Equations over finite algebras

Erhard Aichinger

Institute for Algebra Johannes Kepler University Linz Linz, Austria

AAA105, Prague, June 2024

Supported by the Austrian Science Fund (FWF) : P33878

I. Systems of term equations

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ・ つくぐ

Systems of term equations

Let \mathbf{A} be an algebra. TERMSYSSAT (\mathbf{A}) is the following problem:

Given:

Terms $s_1(x_1, ..., x_n), t_1(x_1, ..., x_n), ..., s_k(x_1, ..., x_n), t_k(x_1, ..., x_n).$

Asked:

Is there $\boldsymbol{a} \in A^n$ with $s_1^{\boldsymbol{A}}(\boldsymbol{a}) = t_1^{\boldsymbol{A}}(\boldsymbol{a}), \ldots, s_k^{\boldsymbol{A}}(\boldsymbol{a}) = t_k^{\boldsymbol{A}}(\boldsymbol{a})$?

Remarks:

- ▶ The answer is always **yes** if **A** has a one-element subuniverse: groups, lattices.
- Allowing constants yields $POLSYSSAT(\mathbf{A})$, which can be harder.

Computational complexity of $\text{TERMSYSSAT}(\mathbf{A})$

One can solve the equations by solving a constraint satisfaction problem. **Idea:** (Larose, Zádori 2006) Instead of solving

$$f(g(x_1, x_2)) = f(x_1),$$

solve

$$(x_1, x_2, y_1) \in g^{\circ}, (y_1, y_2) \in f^{\circ}, (x_1, y_2) \in f^{\circ}, \text{ where}$$

 $g^{\circ} = \{(a_1, a_2, b) \in A^3 \mid g(a_1, a_2) = b\}$

・ロト ・日 ・ モー・ モー・ クタマ

is the graph of g. This reduces TERMSYSSAT(A; f, g) to $CSP(A; f^{\circ}, g^{\circ})$.

Computational complexity of $\text{TERMSYSSAT}(\mathbf{A})$

For an algebra $\mathbf{A} = (A; F)$, let $\mathbf{A}^{\circ} := (A; \{f^{\circ} \mid f \in F\})$.

As a consequence of the Bulatov-Zhuk-Dichotomy (2017) (in the form of Barto, Krokhin, Willard (2017)), one obtains:

Theorem (cf. [Mayr, MFCS 2023]).

(Assume $\mathbf{P} \neq \mathbf{NP}$). Let \mathbf{A} be a finite algebra. Then TERMSYSSAT $(\mathbf{A}) \in \mathbf{P} \iff \mathbf{A}^{\circ}$ has a (not necessarily idempotent) Taylor polymorphism. Otherwise TERMSYSSAT (\mathbf{A}) is **NP**-complete.

Computational complexity of $\text{TERMSYSSAT}(\mathbf{A})$

Question: Algebraic description when \mathbf{A}° has a (not necessarily idempotent) Taylor polymorphism.

Definition. Let **A** be a finite algebra.

 $Core(\mathbf{A})$ is a minimal endomorphic image of \mathbf{A} w.r.t \subseteq . (Defined up to isomorphism)

Examples.

• **G** group.
$$Core(\mathbf{G}) = \{1\}.$$

▶ **G** group. $\mathbf{G}^* := (G; *, {}^{-1}, (c_g)_{g \in G}))$ its expansions with all constants from G. Then Core(\mathbf{G}^*) = G.

$$Core((S_5; \circ, {}^{-1}, \underbrace{\operatorname{id}, (1 \ 2)}_{\operatorname{nullary}})) = \{\operatorname{id}, (1 \ 2)\}.$$

Computational complexity of TERMSYSSAT(A)

Theorem Larose, Zádori 2006

Let **A** be a finite algebra in a congruence modular variety. TFAE:

- 1. PolSysSat(\mathbf{A}) = TermSysSat(\mathbf{A}^*) $\in \mathbf{P}$.
- 2. A is abelian.

Theorem Mayr 2023

Let **A** be a finite algebra in a congruence modular variety. TFAE:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 1. TermSysSat(\mathbf{A}) $\in \mathbf{P}$.
- 2. $Core(\mathbf{A})$ is abelian.

Both results also hold also if $1 \notin \operatorname{typ}(V(\mathbf{A}))$ and $5 \notin \operatorname{typ}(\{\mathbf{A}\})$.

TERMSYSSAT(A) vs. POLSYSSAT(A)

Theorem Mayr 2023.

Let \mathbf{A} be a finite algebra of finite type. The following three problems are reducible to each other in constant time:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 1. TermSysSat(\mathbf{A}).
- 2. TermSysSat($Core(\mathbf{A})$).
- 3. $PolSysSat(Core(\mathbf{A}))$.

