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Quasi-identities



Example

Is every solution of

x2 + y2 = 2

also a solution of

2x2y − x3 − x2 − xy2 + 2x+ 2y3 − y2 − 4y + 2 = 0 ?
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2x2y−x3−x2−xy2+2x+2y3−y2−4y+2 = 0



Example

Is every solution of x2 + y2 = 2 also a solution of

2x2y − x3 − x2 − xy2 + 2x+ 2y3 − y2 − 4y + 2 = 0 ?

Hint 2:

2x2y − x3 − x2 − xy2 + 2x+ 2y3 − y2 − 4y + 2 = (−x+ 2y − 1)(x2 + y2 − 2)



Example

Is every solution of x2 + y2 = 2 also a solution of

2x2y − x3 − x2 − xy2 + 2x+ 2y3 − y2 − 4y + 2 = 0 ?

Hint 3: Try to find a counterexample with Mathematica.

P = −2 + x2 + y2;P = −2 + x2 + y2;P = −2 + x2 + y2;

Q = 2 + 2x− x2 − x3 − 4y + 2x2y − y2 − xy2 + 2y3;Q = 2 + 2x− x2 − x3 − 4y + 2x2y − y2 − xy2 + 2y3;Q = 2 + 2x− x2 − x3 − 4y + 2x2y − y2 − xy2 + 2y3;

GroebnerBasis[{P,Q ∗ z − 1}, {x, y, z}]GroebnerBasis[{P,Q ∗ z − 1}, {x, y, z}]GroebnerBasis[{P,Q ∗ z − 1}, {x, y, z}]

{1}



Quasi-identities in classical algebra

Theorem (Hilbert 1893).

For f1, . . . , fs, g ∈ C[x1, . . . , xn], the quasi-identity

∀x ∈ Cn : f1(x ) = · · · = fs(x ) = 0 =⇒ g(x ) = 0

holds iff there are a1, . . . , as ∈ C[x ] and r ∈ N such that gr = a1f1 + · · · asfs.

Theorem (Terjanian 1966).

For f1, . . . , fr, g ∈ Fq[x1, . . . , xn], the quasi-identity

∀x ∈ Fq
n : f1(x ) = · · · = fs(x ) = 0 =⇒ g(x ) = 0

holds in Fq iff there are a1, . . . , ar, b1, . . . , bn ∈ Fq[x ] such that

g = a1f1 + · · · arfr + b1 · (xq1 − x1) + · · ·+ bn · (xqn − xn).
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Quasi-identities in universal algebra



Quasi-identities in universal algebra

▶ A algebra, si, ti, u, v terms.

▶ We ask whether S = {x ∈ An |
∧

i∈k si(x ) = ti(x )} is contained in

U = {x ∈ An | u(x ) = v(x )}.
▶ This holds if the formula

∀x :
(∧
i∈k

si(x ) = ti(x )
)
=⇒ u(x ) = v(x )

holds in A.

▶ Such a formula is called a conditional identity or quasi-identity.

▶ We want to determine the validity of this formula.
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Quasi-identity validity

Let A be an algebra. QuasiIdVal(A) is the problem:

Given: A quasi-identity Φ := ∀x :
(∧

i∈k si(x ) = ti(x )
)
=⇒ u(x ) = v(x ).

Here, si, ti, u, v are terms in the language of A over the variables x .

Asked: Does Φ hold in A?

Computational Complexity: For finite A of finite type, QuasiIdVal(A) is in

co-NP:

a ∈ An witnesses failure of Φ if
(∧

i∈k s
A
i (a) = tAi (a)

)
∧ uA(a) ̸= vA(a).

Exponential time method: A quasi-identity of length ℓ contains at most ℓ

different variables that can take at most |A|ℓ values.

Question: For which algebras do we have faster methods (e.g. polynomial time)?
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The complexity of quasi-identity validity



Quasi-identity validity and polynomial systems

Relations to other problems:

▶ If we can decide solvability of polynomial systems, then we can check the

validity of quasi-identities.

▶ We search for a counter-example: ∀x :
(∧

i∈k si(x ) = ti(x )
)
=⇒ u(x ) = v(x )

holds iff for all a, b ∈ A with a ̸= b,∧
i∈k

si(x ) = ti(x ), u(x ) = a, v(x ) = b

has no solution.

