Checking quasi-identities and solving equations

Erhard Aichinger
Institute for Algebra
Johannes Kepler University Linz
Linz, Austria

AAA104, Blagoevgrad, February 2024

Supported by the Austrian Science Fund (FWF) : P33878

Quasi-identities

Example

Is every solution of

$$
x^{2}+y^{2}=2
$$

also a solution of

Example

Is every solution of

$$
x^{2}+y^{2}=2
$$

also a solution of

$$
2 x^{2} y-x^{3}-x^{2}-x y^{2}+2 x+2 y^{3}-y^{2}-4 y+2=0 ?
$$

Example

Is every solution of $x^{2}+y^{2}=2$ also a solution of
$2 x^{2} y-x^{3}-x^{2}-x y^{2}+2 x+2 y^{3}-y^{2}-4 y+2=0$?

Hint 1:

$$
x^{2}+y^{2}=2
$$

$$
2 x^{2} y-x^{3}-x^{2}-x y^{2}+2 x+2 y^{3}-y^{2}-4 y+2=0
$$

Example

Is every solution of $x^{2}+y^{2}=2$ also a solution of $2 x^{2} y-x^{3}-x^{2}-x y^{2}+2 x+2 y^{3}-y^{2}-4 y+2=0$?

Hint 2:

$$
2 x^{2} y-x^{3}-x^{2}-x y^{2}+2 x+2 y^{3}-y^{2}-4 y+2=(-x+2 y-1)\left(x^{2}+y^{2}-2\right)
$$

Example

Is every solution of $x^{2}+y^{2}=2$ also a solution of
$2 x^{2} y-x^{3}-x^{2}-x y^{2}+2 x+2 y^{3}-y^{2}-4 y+2=0$?
Hint 3: Try to find a counterexample with Mathematica.
$P=-2+x^{2}+y^{2} ;$
$Q=2+2 x-x^{2}-x^{3}-4 y+2 x^{2} y-y^{2}-x y^{2}+2 y^{3} ;$
GroebnerBasis $[\{P, Q * z-1\},\{x, y, z\}]$
$\{1\}$

Quasi-identities in classical algebra

Theorem (Hilbert 1893).

For $f_{1}, \ldots, f_{s}, g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, the quasi-identity

$$
\forall \boldsymbol{x} \in \mathbb{C}^{n}: f_{1}(\boldsymbol{x})=\cdots=f_{s}(\boldsymbol{x})=0 \Longrightarrow g(\boldsymbol{x})=0
$$

holds iff there are $a_{1}, \ldots, a_{s} \in \mathbb{C}[\boldsymbol{x}]$ and $r \in \mathbb{N}$ such that $g^{r}=a_{1} f_{1}+\cdots a_{s} f_{s}$.

Quasi-identities in classical algebra

Theorem (Hilbert 1893).

For $f_{1}, \ldots, f_{s}, g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, the quasi-identity

$$
\forall \boldsymbol{x} \in \mathbb{C}^{n}: f_{1}(\boldsymbol{x})=\cdots=f_{s}(\boldsymbol{x})=0 \Longrightarrow g(\boldsymbol{x})=0
$$

holds iff there are $a_{1}, \ldots, a_{s} \in \mathbb{C}[\boldsymbol{x}]$ and $r \in \mathbb{N}$ such that $g^{r}=a_{1} f_{1}+\cdots a_{s} f_{s}$. Theorem (Terjanian 1966).
For $f_{1}, \ldots, f_{r}, g \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$, the quasi-identity

$$
\forall \boldsymbol{x} \in \mathbb{F}_{q}{ }^{n}: f_{1}(\boldsymbol{x})=\cdots=f_{s}(\boldsymbol{x})=0 \Longrightarrow g(\boldsymbol{x})=0
$$

holds in \mathbb{F}_{q} iff there are $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{n} \in \mathbb{F}_{q}[\boldsymbol{x}]$ such that

$$
g=a_{1} f_{1}+\cdots a_{r} f_{r}+b_{1} \cdot\left(x_{1}^{q}-x_{1}\right)+\cdots+b_{n} \cdot\left(x_{n}^{q}-x_{n}\right)
$$

Quasi-identities in universal algebra

Quasi-identities in universal algebra

- A algebra, s_{i}, t_{i}, u, v terms.
- We ask whether $S=\left\{\boldsymbol{x} \in A^{n} \mid \bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right\}$ is contained in $U=\left\{\boldsymbol{x} \in A^{n} \mid u(\boldsymbol{x})=v(\boldsymbol{x})\right\}$.
- This holds if the formula

$$
\forall \boldsymbol{x}:\left(\bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow u(\boldsymbol{x})=v(\boldsymbol{x})
$$

holds in \mathbf{A}.

