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Quasi-identities
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Is every solution of

also a solution of



Example

Is every solution of
22yt =2

also a solution of

2%y —ad —a? — P + 204+ 28 — P —dy +2=07



Example

Is every solution of 22 4 y? = 2 also a solution of
202y — a3 — 2% —xy? 20+ 29° — 9y —4y+2=07
Hint 1:

2 +y?=2. 222y —a3 —2? —wy? +20+2y3 —y? —dy+2 = 0



Example

Is every solution of 22 4+ y? = 2 also a solution of
202y — a3 — 2 —ay? + 22+ 23 — 2 — 4y +2=07

Hint 2:

202y —a® — a2 — w204+ 20° — 9 Ay +2=(—x+ 2y — 1)(z* +9* - 2)



Example

Is every solution of 22 4 y? = 2 also a solution of
202y — a3 — 2% —xy? 20 +29° — 9?2 —4y+2=07

Hint 3: Try to find a counterexample with Mathematica.

P=-2+2%+y%
Q=2+2x—x? — 23 — 4y + 22%y — y* — zy? + 213,
GroebnerBasis[{P,Q * z — 1}, {z, y, z}]

{1}



Quasi-identities in classical algebra

Theorem (Hilbert 1893).
For fi,...,fs,g9 € Clxy,...,xz,], the quasi-identity

Ve eC" : fi(z) = = fs(z) =0=g(z) =0

holds iff there are ay,...,as € Clz| and r € N such that ¢" = a1 f1 + -+ - asfs.



Quasi-identities in classical algebra

Theorem (Hilbert 1893).
For fi,...,fs,g9 € Clxy,...,xz,], the quasi-identity

Ve eC" : fi(z) = = fs(z) =0=g(z) =0

holds iff there are ay,...,as € Clz| and r € N such that ¢" = a1 f1 + -+ - asfs.

Theorem (Terjanian 1966).
For fi,..., fr,g € Fg[z1,..., 2y, the quasi-identity

VeeF," : file)=--=fs(x) =0=g(x) =0
holds in I, iff there are a1,...,a,,b1,...,b, € Fy[x] such that

g:alfl—i-...arfr‘f‘bl-(x({—g;l)-}-..._an.(x%_xn)‘
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Quasi-identities in universal algebra

v

A algebra, s;,t;,u,v terms.

We ask whether S = {z € A" | \;¢;, si(z) = ti(z)} is contained in
U={zxec A" |u(z) =v(z)}.

» This holds if the formula

v

Ve (/\ si(z) = ti(z)) = u(z) = v(x)

ick

holds in A.

Such a formula is called a conditional identity or quasi-identity.

v

> We want to determine the validity of this formula.



Quasi-identities in universal algebra

v

A algebra, s;,t;,u,v terms.

We ask whether S = {z € A" | A\, 5i A(z) =tA(z)} is contained in
U={zc A" |u’(z) = vA(z)}.
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holds in A.

Such a formula is called a conditional identity or quasi-identity.

v

> We want to determine the validity of this formula.



Quasi-identity validity

Let A be an algebra. QUASIIDVAL(A) is the problem:

Given: A quasi-identity ® := Va : (/\16& si(x) = ti(z)) = u(z) = v(z).
Here, s;,t;, u,v are terms in the language of A over the variables x.

Asked: Does ® hold in A?
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a € A" witnesses failure of @ if (/\ZGE sh(a) = tA(a)) Aur(a) # vA(a).



Quasi-identity validity

Let A be an algebra. QUASIIDVAL(A) is the problem:
Given: A quasi-identity ® := Va : (/\16& si(z) = ti(x)) = u(x) = v(x).
Here, s;,t;, u,v are terms in the language of A over the variables x.

Asked: Does ® hold in A?

Computational Complexity: For finite A of finite type, QUASIIDVAL(A) is in
co-NP:
a € A" witnesses failure of @ if (/\ZGE sh(a) = tA(a)) Aur(a) # vA(a).

Exponential time method: A quasi-identity of length ¢ contains at most £
different variables that can take at most |A|® values.

Question: For which algebras do we have faster methods (e.g. polynomial time)?



The complexity of quasi-identity validity



Quasi-identity validity and polynomial systems

Relations to other problems:

» If we can decide solvability of polynomial systems, then we can check the
validity of quasi-identities.



Quasi-identity validity and polynomial systems

Relations to other problems:

| 4

If we can decide solvability of polynomial systems, then we can check the
validity of quasi-identities.

We search for a counter-example: Vz : (/\zek si(x) =ti(z)) = u(z) = v(x)
holds iff for all a,b € A with a # b,

/\ si(x) = ti(x), u(z) =a,v(z)=">b
ick

has no solution.

These systems use constants: a and b.
Therefore they are polynomial systems and not just term systems.



Quasi-identity validity and polynomial systems

Relations to other problems:
» If we can decide solvability of polynomial systems, then we can check the
validity of quasi-identities.