The meta-problem for systems of term equations

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

The meta-problem for TERMSYSSAT

Meta-problem for TERMSYSSAT (Assume $\mathbf{P} \neq \mathbf{NP}$)

Given: $\mathbf{A} = (A; f_1, \dots, f_k)$ Asked: Is TERMSYSSAT $(\mathbf{A}) \in \mathbf{P}$?

The meta-problem for TERMSYSSAT

Meta-problem for TERMSYSSAT (Assume $\mathbf{P} \neq \mathbf{NP}$)

Given: $A = (A; f_1, ..., f_k)$

Asked: Is TERMSYSSAT $(\mathbf{A}) \in \mathbf{P}$?

Asked: Does $Core(\mathbf{A}^{\circ})$ have a Siggers polymorphism?

The meta-problem for TERMSYSSAT

Meta-problem for TERMSYSSAT (Assume $\mathbf{P} \neq \mathbf{NP}$)

Given: $A = (A; f_1, ..., f_k)$

Asked: Is TERMSYSSAT $(\mathbf{A}) \in \mathbf{P}$?

Asked: Does $Core(\mathbf{A}^{\circ})$ have a Siggers polymorphism?

In cm varieties: Asked: Does A have an abelian core?

Theorem Mayr 2023

There is a quasi-polynomial algorithm that decides whether a given finite \mathbf{A} in a cm variety has an abelian core.

q(n) is quasi-polynomial if $\exists c, d, N > 0 \ \forall n \ge N : q(n) \le c2^{\log(n)^d}$.

Solving CSPs by solving term equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Solving CSP's through systems of equations

Theorem.

For every finite relational structure \mathbb{D} of finite type, there is a finite algebra $\mathbf{A}(\mathbb{D})$ such that $\mathrm{CSP}(\mathbb{D})$ and $\mathrm{TERMSYSSAT}(\mathbf{A}(\mathbb{D}))$ are polynomial time reducible to each other.

1. Klíma, Tesson, Thérien 2007:

Assume $\mathbb{D} = (D, \rho)$ is a digraph. $\mathbf{A}(\mathbb{D})$ is a semigroup with $5|D| + |\rho| + 1$ elements that satisfies $x^2 \approx x$ and $xyz \approx yxz$.

2. Broniek 2015:

Assume $\mathbb{D} = (D, R)$ with $R \subseteq D^r$. $\mathbf{A}(\mathbb{D})$ is a unary algebra with |D| + |R| + 2 elements and r + 4 unary operations.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Let \mathbf{A} be an \mathbf{R} -module.

► The polynomial algorithm provided by the theory uses the Bulatov-Dalmau-algorithm (2006) to solve instances of CSP(A°), which has the Mal'cev term of A as a polymorphism.

▶ In practice, Hermite-decomposition is useful.

We solve

$$\left(\begin{array}{rrr} 10 & 16 & 0\\ 15 & 24 & 30 \end{array}\right) \cdot \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \left(\begin{array}{r} 4\\ 66 \end{array}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

over \mathbb{Z} .

We solve

$$\left(\begin{array}{rrr}10 & 16 & 0\\15 & 24 & 30\end{array}\right) \cdot \begin{pmatrix}x\\y\\z\end{pmatrix} = \left(\begin{array}{r}4\\66\end{array}\right)$$

over $\mathbb Z.$ To this end, we compute a $\mathbb Z\text{-}\mathsf{Basis}$ of the row module of

$$\left(\begin{array}{rrrrr} -4 & -66 & 1 & 0 & 0 & 0 \\ 10 & 15 & 0 & 1 & 0 & 0 \\ 16 & 24 & 0 & 0 & 1 & 0 \\ 0 & 30 & 0 & 0 & 0 & 1 \end{array}\right)$$

using the Hermite normal form (1851, polynomial time since 1979).

We solve

$$\left(\begin{array}{rrr} 10 & 16 & 0\\ 15 & 24 & 30 \end{array}\right) \cdot \left(\begin{array}{c} x\\ y\\ z \end{array}\right) = \left(\begin{array}{c} 4\\ 66 \end{array}\right)$$

over \mathbb{Z} . We have

$$\operatorname{row}\left(\begin{pmatrix} -4 & -66 & 1 & 0 & 0 & 0\\ 10 & 15 & 0 & 1 & 0 & 0\\ 16 & 24 & 0 & 0 & 1 & 0\\ 0 & 30 & 0 & 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{row}\left(\begin{pmatrix} 2 & 3 & 0 & 5 & -3 & 0\\ 0 & 30 & 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 2 & -1 & 2\\ 0 & 0 & 0 & 8 & -5 & 0 \end{pmatrix}\right)$$

and thus $S = \{(2, -1, 2) + t (8, -5, 0) \mid t \in \mathbb{Z}\}.$

Problem: Find all $(z_1, z_2, z_3) \in \mathbb{Z}[x, y]^3$ with

$$(10y)z_1 + 0z_2 + (4x)z_3 = 4x^3.$$

Solution: Compute the (reduced strong) Gröbner basis (with respect to a certain order) of the row module of

$$A' := \begin{pmatrix} -4x^3 & 1 & 0 & 0 & 0\\ 10y & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 4x & 0 & 0 & 0 & 1 \end{pmatrix}.$$

