-identities



Quasi-identities in universal algebra

▶ A algebra, si, ti, u, v terms.

▶ We ask whether S = {x ∈ An |
∧

i∈k si(x ) = ti(x )} is contained in

U = {x ∈ An | u(x ) = v(x )}.

▶ This holds if the formula

∀x :
(∧
i∈k

si(x ) = ti(x )
)

=⇒ u(x ) = v(x )

holds in A.

▶ Such a formula is called a conditional identity or quasi-identity.

▶ We want to determine the validity of this formula.



Quasi-identities in universal algebra

▶ A algebra, si, ti, u, v terms.

▶ We ask whether S = {x ∈ An |
∧

i∈k s
A
i (x ) = tAi (x )} is contained in

U = {x ∈ An | uA(x ) = vA(x )}.

▶ This holds if the formula

∀x :
(∧
i∈k

si(x ) = ti(x )
)

=⇒ u(x ) = v(x )

holds in A.

▶ Such a formula is called a conditional identity or quasi-identity.

▶ We want to determine the validity of this formula.



Algebras that satisfy the same quasi-identities

Some facts on quasi-identities:

▶ Classes of algebras defined by quasi-identities are called quasivarieties. The

quasivariety generated by K is ISPuPfinK.

▶ Generalization: infinite pre-condition, finitely many variables:

Considered in Universal Algebraic Geometry. Closure operator: LSP .

▶ Generalization: infinite pre-condition, arbitrary many variables:

Closure operator ISP .

▶ A,B finite, of finite type, |A| = n. Then A ∈ Q(B) ⇔ A ∈ IS {B
(n2)}.



Quasi-identity validity

Let A be an algebra. QuasiIdVal(A) is the problem:

Given: A quasi-identity Φ := ∀x :
(∧

i∈k si(x ) = ti(x )
)

=⇒ u(x ) = v(x ).

Here, si, ti, u, v are terms in the language of A over the variables x .

Asked: Does Φ hold in A?

Computational Complexity: For finite A of finite type, QuasiIdVal(A) is in

co-NP:

a ∈ An witnesses failure of Φ if
(∧

i∈k s
A
i (a) = tAi (a)

)
∧ uA(a) ̸= vA(a).

Exponential time method: A quasi-identity of length ℓ contains at most ℓ

different variables that can take at most |A|ℓ values.

Question: For which algebras do we have faster methods (e.g. polynomial time)?
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Quasi-identity validity and polynomial systems

Relations to other problems:

▶ If we can decide solvability of polynomial systems, then we can check the

validity of quasi-identities.

▶ We search for a counter-example: ∀x :
(∧

i∈k si(x ) = ti(x )
)

=⇒ u(x ) = v(x )

holds iff for all a, b ∈ A with a ̸= b,∧
i∈k

si(x ) = ti(x ), u(x ) = a, v(x ) = b

has no solution.

▶ These systems use constants: a and b.

Therefore they are polynomial systems and not just term systems.

▶ Conclusion: QuasiIdVal(A) ≤truth table PolSysSat(A).
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Quasi-identity validity and systems of term equations

▶ If we can check the validity of quasi-identities, then we can decide solvability

of term equations.

▶ The system s1 = t1, . . . , sk = tk has no solution iff

s1 = t1 ∧ . . . ∧ sk = tk =⇒ y = z

is valid in A. (y, z . . . new variables, |A| > 1).

▶ Conclusion: co-TermSysSat(A) ≤P QuasiIdVal(A).
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Quasi-identity validity and checking term equivalence

▶ If we can check the validity of quasi-identities, we can check whether two

terms induce the same function.

▶ ∀x : s(x ) = t(x ) is valid iff

y = y =⇒ s(x ) = t(x )

is valid in A.

▶ Conclusion: TermEqv(A) ≤P QuasiIdVal(A).
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Quasi-identity validity: connections with well-studied problems.