- Such a formula is called a conditional identity or quasi-identity.
- We want to determine the validity of this formula.

Quasi-identities in universal algebra

- A algebra, s_{i}, t_{i}, u, v terms.
- We ask whether $S=\left\{\boldsymbol{x} \in A^{n} \mid \bigwedge_{i \in \underline{k}} s_{i}^{\mathbf{A}}(\boldsymbol{x})=t_{i}^{\mathbf{A}}(\boldsymbol{x})\right\}$ is contained in $U=\left\{\boldsymbol{x} \in A^{n} \mid u^{\mathbf{A}}(\boldsymbol{x})=v^{\mathbf{A}}(\boldsymbol{x})\right\}$.
- This holds if the formula

$$
\forall \boldsymbol{x}:\left(\bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow u(\boldsymbol{x})=v(\boldsymbol{x})
$$

holds in \mathbf{A}.

- Such a formula is called a conditional identity or quasi-identity.
- We want to determine the validity of this formula.

Quasi-identity validity

Let \mathbf{A} be an algebra. $\operatorname{QuasiId} \operatorname{Val}(\mathbf{A})$ is the problem:
Given: A quasi-identity $\Phi:=\forall \boldsymbol{x}:\left(\bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow u(\boldsymbol{x})=v(\boldsymbol{x})$. Here, s_{i}, t_{i}, u, v are terms in the language of \mathbf{A} over the variables \boldsymbol{x}.

Asked: Does Φ hold in A?

Quasi-identity validity

Let \mathbf{A} be an algebra. $\operatorname{QuasiIdVal}(\mathbf{A})$ is the problem:
Given: A quasi-identity $\Phi:=\forall \boldsymbol{x}:\left(\bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow u(\boldsymbol{x})=v(\boldsymbol{x})$. Here, s_{i}, t_{i}, u, v are terms in the language of \mathbf{A} over the variables \boldsymbol{x}.

Asked: Does Φ hold in A?
Computational Complexity: For finite \mathbf{A} of finite type, $\operatorname{QuasiIdVal(A)}$ is in co-NP:
$\boldsymbol{a} \in A^{n}$ witnesses failure of Φ if $\left(\bigwedge_{i \in \underline{k}} s_{i}^{\mathbf{A}}(\boldsymbol{a})=t_{i}^{\mathbf{A}}(\boldsymbol{a})\right) \wedge u^{\mathbf{A}}(\boldsymbol{a}) \neq v^{\mathbf{A}}(\boldsymbol{a})$.

Quasi-identity validity

Let \mathbf{A} be an algebra. QuasiIdVal(A) is the problem:
Given: A quasi-identity $\Phi:=\forall \boldsymbol{x}:\left(\bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow u(\boldsymbol{x})=v(\boldsymbol{x})$. Here, s_{i}, t_{i}, u, v are terms in the language of \mathbf{A} over the variables \boldsymbol{x}.

Asked: Does Φ hold in A?
Computational Complexity: For finite \mathbf{A} of finite type, $\operatorname{QuasiIdVal(A)}$ is in co-NP:
$\boldsymbol{a} \in A^{n}$ witnesses failure of Φ if $\left(\bigwedge_{i \in \underline{k}} s_{i}^{\mathbf{A}}(\boldsymbol{a})=t_{i}^{\mathbf{A}}(\boldsymbol{a})\right) \wedge u^{\mathbf{A}}(\boldsymbol{a}) \neq v^{\mathbf{A}}(\boldsymbol{a})$.
Exponential time method: A quasi-identity of length ℓ contains at most ℓ different variables that can take at most $|A|^{\ell}$ values.

Question: For which algebras do we have faster methods (e.g. polynomial time)?

The complexity of quasi-identity validity

Quasi-identity validity and polynomial systems

Relations to other problems:

- If we can decide solvability of polynomial systems, then we can check the validity of quasi-identities.