▶ These systems use constants: a and b.

Therefore they are polynomial systems and not just term systems.

▶ Conclusion: QuasiIdVal(A) ≤truth table PolSysSat(A).
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Quasi-identity validity and systems of term equations

▶ If we can check the validity of quasi-identities, then we can decide solvability

of term equations.

▶ The system s1 = t1, . . . , sk = tk has no solution iff

s1 = t1 ∧ . . . ∧ sk = tk =⇒ y = z

is valid in A. (y, z . . . new variables, |A| > 1).

▶ Conclusion: co-TermSysSat(A) ≤P QuasiIdVal(A).
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Quasi-identity validity and checking term equivalence

▶ If we can check the validity of quasi-identities, we can check whether two

terms induce the same function.

▶ ∀x : s(x ) = t(x ) is valid iff

y = y =⇒ s(x ) = t(x )

is valid in A.

▶ Conclusion: TermEqv(A) ≤P QuasiIdVal(A).
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Quasi-identity validity: connections with well-studied problems.

Connections:

▶ QuasiIdVal(A) ≤truth table PolSysSat(A).

▶ co-TermSysSat(A) ≤P QuasiIdVal(A).

▶ TermEqv(A) ≤P QuasiIdVal(A).

▶ In 2004, M. Volkov constructed a 10-element semigroup Q with

TermEqv(Q) ∈ P, and QuasiIdVal(Q) co-NP-complete because it solves

3-Colorability for graphs.
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Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal’cev term.

Consequences:

▶ A is abelian =⇒ QuasiIdVal(A) ∈ P.

(Reason: PolSysSat, which is analyzed in [Larose, Zádori 2006])

▶ Core(A) is nonabelian =⇒ QuasiIdVal(A) is co-NP-complete.

(Reason: TermSysSat, which is analyzed in [Mayr 2023])

▶ A non-solvable group =⇒ QuasiIdVal(A) is co-NP-complete.

(Reason: TermEqv, which is analyzed in [Horváth, Lawrence, Mérai, Szabó

2007])

Open: nonabelian nilpotent groups, nonzero nilpotent rings.
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A reduction of graph coloring to

quasi-identities



Quasi-identity validity

Theorem Aichinger, Grünbacher, STACS 2023

A finite algebra of finite type with a Mal’cev term. Then

1. QuasiIdVal(A) ∈ P if A is abelian.

2. QuasiIdVal(A) is co-NP-complete if A is nonabelian.

New content: item (2).

Proof idea: we reduce the H-coloring problem to QuasiIdVal(A).



H-coloring of graphs

H-coloring:

Given: a graph G.

Asked: Is there a graph homomorphism h from G to H (G → H)?

▶ H = K2:

1 2

G → H iff G is bipartite: edges in G only go from h−1({1}) to h−1({2}).



H-coloring of graphs

H-coloring:

Given: a graph G.

Asked: Is there a graph homomorphism h from G to H (G → H)?

▶ H = K4:

1 2

34

G → H if the vertices of G can be coloured with 4 colors such that no

adjacent vertices have the same colour.



H-coloring of graphs

H-coloring:

Given: a graph G.

Asked: Is there a graph homomorphism h from G to H (G → H)?

▶ H a graph with loops:

1 2

34

G → H holds for every graph G: use h(v) = 3 for each vertex v of G.



Theorem Hell, Nešetřil 1990.

Let H be a finite loopless graph that contains a triangle. Then H-coloring is

NP-complete.

A consequence stated in Csp-language:

Theorem
Let H = (H, ρ) be a relational structure with an antireflexive and symmetric

binary relation ρ.

If H has K3 = ({1, 2, 3}; ̸=) as a substructure, then Csp(H) is NP-complete.



Proof of the Theorem

Plan:

▶ We want to prove that checking the validity of quasi-identities of

R := (3Z27,+,−, ·, 0) is co-NP-complete.

▶ We will show: there is a graph H such that

for every graph G : G → H ⇐⇒ the quasi-identity Φ(G) is not valid.

▶ This will imply that QuasiIdVal(R) is co-NP-complete.