Connections:

▶ QuasiIdVal(A) ≤truth table PolSysSat(A).

▶ co-TermSysSat(A) ≤P QuasiIdVal(A).

▶ TermEqv(A) ≤P QuasiIdVal(A).

▶ In 2004, M. Volkov constructed a 10-element semigroup Q with

TermEqv(Q) ∈ P, and QuasiIdVal(Q) co-NP-complete because it solves

3-Colorability for graphs.
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Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal’cev term.

Consequences:

▶ A is abelian =⇒ QuasiIdVal(A) ∈ P.

(Reason: PolSysSat, which is analyzed in [Larose, Zádori 2006])

▶ Core(A) is nonabelian =⇒ QuasiIdVal(A) is co-NP-complete.

(Reason: TermSysSat, which is analyzed in [Mayr 2023])

▶ A non-solvable group =⇒ QuasiIdVal(A) is co-NP-complete.

(Reason: TermEqv, which is analyzed in [Horváth, Lawrence, Mérai, Szabó

2007])

Open: nonabelian nilpotent groups, nonzero nilpotent rings.
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2007])

Open: nonabelian nilpotent groups, nonzero nilpotent rings.



Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal’cev term.

Consequences:

▶ A is abelian =⇒ QuasiIdVal(A) ∈ P.

(Reason: PolSysSat, which is analyzed in [Larose, Zádori 2006])

▶ Core(A) is nonabelian =⇒ QuasiIdVal(A) is co-NP-complete.

(Reason: TermSysSat, which is analyzed in [Mayr 2023])

▶ A non-solvable group =⇒ QuasiIdVal(A) is co-NP-complete.

(Reason: TermEqv, which is analyzed in [Horváth, Lawrence, Mérai, Szabó

2007])

Open: nonabelian nilpotent groups, nonzero nilpotent rings.



A reduction of graph coloring to quasi-identities



Quasi-identity validity

Theorem Aichinger, Grünbacher, STACS 2023

A finite algebra of finite type with a Mal’cev term. Then

1. QuasiIdVal(A) ∈ P if A is abelian.

2. QuasiIdVal(A) is co-NP-complete if A is nonabelian.

New content: item (2).

Proof idea: we reduce the H-coloring problem to QuasiIdVal(A).



H-coloring of graphs

H-coloring:

Given: a graph G.

Asked: Is there a graph homomorphism h from G to H (G → H)?

▶ H = K2:

1 2

G → H iff G is bipartite: edges in G only go from h−1({1}) to h−1({2}).



H-coloring of graphs

H-coloring:

Given: a graph G.

Asked: Is there a graph homomorphism h from G to H (G → H)?

▶ H = K4:

1 2

34

G → H if the vertices of G can be coloured with 4 colors such that no

adjacent vertices have the same colour.



H-coloring of graphs

H-coloring:

Given: a graph G.

Asked: Is there a graph homomorphism h from G to H (G → H)?

▶ H a graph with loops:

1 2

34

G → H holds for every graph G: use h(v) = 3 for each vertex v of G.



Theorem Hell, Nešetřil 1990.

Let H be a finite loopless graph that contains a triangle. Then H-coloring is

NP-complete.

A consequence stated in Csp-language:

Theorem
Let H = (H, ρ) be a relational structure with an antireflexive and symmetric

binary relation ρ.

If H has K3 = ({1, 2, 3}; ̸=) as a substructure, then Csp(H) is NP-complete.



Proof of the Theorem

Plan:

▶ We want to prove that checking the validity of quasi-identities of

R := (3Z27,+,−, ·, 0) is co-NP-complete.

▶ We will show: there is a graph H such that

for every graph G : G → H ⇐⇒ the quasi-identity Φ(G) is not valid.

▶ This will imply that QuasiIdVal(R) is co-NP-complete.

Details:

▶ R = {[0]27, [3]27, . . . , [24]27}.