Quasi-identity validity and polynomial systems

Relations to other problems:

- If we can decide solvability of polynomial systems, then we can check the validity of quasi-identities.
- We search for a counter-example: $\forall \boldsymbol{x}:\left(\bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow u(\boldsymbol{x})=v(\boldsymbol{x})$ holds iff for all $a, b \in A$ with $a \neq b$,

$$
\bigwedge s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x}), u(\boldsymbol{x})=a, v(\boldsymbol{x})=b
$$

has no solution.

- These systems use constants: a and b.

Therefore they are polynomial systems and not just term systems.

Quasi-identity validity and polynomial systems

Relations to other problems:

- If we can decide solvability of polynomial systems, then we can check the validity of quasi-identities.
- We search for a counter-example: $\forall \boldsymbol{x}:\left(\bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow u(\boldsymbol{x})=v(\boldsymbol{x})$ holds iff for all $a, b \in A$ with $a \neq b$,

$$
\bigwedge_{i \in \underline{k}} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x}), u(\boldsymbol{x})=a, v(\boldsymbol{x})=b
$$

has no solution.

- These systems use constants: a and b. Therefore they are polynomial systems and not just term systems.
- Conclusion: QuasiIdVal(A) $\leq_{\text {truth table }} \operatorname{PolSysSat}(\mathbf{A})$.

Quasi-identity validity and systems of term equations

- If we can check the validity of quasi-identities, then we can decide solvability of term equations.

Quasi-identity validity and systems of term equations

- If we can check the validity of quasi-identities, then we can decide solvability of term equations.
- The system $s_{1}=t_{1}, \ldots, s_{k}=t_{k}$ has no solution iff

$$
s_{1}=t_{1} \wedge \ldots \wedge s_{k}=t_{k} \Longrightarrow y=z
$$

is valid in $\mathbf{A} .(y, z \ldots$ new variables, $|A|>1)$.

Quasi-identity validity and systems of term equations

- If we can check the validity of quasi-identities, then we can decide solvability of term equations.
- The system $s_{1}=t_{1}, \ldots, s_{k}=t_{k}$ has no solution iff

$$
s_{1}=t_{1} \wedge \ldots \wedge s_{k}=t_{k} \Longrightarrow y=z
$$

is valid in $\mathbf{A} .(y, z \ldots$ new variables, $|A|>1)$.

- Conclusion: co-TermSysSat $(\mathbf{A}) \leq_{P} \operatorname{QuasiIdVaL}(\mathbf{A})$.

Quasi-identity validity and checking term equivalence

- If we can check the validity of quasi-identities, we can check whether two terms induce the same function.

Quasi-identity validity and checking term equivalence

- If we can check the validity of quasi-identities, we can check whether two terms induce the same function.
- $\forall \boldsymbol{x}: s(\boldsymbol{x})=t(\boldsymbol{x})$ is valid iff

$$
y=y \Longrightarrow s(\boldsymbol{x})=t(\boldsymbol{x})
$$

is valid in \mathbf{A}.

Quasi-identity validity and checking term equivalence

- If we can check the validity of quasi-identities, we can check whether two terms induce the same function.
- $\forall \boldsymbol{x}: s(\boldsymbol{x})=t(\boldsymbol{x})$ is valid iff

$$
y=y \Longrightarrow s(\boldsymbol{x})=t(\boldsymbol{x})
$$

is valid in \mathbf{A}.

- Conclusion: TermEqv(A) $\leq_{P} \operatorname{QuasiIdVal}(\mathbf{A})$.

Quasi-identity validity: connections with well-studied problems.

Connections:

- QuasiIdVal(A) $\leq_{\text {truth table }} \operatorname{PolSysSat}(\mathbf{A})$.
- co-TermSysSat(A) $\leq_{P} \operatorname{QuasiIdVal}(\mathbf{A})$.
- TermEqv $(\mathbf{A}) \leq_{P} \operatorname{QuasiIdVal}(\mathbf{A})$.

Quasi-identity validity: connections with well-studied problems.

Connections:

- QuasiIdVal(A) $\leq_{\text {truth table }} \operatorname{PolSysSat}(\mathbf{A})$.
- co-TermSysSat(A) $\leq_{P} \operatorname{QuasiIdVal}(\mathbf{A})$.
- TermEqv $(\mathbf{A}) \leq_{P} \operatorname{QuasiIdVal}(\mathbf{A})$.
- In 2004, M. Volkov constructed a 10-element semigroup \mathbf{Q} with $\operatorname{TermEqV}(\mathbf{Q}) \in \mathbf{P}$, and $\operatorname{QuasiIdVal}(\mathbf{Q})$ co-NP-complete because it solves 3 -Colorability for graphs.

Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal'cev term.
Consequences:

- \mathbf{A} is abelian $\Longrightarrow \operatorname{QuasiIdVaL}(\mathbf{A}) \in \mathbf{P}$.
(Reason: PolSysSat, which is analyzed in [Larose, Zádori 2006])

Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal'cev term.
Consequences:

- \mathbf{A} is abelian $\Longrightarrow \operatorname{QuasiIdVaL}(\mathbf{A}) \in \mathbf{P}$.
(Reason: PolSysSat, which is analyzed in [Larose, Zádori 2006])
- Core (\mathbf{A}) is nonabelian $\Longrightarrow \operatorname{QuasiIDVaL}(\mathbf{A})$ is co-NP-complete.
(Reason: TermSysSat, which is analyzed in [Mayr 2023])

Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal'cev term.
Consequences:

- \mathbf{A} is abelian $\Longrightarrow \operatorname{QuasiIdVaL}(\mathbf{A}) \in \mathbf{P}$.
(Reason: PolSysSat, which is analyzed in [Larose, Zádori 2006])
- Core (\mathbf{A}) is nonabelian $\Longrightarrow \operatorname{QuasiIDVaL}(\mathbf{A})$ is co-NP-complete.
(Reason: TermSysSat, which is analyzed in [Mayr 2023])
- A non-solvable group \Longrightarrow QuasildVal (\mathbf{A}) is co-NP-complete.
(Reason: TermEqv, which is analyzed in [Horváth, Lawrence, Mérai, Szabó 2007])

Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal'cev term.

Consequences:

- \mathbf{A} is abelian $\Longrightarrow \operatorname{QuasiIdVaL}(\mathbf{A}) \in \mathbf{P}$.
(Reason: PolSysSat, which is analyzed in [Larose, Zádori 2006])
\downarrow Core (\mathbf{A}) is nonabelian $\Longrightarrow \operatorname{QuasiIDVaL}(\mathbf{A})$ is co-NP-complete.
(Reason: TermSysSat, which is analyzed in [Mayr 2023])
- A non-solvable group \Longrightarrow QuasiIdVal(A) is co-NP-complete.
(Reason: TermEqv, which is analyzed in [Horváth, Lawrence, Mérai, Szabó 2007])
Open: nonabelian nilpotent groups, nonzero nilpotent rings.

A reduction of graph coloring to quasi-identities

Quasi-identity validity

Theorem Aichinger, Grünbacher, STACS 2023
A finite algebra of finite type with a Mal'cev term. Then

1. $\operatorname{Quasild} \operatorname{Val}(\mathbf{A}) \in \mathbf{P}$ if \mathbf{A} is abelian.
2. $\operatorname{Quasild} \operatorname{Val}(\mathbf{A})$ is co-NP-complete if \mathbf{A} is nonabelian.

New content: item (2).
Proof idea: we reduce the H-coloring problem to $\operatorname{QuasiIdVal(A).}$

H-coloring of graphs

H-coloring:
Given: a graph G.
Asked: Is there a graph homomorphism h from G to $H(G \rightarrow H)$?

- $H=K_{2}$:

$G \rightarrow H$ iff G is bipartite: edges in G only go from $h^{-1}(\{1\})$ to $h^{-1}(\{2\})$.

H-coloring of graphs

H-coloring:
Given: a graph G.
Asked: Is there a graph homomorphism h from G to $H(G \rightarrow H)$?

- $H=K_{4}$:

$G \rightarrow H$ if the vertices of G can be coloured with 4 colors such that no adjacent vertices have the same colour.

H-coloring of graphs

H-coloring:
Given: a graph G.
Asked: Is there a graph homomorphism h from G to $H(G \rightarrow H)$?

- H a graph with loops:

$G \rightarrow H$ holds for every graph G : use $h(v)=3$ for each vertex v of G.

Theorem Hell, Nešetřil 1990.

Let H be a finite loopless graph that contains a triangle. Then H-coloring is NP-complete.