We solve $(10y)z_1 + 0z_2 + (4x)z_3 = 4x^3$.

$$\operatorname{row}\left(\begin{pmatrix} -4x^{3} & 1 & 0 & 0 & 0\\ 10y & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 4x & 0 & 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{row}\left(\begin{pmatrix} 2xy & 0 & x & 0 & -2y\\ 4x & 0 & 0 & 0 & 1\\ 10y & 0 & 1 & 0 & 0\\ 0 & 1 & 0 & 0 & x^{2}\\ 0 & 0 & 2x & 0 & -5y\\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}\right).$$

Hence $S = (0, 0, x^2) + \langle (2x, 0, -5y), (0, 1, 0) \rangle$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

II. One equation

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Supernilpotent algebras

Theorem (Coordinatization, EA 2019).

Let **A** be supernilpotent of order p^{α} in a cm variety. Then there are operations $+, \times$ on A and $D \in \mathbb{N}$ such that

- 1. $\mathbb{F} = (A; +, \times)$ is a field,
- 2. for all $n \in \mathbb{N}$ and $p \in \operatorname{Pol}_n(\mathbf{A})$, there is by $P \in \mathbb{F}[X_1, \ldots, X_n]$ with $P^{\mathbb{F}} = p^{\mathbf{A}}$ and $\operatorname{deg}(f) \leq D$.

Corollary Kompatscher 2018.

Let \mathbf{A} be supernilpotent in a cm variety. Then one equation

$$s(x_1,\ldots,x_n)=t(x_1,\ldots,x_n)$$

can be solved in polynomial time.

Supernilpotent algebras

Corollary Kompatscher 2018.

Let **A** be supernilpotent in a cm variety. Then one equation $s(x_1, \ldots, x_n) = t(x_1, \ldots, x_n)$ can be solved in polynomial time.

• Assume
$$|A| = p^{\alpha} =: q$$

▶ $\exists S, T \in \mathbb{F}_q[X_1, \dots, X_n] : S^{\mathbb{F}} = s^A$ and $T^{\mathbb{F}} = t^A$ with deg $(S) \leq D$, deg $(T) \leq D$.

•
$$\deg(1 - (S - T)^{q-1}) \le (q - 1)D.$$

▶ Let (a_1, \ldots, a_n) be the nonzero of $P := 1 - (S - T)^{q-1}$ with the smallest number of nonzero entries. WLOG $(a_1, \ldots, a_n) = (a_1, \ldots, a_k, 0, \ldots, 0)$.

►
$$Q(X_1, \ldots, X_k) := P(X_1, \ldots, X_k, 0, \ldots, 0)$$
 satisfies deg $(Q) \ge k$.

► Hence $k \leq (q-1)D$.

Look for a solution of s = t with at most (q-1)D entries different from $a \in A$.

Supernilpotent algebras

Why was it easy to solve equations?

- We could reduce the search space from $|A|^n$ to a hitting set of size $c(|A|) n^k$.
- ▶ There are either no or many solutions.

Theorem Warning 1935.

 $f \in \mathbb{F}_q[X_1,\ldots,X_n].$

If the polynomial f with $\deg(f) < n$ has a zero, then the number of zeros of f is at least $q^{n-\deg(f)}$.

Consequence: if there is a solution, picking a at random yields a solution with probability at least $q^{-\deg(f)} \rightsquigarrow$ linear time Monte Carlo-algorithm (Kawałek, Krzackowski 2020).

Solving equations over groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Solving equations over groups

 ${\bf G}$ a finite group. ${\sf POLSAT}({\bf G})$ asks whether

$$s(x_1,\ldots,x_k,g_1,\ldots,g_l)=t(x_1,\ldots,x_k,g_1,\ldots,g_l)$$

has a solution in G^k .

Input size: lengths of terms s and t.