Details:

▶ R = {[0]27, [3]27, . . . , [24]27}.
▶ H is the “difference graph” or “apartness graph” on R :

(r, s) is an edge if r − s ̸∈ {[0]27, [9]27, [18]27}.



Proof of the Theorem

The graph H for 3Z27

0
3

6

9

1215

18

21

24

E(H) = {(x, y) | x− y ̸∈ {0, 9, 18}}.
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E(H) = {(x, y) | x− y ̸∈ {0, 9, 18}}.
▶ non-edges of H



Proof of the Theorem

The graph H for 3Z27
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▶ G graph. We want to find out whether

G → H using a quasi-identity on R.

▶ Φ =
( ∧
(u,v)∈E(G)

a = zu,v · (xu − xv)
)
⇒ a = 0.



Proof of the Theorem

The graph H for 3Z27

0
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24

▶ G graph. We want to find out whether

G → H using a quasi-identity on R.

▶ Φ =
( ∧
(u,v)∈E(G)

a = zu,v · (xu − xv)
)
⇒ a = 0.

▶ Suppose Φ is invalid. Then a ̸= 0.

▶ Let (u, v) ∈ E(G). Then xu − xv ̸∈ {0, 9, 18}.
▶ Thus (xu, xv) is an edge of H.

▶ u 7→ xu is a homomorphism from G to H.

▶ Hence if Φ is invalid, G → H.



Proof of the Theorem

The graph H for 3Z27

0
3

6

9

1215

18

21

24

▶ G graph. We want to find out whether

G → H using a quasi-identity on R.

▶ Φ =
( ∧
(u,v)∈E(G)

a = zu,v · (xu − xv)
)
⇒ a = 0.

▶ Suppose G → H.

▶ . . .

▶ This is a counterexample to Φ.

▶ Hence Φ is invalid.



Proof of the Theorem

▶ Hence Φ is not valid iff G → H.

▶ H-coloring is NP-complete [Hell, Nešetřil 1990].

▶ Thus QuasiIdVal(R) is co-NP-complete.



Proof for Mal’cev algebras

Theorem
Let A be a finite nonabelian algebra of finite type with a Mal’cev term. Then

QuasiIdVal(A) is co-NP-complete.

▶ Instead of the ring multiplication, use commutators [Smith 1976, Hagemann,

Herrmann 1979].

▶ This works for subdirectly irreducible A.

▶ For arbitrary A, use “difference graphs” for several congruences of A.

▶ Order these graphs and pick a maximal one.

▶ Erhard Aichinger and Simon Grünbacher. The Complexity of Checking

Quasi-Identities over Finite Algebras with a Mal’cev Term, STACS 2023.



Additional material on this topic that was not

presented in the talk at AAA104:



Systems of term equations



Systems of term equations

Let A be an algebra.

TermSysSat(A) is the following problem:

Given:

Terms s1(x1, . . . , xn), t1(x1, . . . , xn), . . . , sk(x1, . . . , xn), tk(x1, . . . , xn).

Asked:

Is there a ∈ An with sA1 (a) = tA1 (a), . . . , sAk (a) = tAk (a)?



Computational complexity of TermSysSat(A)

One can solve the equations by solving a constraint satisfaction problem.

Idea: (Larose, Zádori 2006)

Instead of solving

f(g(x1, x2)) = f(x1),

solve

(x1, x2, y1) ∈ g◦, (y1, y2) ∈ f◦, (x1, y2) ∈ f◦, where

g◦ = {(a1, a2, b) ∈ A3 | g(a1, a2) = b}

is the graph of g.

This reduces TermSysSat(A; f, g) to CSP(A; f◦, g◦).



Computational complexity of TermSysSat(A)

For an algebra A = (A;F ), let A◦ := (A; {f◦ | f ∈ F}).

As a consequence of the Bulatov-Zhuk-Dichotomy (2017) (in the form of Barto,

Krokhin, Willard (2017)), one obtains:

Theorem (cf. [Mayr, MFCS 2023]).

(Assume P ̸= NP).

Let A be a finite algebra. Then TermSysSat(A) ∈ P ⇐⇒ A◦ has a (not

necessarily idempotent) Taylor polymorphism.