A consequence stated in Csp-language:

Theorem

Let $\mathbb{H}=(H, \rho)$ be a relational structure with an antireflexive and symmetric binary relation ρ.
If \mathbb{H} has $\mathbb{K}_{3}=(\{1,2,3\} ; \neq)$ as a substructure, then $\operatorname{CsP}(\mathbb{H})$ is NP-complete.

Proof of the Theorem

Plan:

- We want to prove that checking the validity of quasi-identities of $\mathbf{R}:=\left(3 \mathbb{Z}_{27},+,-, \cdot, 0\right)$ is co-NP-complete.
- We will show: there is a graph H such that for every graph $G: \quad G \rightarrow H \Longleftrightarrow$ the quasi-identity $\Phi(G)$ is not valid.
- This will imply that QuasiIdVal($\mathbf{R})$ is co-NP-complete.

Details:

- $R=\left\{[0]_{27},[3]_{27}, \ldots,[24]_{27}\right\}$.
- H is the "difference graph" or "apartness graph" on R :
(r, s) is an edge if $r-s \notin\left\{[0]_{27},[9]_{27},[18]_{27}\right\}$.

Proof of the Theorem

The graph H for $3 \mathbb{Z}_{27}$

$$
E(H)=\{(x, y) \mid x-y \notin\{0,9,18\}\}
$$

Proof of the Theorem

The graph H for $3 \mathbb{Z}_{27}$
$E(H)=\{(x, y) \mid x-y \notin\{0,9,18\}\}$.

- non-edges of H

Proof of the Theorem

The graph H for $3 \mathbb{Z}_{27}$

- G graph. We want to find out whether $G \rightarrow H$ using a quasi-identity on \mathbf{R}.
- $\Phi=\left(\bigwedge_{(u, v) \in E(G)} a=z_{u, v} \cdot\left(x_{u}-x_{v}\right)\right) \Rightarrow a=0$.

Proof of the Theorem

The graph H for $3 \mathbb{Z}_{27}$

- G graph. We want to find out whether $G \rightarrow H$ using a quasi-identity on \mathbf{R}.
- $\Phi=\left(\bigwedge_{(u, v) \in E(G)} a=z_{u, v} \cdot\left(x_{u}-x_{v}\right)\right) \Rightarrow a=0$.
- Suppose Φ is invalid. Then $a \neq 0$.
- Let $(u, v) \in E(G)$. Then $x_{u}-x_{v} \notin\{0,9,18\}$.
- Thus $\left(x_{u}, x_{v}\right)$ is an edge of H.
- $u \mapsto x_{u}$ is a homomorphism from G to H.
- Hence if Φ is invalid, $G \rightarrow H$.

Proof of the Theorem

The graph H for $3 \mathbb{Z}_{27}$

- G graph. We want to find out whether $G \rightarrow H$ using a quasi-identity on \mathbf{R}.
- $\Phi=\left(\bigwedge_{(u, v) \in E(G)} a=z_{u, v} \cdot\left(x_{u}-x_{v}\right)\right) \Rightarrow a=0$.
- Suppose $G \rightarrow H$.
- This is a counterexample to Φ.
- Hence Φ is invalid.

Proof of the Theorem

- Hence Φ is not valid iff $G \rightarrow H$.
- H-coloring is NP-complete [Hell, Nešetril 1990].
- Thus QuasildVal(R) is co-NP-complete.

Proof for Mal'cev algebras

Theorem

Let A be a finite nonabelian algebra of finite type with a Mal'cev term. Then QuasildVal(A) is co-NP-complete.

- Instead of the ring multiplication, use commutators [Smith 1976, Hagemann, Herrmann 1979].
- This works for subdirectly irreducible A.
- For arbitrary A, use "difference graphs" for several congruences of A.
- Order these graphs and pick a maximal one.
- Erhard Aichinger and Simon Grünbacher. The Complexity of Checking Quasi-Identities over Finite Algebras with a Mal'cev Term, STACS 2023.

Additional material on this topic that was not presented in the talk at AAA104:

Systems of term equations

Systems of term equations

Let A be an algebra.
TermSysSat(A) is the following problem:

Given:

Terms $s_{1}\left(x_{1}, \ldots, x_{n}\right), t_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, s_{k}\left(x_{1}, \ldots, x_{n}\right), t_{k}\left(x_{1}, \ldots, x_{n}\right)$.