- ▶ **G** nilpotent \Rightarrow POLSAT(**G**) \in **P** (Horváth, 2011).
- ▶ **G** not solvable \Rightarrow POLSAT(**G**) is **NP**-complete (Goldmann and Russell, 1999).
- ▶ **G** not solvable \Rightarrow there exists $e \in \text{Pol}_1(\mathbf{A})$ such that $\text{POLSAT}(\mathbf{A} + e)$ has no subexponential algorithm, or the exponential time hypothesis fails (Rossi, EA 2024).
- ▶ $\mathbf{G} = P \rtimes A$ with P p-group and A abelian \Rightarrow POLSAT $(\mathbf{G}) \in \mathbf{P}$. (Földvári, Horváth 2019).

Even solving a fixed number of equations is in \mathbf{P} (Nuspl 2021).

Theorem Idziak, Kawałek, Krzaczkowski; Weiß 2020 If $\text{PoLSAT}(S_4) \in \mathbf{P}$, then for every $\varepsilon > 0$, we can solve 3-SAT in time $O(2^{\varepsilon n})$, contradicting the Exponential Time Hypothesis by Impagliazzo and Paturi from 1999.

- The result is not just about S_4 , but about all groups of Fitting length (length of shortest composition series with nilpotent quotients) at least 3.
- An algorithm with running time $O(n^{c(\log(n))^d})$ is consistent with ETH, where n is the length of the input terms.

Solving equations over groups

• We make a (still unsuccessful) attempt to find an $O(n^{c(\log(n))^d})$ algorithm for POLSAT (S_4) .

・ロト ・日 ・ モー・ モー・ クタマ

► Easier problem: POLEQV(S_4): Input: p, q polynomial terms over S_4 . Output: Is $\forall a \in S_4^n : p(a) = q(a)$ true?

Identity checking for groups

We want to check whether $p(x_1, \ldots, x_n) = 1$ for all $\boldsymbol{x} \in S_4^n$.

Definition. $p \in \text{Pol}_k(S_4)$ is absorbing if for all $\boldsymbol{x}: 1 \in \{x_1, \ldots, x_k\} \Rightarrow p(x_1, \ldots, x_k) = 1.$

- Suppose we can prove: every nonconstant absorbing polynomial has length at least $2^{ck^{1/d}}$.
- ▶ Then pick \boldsymbol{a} with $p(\boldsymbol{a}) \neq 1$ with maximal amount of 1's. WLOG $\boldsymbol{a} = (a_1, \ldots, a_k, 1, \ldots, 1).$
- ▶ Then $q(x_1, \ldots, x_k) := p(x_1, \ldots, x_k, 1, \ldots, 1)$ is absorbing.
- Hence length $(p) \ge 2^{ck^{1/d}}$.
- ▶ Then $k \leq \frac{1}{c} (\log_2(\text{length}(p)))^d$.
- Input size m: greater than $\max(n, \operatorname{length}(p))$.
- ► There are at most $m^{c_2 \log^d(m)}$ tuples with at most k entries $\neq 1 \rightsquigarrow$ algorithm of complexity $O(m^{c \log^d(m)})$.

Finite fields

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Absorbing polynomial functions over finite fields

Definition. Let \mathbb{F} be a field, $f \in \mathbb{F}[X_1, \ldots, X_n]$ is absorbing at a for $S : \Leftrightarrow \forall (x_1, \ldots, x_n) \in S^n : a \in \{x_1, \ldots, x_n\} \Rightarrow f(x_1, \ldots, x_n) = 0.$

Theorem (Grünbacher, Hametner, EA 2024).

 $S \subseteq \mathbb{F}_q \setminus \{0\}, a \in S$. If $f \in \mathbb{F}_q[X_1, \ldots, X_n]$ is absorbing at a for S and f is not identically 0 on S, then f contains at least $(\frac{q-1}{q-2})^n$ monomials.

Examples:

- 1. $\omega := \text{primitive element of } \mathbb{F}_4,$ $S := \{1, \omega\}.$ Then $f := \prod_{i=1}^n (X_i - \omega)$ is absorbing at ω for S and has 2^n monomials.
- 2. (Grünbacher) There is an absorbing function with at most $(\sqrt[q-2]{q-1})^n$ monomials (if $q-2 \mid n$).

Equation solving over finite fields

Intuition: If there is a solution, there is one in the neighborhood.

Theorem Grünbacher, Hametner, EA 2024

Let $q > 2, n \in \mathbb{N}, f \in \mathbb{F}_q[X_1, \dots, X_n] \setminus \{0\}$ with M(f) monomials, $S \subseteq \mathbb{F}_q \setminus \{0\},$ $t := \frac{q-1}{q-2}$. Let $V(f) := \{ \boldsymbol{x} \in S^n \mid f(\boldsymbol{x}) = 0 \}.$

If $V(f) \neq \emptyset$, then for every $\boldsymbol{a} \in S^n$, there is $\boldsymbol{b} \in V(f)$ with

$$d_H(\boldsymbol{a}, \boldsymbol{b}) \le \frac{1}{\log_2(t)} (1 + (q-1)\log_2(M(f))).$$

This gives quasi-polynomial time algorithms for the following questions:

- 1. Does f have a zero in S^n ?
- 2. Does f vanish identically on S^n ?