Otherwise TermSysSat(A) is NP-complete.



Computational complexity of TermSysSat(A)

Question: Algebraic description when A◦ has a (not necessarily idempotent)

Taylor polymorphism.

Definition. Let A be a finite algebra.

Core(A) is a minimal endomorphic image of A w.r.t ⊆.

(Defined up to isomorphism)

Examples.

▶ G group. Core(G) = {1}.
▶ G group. G∗ := (G; ∗,−1, (cg)g∈G)) its expansions with all constants from G.

Then Core(G∗) = G.

▶ Core((S5; ◦,−1, id, (1 2)︸ ︷︷ ︸
nullary

)) = {id, (1 2)}.



Computational complexity of TermSysSat(A)

Theorem Larose, Zádori 2006

Let A be a finite algebra in a congruence

modular variety. TFAE:

1. PolSysSat(A) =

TermSysSat(A∗) ∈ P.

2. A is abelian.

Theorem Mayr 2023

Let A be a finite algebra in a congruence

modular variety. TFAE:

1. TermSysSat(A) ∈ P.

2. Core(A) is abelian.

Both results also hold also if 1 ̸∈ typ(V (A)) and 5 ̸∈ typ({A}).



TermSysSat(A) vs. PolSysSat(A)

Theorem Mayr 2023.

Let A be a finite algebra of finite type. The following three problems are reducible

to each other in constant time:

1. TermSysSat(A).

2. TermSysSat(Core(A)).

3. PolSysSat(Core(A)).



The meta-problem for systems of term

equations



The meta-problem for TermSysSat

Meta-problem for TermSysSat (Assume P ̸= NP)

Given: A = (A; f1, . . . , fk)

Asked: Is TermSysSat(A) ∈ P?

Asked: Does Core(A◦) have a Siggers polymorphism?

In cm varieties: Asked: Does A have an abelian core?

Theorem Mayr 2023

There is a quasi-polynomial algorithm that decides whether a given finite A in a

cm variety has an abelian core.

q(n) is quasi-polynomial if ∃c, d,N > 0 ∀n ≥ N : q(n) ≤ c2log(n)
d
.
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Solving systems of term equations over

modules



Solving TermSysSat(A)

Let A be an R-module.

▶ The polynomial algorithm provided by the theory uses the

Bulatov-Dalmau-algorithm (2006) to solve instances of CSP(A◦), which has

the Mal’cev term of A as a polymorphism.

▶ In practice, Hermite-decomposition is useful.



Solving TermSysSat(A)

We solve (
10 16 0

15 24 30

)
·
(

x
y
z

)
=

(
4

66

)
over Z.



Solving TermSysSat(A)

We solve (
10 16 0

15 24 30

)
·
(

x
y
z

)
=

(
4

66

)
over Z. To this end, we compute a Z-Basis of the row module of

4 66 1 0 0 0

10 15 0 1 0 0

16 24 0 0 1 0

0 30 0 0 0 1


using the Hermite normal form (1851, polynomial time since 1979).



Solving TermSysSat(A)

We solve (
10 16 0

15 24 30

)
·
(

x
y
z

)
=

(
4

66

)
over Z. We have

row(


4 66 1 0 0 0

10 15 0 1 0 0

16 24 0 0 1 0

0 30 0 0 0 1

) = row(


2 3 0 5 −3 0

0 30 0 0 0 1

0 0 1 6 −4 −2

0 0 0 8 −5 0

)

and thus S = {(−6, 4, 2) + t (8,−5, 0) | t ∈ Z}.



Solving CSP’s through equations

Theorem.
For every finite relational structure D of finite type, there is a finite algebra A(D)
such that CSP(D) and TermSysSat(A(D)) are polynomial time reducible to each

other.

1. Kĺıma, Tesson, Thérien 2007:

Assume D = (D, ρ) is a digraph. A(D) is a semigroup with 5|D|+ |ρ|+ 1

elements that satisfies x2 ≈ x and xyz ≈ yxz.

2. Broniek 2015:

Assume D = (D,R) with R ⊆ Dr. A(D) is a unary algebra with |D|+ |R|+ 2

elements and r + 4 unary operations.
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