Asked:

Is there $\boldsymbol{a} \in A^{n}$ with $s_{1}^{\mathbf{A}}(\boldsymbol{a})=t_{1}^{\mathbf{A}}(\boldsymbol{a}), \ldots, s_{k}^{\mathbf{A}}(\boldsymbol{a})=t_{k}^{\mathbf{A}}(\boldsymbol{a})$?

Computational complexity of TERMSysSat(A)

One can solve the equations by solving a constraint satisfaction problem.
Idea: (Larose, Zádori 2006)
Instead of solving

$$
f\left(g\left(x_{1}, x_{2}\right)\right)=f\left(x_{1}\right)
$$

solve

$$
\begin{gathered}
\left(x_{1}, x_{2}, y_{1}\right) \in g^{\circ},\left(y_{1}, y_{2}\right) \in f^{\circ},\left(x_{1}, y_{2}\right) \in f^{\circ}, \text { where } \\
g^{\circ}=\left\{\left(a_{1}, a_{2}, b\right) \in A^{3} \mid g\left(a_{1}, a_{2}\right)=b\right\}
\end{gathered}
$$

is the graph of g.
This reduces TermSysSat $(A ; f, g)$ to $\operatorname{CSP}\left(A ; f^{\circ}, g^{\circ}\right)$.

Computational complexity of TERMSysSat(A)

For an algebra $\mathbf{A}=(A ; F)$, let $\mathbf{A}^{\circ}:=\left(A ;\left\{f^{\circ} \mid f \in F\right\}\right)$.
As a consequence of the Bulatov-Zhuk-Dichotomy (2017) (in the form of Barto, Krokhin, Willard (2017)), one obtains:

Theorem (cf. [Mayr, MFCS 2023]).
(Assume $\mathbf{P} \neq \mathbf{N P}$).
Let \mathbf{A} be a finite algebra. Then TermSysSat $(\mathbf{A}) \in \mathbf{P} \Longleftrightarrow \mathbf{A}^{\circ}$ has a (not necessarily idempotent) Taylor polymorphism.
Otherwise TermSysSat(A) is NP-complete.

Computational complexity of TERMSysSat(A)

Question: Algebraic description when \mathbf{A}° has a (not necessarily idempotent) Taylor polymorphism.

Definition. Let A be a finite algebra.
Core (\mathbf{A}) is a minimal endomorphic image of \mathbf{A} w.r.t \subseteq.
(Defined up to isomorphism)

Examples.

- \mathbf{G} group. $\operatorname{Core}(\mathbf{G})=\{1\}$.
- \mathbf{G} group. $\left.\mathbf{G}^{*}:=\left(G ; *{ }^{-1},\left(c_{g}\right)_{g \in G}\right)\right)$ its expansions with all constants from G. Then Core $\left(\mathbf{G}^{*}\right)=G$.
- $\operatorname{Core}((S_{5} ; \circ,{ }^{-1}, \underbrace{\operatorname{id},(12)}_{\text {nullary }}))=\left\{\operatorname{id},\left(\begin{array}{ll}12)\end{array}\right\}\right.$.

Computational complexity of TERMSysSat(A)

Theorem Larose, Zádori 2006
Let \mathbf{A} be a finite algebra in a congruence modular variety. TFAE:

1. $\operatorname{PolSysSat}(\mathbf{A})=$ TermSysSat $\left(\mathbf{A}^{*}\right) \in \mathbf{P}$.

Theorem Mayr 2023
Let \mathbf{A} be a finite algebra in a congruence modular variety. TFAE:

1. TermSysSat $(\mathbf{A}) \in \mathbf{P}$.
2. Core (\mathbf{A}) is abelian.
3. \mathbf{A} is abelian.

Both results also hold also if $1 \notin \operatorname{typ}(V(\mathbf{A}))$ and $5 \notin \operatorname{typ}(\{\mathbf{A}\})$.

TermSysSat(A) vs. PolSysSat(A)

Theorem Mayr 2023.
Let \mathbf{A} be a finite algebra of finite type. The following three problems are reducible to each other in constant time:

1. TermSysSat(A).
2. TermSysSat(Core(A)).
3. PolSysSat(Core(A)).

The meta-problem for systems of term equations

The meta-problem for TermSysSat

Meta-problem for TermSysSat (Assume $\mathbf{P} \neq \mathbf{N P}$)

Given: $\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$
Asked: Is TermSysSat $(\mathbf{A}) \in \mathbf{P}$?