▶ H is the “difference graph” or “apartness graph” on R :

(r, s) is an edge if r − s ̸∈ {[0]27, [9]27, [18]27}.



Proof of the Theorem

The graph H for 3Z27

0
3

6

9

1215

18

21

24

E(H) = {(x, y) | x− y ̸∈ {0, 9, 18}}.



Proof of the Theorem

The graph H for 3Z27

0
3

6

9

1215

18

21

24

E(H) = {(x, y) | x− y ̸∈ {0, 9, 18}}.

▶ non-edges of H



Proof of the Theorem

The graph H for 3Z27

0
3

6

9

1215

18

21

24

▶ G graph. We want to find out whether

G → H using a quasi-identity on R.

▶ Φ =
( ∧
(u,v)∈E(G)

a = zu,v · (xu − xv)
)
⇒ a = 0.



Proof of the Theorem

The graph H for 3Z27

0
3

6

9

1215

18

21

24

▶ G graph. We want to find out whether

G → H using a quasi-identity on R.

▶ Φ =
( ∧
(u,v)∈E(G)

a = zu,v · (xu − xv)
)
⇒ a = 0.

▶ Suppose Φ is invalid. Then a ̸= 0.

▶ Let (u, v) ∈ E(G). Then xu − xv ̸∈ {0, 9, 18}.

▶ Thus (xu, xv) is an edge of H.

▶ u 7→ xu is a homomorphism from G to H.

▶ Hence if Φ is invalid, G → H.



Proof of the Theorem

The graph H for 3Z27

0
3

6

9

1215

18

21

24

▶ G graph. We want to find out whether

G → H using a quasi-identity on R.

▶ Φ =
( ∧
(u,v)∈E(G)

a = zu,v · (xu − xv)
)
⇒ a = 0.

▶ Suppose G → H.

▶ . . .

▶ This is a counterexample to Φ.

▶ Hence Φ is invalid.



Proof of the Theorem

▶ Hence Φ is not valid iff G → H.

▶ H-coloring is NP-complete [Hell, Nešetřil 1990].

▶ Thus QuasiIdVal(R) is co-NP-complete.



Proof for Mal’cev algebras

Theorem
Let A be a finite nonabelian algebra of finite type with a Mal’cev term. Then

QuasiIdVal(A) is co-NP-complete.

▶ Instead of the ring multiplication, use commutators [Smith 1976, Hagemann,

Herrmann 1979].

▶ This works for subdirectly irreducible A.

▶ For arbitrary A, use “difference graphs” for several congruences of A.

▶ Order these graphs and pick a maximal one.

▶ EA and Simon Grünbacher. The Complexity of Checking Quasi-Identities

over Finite Algebras with a Mal’cev Term, STACS 2023.



IV. Open questions



Polynomial equations on S4

Problem: Solve PolSat(S4) or PolEqv(S4) in time mc logd(m).

Possible approaches:

▶ Show: every nonconstant absorbing polynomial in k arguments has length at

least 2ck
1/d

.

▶ The following problems are – in some sense – equivalent:

▶ Does a fully expanded polynomial p ∈ Mat2(F2) ⟨X1, . . . , Xn⟩ vanish on all 6n

invertible inputs?
▶ (Grünbacher) Let ω be primitive in F4, p1, . . . , pn expanded polynomials in

Z3[X1, . . . , Xn]. Does
n∑

i=1

ωpi(X1,...,Xn)

vanish on {−1, 1}n?



Circuit equivalence

▶ The polynomials p, q may be given as circuits.

▶ We want to test whether they compute the same function.

Problem 1 from [Kawa lek, Kompatscher, Krzaczkowski, STACS 2024]

Let A be a finite algebra from a congruence modular variety with supernilpotent

rank 2. Is there a deterministic polynomial time algorithm solving circuit

equivalence on A?

Děkuji za pozváńı a pozornost!
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