III. Quasi-identities

Quasi-identities in universal algebra

▶ A algebra, s_i, t_i, u, v terms.

- We ask whether $S = \{ \boldsymbol{x} \in A^n \mid \bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}) \}$ is contained in $U = \{ \boldsymbol{x} \in A^n \mid u(\boldsymbol{x}) = v(\boldsymbol{x}) \}.$
- ▶ This holds if the formula

$$\forall \boldsymbol{x} : \left(\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}) \right) \Longrightarrow u(\boldsymbol{x}) = v(\boldsymbol{x})$$

holds in \mathbf{A} .

- ▶ Such a formula is called a conditional identity or quasi-identity.
- We want to determine the validity of this formula.

Quasi-identities in universal algebra

▶ A algebra, s_i, t_i, u, v terms.

- $\bullet \text{ We ask whether } S = \{ \boldsymbol{x} \in A^n \mid \bigwedge_{i \in \underline{k}} s_i^{\mathbf{A}}(\boldsymbol{x}) = t_i^{\mathbf{A}}(\boldsymbol{x}) \} \text{ is contained in } U = \{ \boldsymbol{x} \in A^n \mid u^{\mathbf{A}}(\boldsymbol{x}) = v^{\mathbf{A}}(\boldsymbol{x}) \}.$
- ▶ This holds if the formula

$$\forall \boldsymbol{x} : \left(\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x})\right) \Longrightarrow u(\boldsymbol{x}) = v(\boldsymbol{x})$$

holds in \mathbf{A} .

- ▶ Such a formula is called a conditional identity or quasi-identity.
- We want to determine the validity of this formula.
Algebras that satisfy the same quasi-identities

Some facts on quasi-identities:

- ► Classes of algebras defined by quasi-identities are called quasivarieties. The quasivariety generated by K is $ISP_{u}P_{fin}K$.
- Generalization: infinite pre-condition, finitely many variables:
 Considered in Universal Algebraic Geometry. Closure operator: LSP.
- Generalization: infinite pre-condition, arbitrary many variables: Closure operator *ISP*.

▶ **A**, **B** finite, of finite type, $|\mathbf{A}| = n$. Then $\mathbf{A} \in Q(\mathbf{B}) \Leftrightarrow \mathbf{A} \in IS\{\mathbf{B}^{\binom{n}{2}}\}$.

Quasi-identity validity

Let \mathbf{A} be an algebra. QUASIIDVAL (\mathbf{A}) is the problem:

Given: A quasi-identity $\Phi := \forall \boldsymbol{x} : \left(\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}) \right) \Longrightarrow u(\boldsymbol{x}) = v(\boldsymbol{x}).$ Here, s_i, t_i, u, v are terms in the language of \mathbf{A} over the variables \boldsymbol{x} .

Asked: Does Φ hold in A?

Quasi-identity validity

Let \mathbf{A} be an algebra. QUASIIDVAL (\mathbf{A}) is the problem:

Given: A quasi-identity $\Phi := \forall \boldsymbol{x} : \left(\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}) \right) \Longrightarrow u(\boldsymbol{x}) = v(\boldsymbol{x}).$ Here, s_i, t_i, u, v are terms in the language of \mathbf{A} over the variables \boldsymbol{x} .

Asked: Does Φ hold in **A**?

Computational Complexity: For finite \mathbf{A} of finite type, QUASIIDVAL(\mathbf{A}) is in co-NP:

 $a \in A^n$ witnesses failure of Φ if $\left(\bigwedge_{i \in \underline{k}} s_i^{\mathbf{A}}(a) = t_i^{\mathbf{A}}(a) \right) \wedge u^{\mathbf{A}}(a) \neq v^{\mathbf{A}}(a)$.

Quasi-identity validity

Let \mathbf{A} be an algebra. QUASIIDVAL (\mathbf{A}) is the problem:

Given: A quasi-identity $\Phi := \forall \boldsymbol{x} : \left(\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}) \right) \Longrightarrow u(\boldsymbol{x}) = v(\boldsymbol{x}).$ Here, s_i, t_i, u, v are terms in the language of \mathbf{A} over the variables \boldsymbol{x} .

Asked: Does Φ hold in **A**?