The meta-problem for TermSysSat

Meta-problem for TermSysSat (Assume $\mathbf{P} \neq \mathbf{N P}$)

Given: $\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$
Asked: Is TermSysSat $(\mathbf{A}) \in \mathbf{P}$?
Asked: Does Core(\mathbf{A}°) have a Siggers polymorphism?

The meta-problem for TermSysSat

Meta-problem for TermSysSat (Assume $\mathbf{P} \neq \mathbf{N P}$)

Given: $\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$
Asked: Is TermSysSat($\mathbf{A}) \in \mathbf{P}$?
Asked: Does Core $\left(\mathbf{A}^{\circ}\right)$ have a Siggers polymorphism?
In cm varieties: Asked: Does A have an abelian core?

Theorem Mayr 2023

There is a quasi-polynomial algorithm that decides whether a given finite \mathbf{A} in a cm variety has an abelian core.
$q(n)$ is quasi-polynomial if $\exists c, d, N>0 \forall n \geq N: q(n) \leq c 2^{\log (n)^{d}}$.

Solving systems of term equations over modules

Solving TermSysSat(A)

Let A be an R-module.

- The polynomial algorithm provided by the theory uses the Bulatov-Dalmau-algorithm (2006) to solve instances of $\operatorname{CSP}\left(\mathbf{A}^{\circ}\right)$, which has the Mal'cev term of \mathbf{A} as a polymorphism.
- In practice, Hermite-decomposition is useful.

Solving TermSysSat(A)

We solve

$$
\left(\begin{array}{ccc}
10 & 16 & 0 \\
15 & 24 & 30
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{4}{66}
$$

over \mathbb{Z}.

Solving TermSysSat(A)

We solve

$$
\left(\begin{array}{ccc}
10 & 16 & 0 \\
15 & 24 & 30
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\binom{4}{66}
$$

over \mathbb{Z}. To this end, we compute a \mathbb{Z}-Basis of the row module of

$$
\left(\begin{array}{cccccc}
4 & 66 & 1 & 0 & 0 & 0 \\
10 & 15 & 0 & 1 & 0 & 0 \\
16 & 24 & 0 & 0 & 1 & 0 \\
0 & 30 & 0 & 0 & 0 & 1
\end{array}\right)
$$

using the Hermite normal form (1851, polynomial time since 1979).

Solving TermSysSat(A)

We solve

$$
\left(\begin{array}{ccc}
10 & 16 & 0 \\
15 & 24 & 30
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{4}{66}
$$

over \mathbb{Z}. We have

$$
\operatorname{row}\left(\left(\begin{array}{cccccc}
4 & 66 & 1 & 0 & 0 & 0 \\
10 & 15 & 0 & 1 & 0 & 0 \\
16 & 24 & 0 & 0 & 1 & 0 \\
0 & 30 & 0 & 0 & 0 & 1
\end{array}\right)\right)=\operatorname{row}\left(\left(\begin{array}{cccccc}
2 & 3 & 0 & 5 & -3 & 0 \\
0 & 30 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 6 & -4 & -2 \\
0 & 0 & 0 & 8 & -5 & 0
\end{array}\right)\right)
$$

and thus $S=\{(-6,4,2)+t(8,-5,0) \mid t \in \mathbb{Z}\}$.

Solving CSP's through equations

Theorem.

For every finite relational structure \mathbb{D} of finite type, there is a finite algebra $\mathbf{A}(\mathbb{D})$ such that $\operatorname{CSP}(\mathbb{D})$ and $\operatorname{TermSysSat}(\mathbf{A}(\mathbb{D}))$ are polynomial time reducible to each other.

1. Klíma, Tesson, Thérien 2007:

Assume $\mathbb{D}=(D, \rho)$ is a digraph. $\mathbf{A}(\mathbb{D})$ is a semigroup with $5|D|+|\rho|+1$ elements that satisfies $x^{2} \approx x$ and $x y z \approx y x z$.
2. Broniek 2015:

Assume $\mathbb{D}=(D, R)$ with $R \subseteq D^{r} . \mathbf{A}(\mathbb{D})$ is a unary algebra with $|D|+|R|+2$ elements and $r+4$ unary operations.