Computational Complexity: For finite \mathbf{A} of finite type, QUASIIDVAL(\mathbf{A}) is in co-NP:

 $a \in A^n$ witnesses failure of Φ if $\left(\bigwedge_{i \in \underline{k}} s_i^{\mathbf{A}}(a) = t_i^{\mathbf{A}}(a) \right) \wedge u^{\mathbf{A}}(a) \neq v^{\mathbf{A}}(a)$.

Exponential time method: A quasi-identity of length ℓ contains at most ℓ different variables that can take at most $|A|^{\ell}$ values.

Question: For which algebras do we have faster methods (e.g. polynomial time)?

Quasi-identity validity and polynomial systems

Relations to other problems:

 If we can decide solvability of polynomial systems, then we can check the validity of quasi-identities.

Quasi-identity validity and polynomial systems

Relations to other problems:

- ▶ If we can decide solvability of polynomial systems, then we can check the validity of quasi-identities.
- ▶ We search for a counter-example: $\forall \boldsymbol{x} : \left(\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}) \right) \Longrightarrow u(\boldsymbol{x}) = v(\boldsymbol{x})$ holds iff for all $a, b \in A$ with $a \neq b$,

$$\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}), \ u(\boldsymbol{x}) = a, \ v(\boldsymbol{x}) = b$$

has no solution.

These systems use constants: a and b.
Therefore they are polynomial systems and not just term systems.

Quasi-identity validity and polynomial systems

Relations to other problems:

- ▶ If we can decide solvability of polynomial systems, then we can check the validity of quasi-identities.
- ▶ We search for a counter-example: $\forall \boldsymbol{x} : \left(\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}) \right) \Longrightarrow u(\boldsymbol{x}) = v(\boldsymbol{x})$ holds iff for all $a, b \in A$ with $a \neq b$,

$$\bigwedge_{i \in \underline{k}} s_i(\boldsymbol{x}) = t_i(\boldsymbol{x}), \ u(\boldsymbol{x}) = a, \ v(\boldsymbol{x}) = b$$

has no solution.

- These systems use constants: a and b.
 Therefore they are polynomial systems and not just term systems.
- ► Conclusion: $QUASIIDVAL(\mathbf{A}) \leq_{truth table} POLSYSSAT(\mathbf{A}).$

Quasi-identity validity and systems of term equations

▶ If we can check the validity of quasi-identities, then we can decide solvability of term equations.

Quasi-identity validity and systems of term equations

- ▶ If we can check the validity of quasi-identities, then we can decide solvability of term equations.
- The system $s_1 = t_1, \ldots, s_k = t_k$ has no solution iff

$$s_1 = t_1 \land \ldots \land s_k = t_k \Longrightarrow y = z$$

is valid in **A**. $(y, z \dots$ new variables, |A| > 1).

Quasi-identity validity and systems of term equations

- ▶ If we can check the validity of quasi-identities, then we can decide solvability of term equations.
- The system $s_1 = t_1, \ldots, s_k = t_k$ has no solution iff

$$s_1 = t_1 \land \ldots \land s_k = t_k \Longrightarrow y = z$$

is valid in **A**. $(y, z \dots$ new variables, |A| > 1).

▶ Conclusion: co-TERMSYSSAT(\mathbf{A}) \leq_P QUASIIDVAL(\mathbf{A}).

Quasi-identity validity and checking term equivalence

▶ If we can check the validity of quasi-identities, we can check whether two terms induce the same function.

Quasi-identity validity and checking term equivalence

- If we can check the validity of quasi-identities, we can check whether two terms induce the same function.
- $\blacktriangleright \forall \boldsymbol{x} : s(\boldsymbol{x}) = t(\boldsymbol{x}) \text{ is valid iff}$

$$y = y \Longrightarrow s(\boldsymbol{x}) = t(\boldsymbol{x})$$

is valid in \mathbf{A} .

Quasi-identity validity and checking term equivalence

- If we can check the validity of quasi-identities, we can check whether two terms induce the same function.
- $\blacktriangleright \forall \boldsymbol{x} : s(\boldsymbol{x}) = t(\boldsymbol{x}) \text{ is valid iff}$

$$y = y \Longrightarrow s(\boldsymbol{x}) = t(\boldsymbol{x})$$

・ロト ・日 ・ モー・ モー・ ロー・ つへの

is valid in \mathbf{A} .

▶ Conclusion: TERMEQV(\mathbf{A}) \leq_P QUASIIDVAL(\mathbf{A}).

Connections:

- $\blacktriangleright \text{ QUASIIdVAL}(\mathbf{A}) \leq_{\text{truth table POLSYSSAT}}(\mathbf{A}).$
- ► co-TERMSYSSAT(\mathbf{A}) \leq_P QUASIIDVAL(\mathbf{A}).
- ► TERMEQV(\mathbf{A}) \leq_P QUASIIDVAL(\mathbf{A}).

Connections:

- $\blacktriangleright \text{ QUASIIdVAL}(\mathbf{A}) \leq_{\text{truth table POLSYSSAT}}(\mathbf{A}).$
- ► co-TERMSYSSAT(\mathbf{A}) \leq_P QUASIIDVAL(\mathbf{A}).
- ► TERMEQV(\mathbf{A}) \leq_P QUASIIDVAL(\mathbf{A}).
- ▶ In 2004, M. Volkov constructed a 10-element semigroup Q with TERMEQV(Q) ∈ P, and QUASIIDVAL(Q) co-NP-complete because it solves 3-COLORABILITY for graphs.

Let **A** be an algebra with a Mal'cev term. **Consequences:**

▶ A is abelian \implies QUASIIDVAL(A) \in P. (Reason: POLSYSSAT, which is analyzed in [Larose, Zádori 2006])

Let **A** be an algebra with a Mal'cev term. **Consequences:**

- ▶ A is abelian \implies QUASIIDVAL(A) \in P. (Reason: POLSYSSAT, which is analyzed in [Larose, Zádori 2006])
- ▶ Core(**A**) is nonabelian \implies QUASIIDVAL(**A**) is co-**NP**-complete. (Reason: TERMSYSSAT, which is analyzed in [Mayr 2023])

Let **A** be an algebra with a Mal'cev term. **Consequences:**

- ▶ A is abelian \implies QUASIIDVAL(A) \in P. (Reason: POLSYSSAT, which is analyzed in [Larose, Zádori 2006])
- ▶ Core(**A**) is nonabelian \implies QUASIIDVAL(**A**) is co-**NP**-complete. (Reason: TERMSYSSAT, which is analyzed in [Mayr 2023])
- ▶ A non-solvable group \implies QUASIIDVAL(A) is co-NP-complete. (Reason: TERMEQV, which is analyzed in [Horváth, Lawrence, Mérai, Szabó 2007])

Let **A** be an algebra with a Mal'cev term. **Consequences:**

- ▶ A is abelian \implies QUASIIDVAL(A) \in P. (Reason: POLSYSSAT, which is analyzed in [Larose, Zádori 2006])
- ▶ Core(**A**) is nonabelian \implies QUASIIDVAL(**A**) is co-**NP**-complete. (Reason: TERMSYSSAT, which is analyzed in [Mayr 2023])
- ► A non-solvable group ⇒ QUASIIDVAL(A) is co-NP-complete. (Reason: TERMEQV, which is analyzed in [Horváth, Lawrence, Mérai, Szabó 2007])

Open: nonabelian nilpotent groups, nonzero nilpotent rings.

A reduction of graph coloring to quasi-identities

Theorem Aichinger, Grünbacher, STACS 2023

 ${\bf A}$ finite algebra of finite type with a Mal'cev term. Then

- 1. QUASIIDVAL $(\mathbf{A}) \in \mathbf{P}$ if \mathbf{A} is abelian.
- 2. $QUASIIDVAL(\mathbf{A})$ is co-**NP**-complete if \mathbf{A} is nonabelian.

New content: item (2).

Proof idea: we reduce the *H*-coloring problem to $QUASIIDVAL(\mathbf{A})$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

H-coloring of graphs

H-COLORING: **Given:** a graph *G*. **Asked:** Is there a graph homomorphism *h* from *G* to *H* ($G \rightarrow H$)?

 $\blacktriangleright H = K_2:$

 $G \to H$ iff G is bipartite: edges in G only go from $h^{-1}(\{1\})$ to $h^{-1}(\{2\})$.

H-coloring of graphs

H-COLORING: **Given:** a graph *G*. **Asked:** Is there a graph homomorphism *h* from *G* to *H* ($G \rightarrow H$)?

 \blacktriangleright $H = K_4$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $G \to H$ if the vertices of G can be coloured with 4 colors such that no adjacent vertices have the same colour.

H-coloring of graphs

H-COLORING: **Given:** a graph *G*. **Asked:** Is there a graph homomorphism *h* from *G* to *H* ($G \rightarrow H$)?

 \blacktriangleright *H* a graph with loops:

 $G \to H$ holds for every graph G: use h(v) = 3 for each vertex v of G.

Theorem Hell, Nešetřil 1990.

Let H be a finite loopless graph that contains a triangle. Then H-COLORING is **NP**-complete.

A consequence stated in CSP-language:

Theorem

Let $\mathbb{H} = (H, \rho)$ be a relational structure with an antireflexive and symmetric binary relation ρ .

If \mathbb{H} has $\mathbb{K}_3 = (\{1, 2, 3\}; \neq)$ as a substructure, then $Csp(\mathbb{H})$ is **NP**-complete.

Proof of the Theorem

Plan:

- ► We want to prove that checking the validity of quasi-identities of R := (3Z₂₇, +, -, ·, 0) is co-NP-complete.
- We will show: there is a graph H such that

for every graph $G: G \to H \iff$ the quasi-identity $\Phi(G)$ is not valid.

▶ This will imply that $QUASIIDVAL(\mathbf{R})$ is co-**NP**-complete.

Details:

- $R = \{ [0]_{27}, [3]_{27}, \dots, [24]_{27} \}.$
- ► *H* is the "difference graph" or "apartness graph" on *R* : (*r*, *s*) is an edge if $r - s \notin \{[0]_{27}, [9]_{27}, [18]_{27}\}$.

$$E(H) = \{ (x, y) \mid x - y \notin \{0, 9, 18\} \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof of the Theorem

$$E(H) = \{ (x, y) \mid x - y \notin \{0, 9, 18\} \}.$$

 \blacktriangleright non-edges of H

Proof of the Theorem

The graph H for $3\mathbb{Z}_{27}$

• G graph. We want to find out whether $G \rightarrow H$ using a quasi-identity on **R**.

•
$$\Phi = \left(\bigwedge_{(u,v)\in E(G)} a = z_{u,v} \cdot (x_u - x_v)\right) \Rightarrow a = 0.$$

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つく⊙

The graph H for $3\mathbb{Z}_{27}$

• G graph. We want to find out whether $G \to H$ using a quasi-identity on **R**.

•
$$\Phi = \left(\bigwedge_{(u,v)\in E(G)} a = z_{u,v} \cdot (x_u - x_v)\right) \Rightarrow a = 0.$$

- Suppose Φ is invalid. Then $a \neq 0$.
- ▶ Let $(u, v) \in E(G)$. Then $x_u x_v \notin \{0, 9, 18\}$.
- ▶ Thus (x_u, x_v) is an edge of H.
- $u \mapsto x_u$ is a homomorphism from G to H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Hence if Φ is invalid, $G \to H$.

Proof of the Theorem

The graph H for $3\mathbb{Z}_{27}$

G graph. We want to find out whether G → H using a quasi-identity on R.
Φ = (∧ a = z_{u,v} ⋅ (x_u - x_v)) ⇒ a = 0.

▶ Suppose $G \to H$.

 $(u,v) \in E(G)$

• . . .

- ▶ This is a counterexample to Φ .
- Hence Φ is invalid.

Proof of the Theorem

- Hence Φ is not valid iff $G \to H$.
- ▶ *H*-coloring is **NP**-complete [Hell, Nešetřil 1990].

▶ Thus $QUASIIDVAL(\mathbf{R})$ is co-**NP**-complete.

Proof for Mal'cev algebras

Theorem

Let \mathbf{A} be a finite nonabelian algebra of finite type with a Mal'cev term. Then QUASIIDVAL(\mathbf{A}) is co-**NP**-complete.

- Instead of the ring multiplication, use commutators [Smith 1976, Hagemann, Herrmann 1979].
- ▶ This works for subdirectly irreducible **A**.
- ▶ For arbitrary **A**, use "difference graphs" for several congruences of **A**.
- Order these graphs and pick a maximal one.
- ▶ EA and Simon Grünbacher. The Complexity of Checking Quasi-Identities over Finite Algebras with a Mal'cev Term, STACS 2023.

IV. Open questions

Polynomial equations on S_4

Problem: Solve $POLSAT(S_4)$ or $POLEQV(S_4)$ in time $m^{c \log^d(m)}$.

Possible approaches:

- Show: every nonconstant absorbing polynomial in k arguments has length at least $2^{ck^{1/d}}$.
- ▶ The following problems are in some sense equivalent:
 - ▶ Does a fully expanded polynomial $p \in Mat_2(\mathbb{F}_2) \langle X_1, \ldots, X_n \rangle$ vanish on all 6^n invertible inputs?
 - (Grünbacher) Let ω be primitive in \mathbb{F}_4 , p_1, \ldots, p_n expanded polynomials in $\mathbb{Z}_3[X_1, \ldots, X_n]$. Does

$$\sum_{i=1}^{n} \omega^{p_i(X_1,\dots,X_n)}$$

vanish on $\{-1, 1\}^n$?

Circuit equivalence

- The polynomials p, q may be given as circuits.
- ▶ We want to test whether they compute the same function.

Problem 1 from [Kawałek, Kompatscher, Krzaczkowski, STACS 2024] Let **A** be a finite algebra from a congruence modular variety with supernilpotent rank 2. Is there a deterministic polynomial time algorithm solving circuit equivalence on **A**?

Děkuji za pozvání a pozornost!