» We search for a counter-example: V& : (/\zek si(x) =ti(z)) = u(z) = v(x)
holds iff for all a,b € A with a # b,

N\ si(@) =ti(x), u(@) =a,v(x)=1b
ick
has no solution.

» These systems use constants: a and b.
Therefore they are polynomial systems and not just term systems.

» Conclusion: QUASIIDVAL(A) <¢uth table POLSYSSAT(A).



Quasi-identity validity and systems of term equations

» If we can check the validity of quasi-identities, then we can decide solvability
of term equations.
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» If we can check the validity of quasi-identities, then we can decide solvability
of term equations.

» The system s; = t1,..., s, = tx has no solution iff
S1=0UN...ANSp =1, —=>y=2

is valid in A. (y,z ...new variables, |A| > 1).



Quasi-identity validity and systems of term equations

» If we can check the validity of quasi-identities, then we can decide solvability
of term equations.

» The system s; = t1,..., s, = tx has no solution iff
S1=0UN...ANSp =1, —=>y=2

is valid in A. (y,z ...new variables, |A| > 1).
» Conclusion: co-TERMSYSSAT(A) <p QUASIIDVAL(A).



Quasi-identity validity and checking term equivalence

» If we can check the validity of quasi-identities, we can check whether two
terms induce the same function.
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Quasi-identity validity and checking term equivalence

» If we can check the validity of quasi-identities, we can check whether two
terms induce the same function.

> Vo s(x) =t(x) is valid iff

y=y=s(z)=t(z)

is valid in A.

» Conclusion: TERMEQV(A) <p QUASIIDVAL(A).
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Quasi-identity validity: connections with well-studied problems.

Connections:
» QUASIIDVAL(A) <truth table POLSYSSAT(A).
» co-TERMSYSSAT(A) <p QUASIIDVAL(A).
» TERMEQV(A) <p QUASIIDVAL(A).

> In 2004, M. Volkov constructed a 10-element semigroup Q with
TeErRMEQV(Q) € P, and QUASIIDVAL(Q) co-NP-complete because it solves
3-COLORABILITY for graphs.
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Quasi-identity validity: connections with well-studied problems.

Let A be an algebra with a Mal’cev term.
Consequences:
» A is abelian = QuASIIDVAL(A) € P.
(Reason: POLSYSSAT, which is analyzed in [Larose, Zadori 2006])
» Core(A) is nonabelian = QUASIIDVAL(A) is co-NP-complete.
(Reason: TERMSYSSAT, which is analyzed in [Mayr 2023])
» A non-solvable group = QUASIIDVAL(A) is co-NP-complete.
(Reason: TERMEQV, which is analyzed in [Horvéath, Lawrence, Mérai, Szabd
2007))

Open: nonabelian nilpotent groups, nonzero nilpotent rings.



A reduction of graph coloring to
quasi-identities



Quasi-identity validity

Theorem Aichinger, Griinbacher, STACS 2023
A finite algebra of finite type with a Mal’cev term. Then
1. QuasiIDVAL(A) € P if A is abelian.
2. QuAsIIDVAL(A) is co-NP-complete if A is nonabelian.

New content: item (2).
Proof idea: we reduce the H-coloring problem to QUASIIDVAL(A).



H-coloring of graphs

H-COLORING:
Given: a graph G.
Asked: Is there a graph homomorphism h from G to H (G — H)?

> H =Ky

O—

G — H iff G is bipartite: edges in G only go from h~1({1}) to h=1({2}).



H-coloring of graphs
H-COLORING:

Given: a graph G.
Asked: Is there a graph homomorphism h from G to H (G — H)?

> H:K4:

G — H if the vertices of G can be coloured with 4 colors such that no
adjacent vertices have the same colour.



H-coloring of graphs
H-COLORING:

Given: a graph G.
Asked: Is there a graph homomorphism A from G to H (G — H)?

» H a graph with loops:

G — H holds for every graph G: use h(v) = 3 for each vertex v of G.



Theorem Hell, Nesetiil 1990.

Let H be a finite loopless graph that contains a triangle. Then H-COLORING is
NP-complete.

A consequence stated in Csp-language:

Theorem

Let H = (H, p) be a relational structure with an antireflexive and symmetric
binary relation p.

If H has K3 = ({1, 2,3};#) as a substructure, then Csp(H) is NP-complete.



Proof of the Theorem

Plan:

> We want to prove that checking the validity of quasi-identities of
R := (3Za7,+, —,-,0) is co-NP-complete.
> We will show: there is a graph H such that

for every graph G : G — H <= the quasi-identity ®(G) is not valid.

» This will imply that QUASIIDVAL(R) is co-NP-complete.
Details:
» R = {[0]a7,[3]a7, - - -, [24]27}.

> H is the “difference graph” or “apartness graph” on R :
(r,s) is an edge if r — s & {[0]27, [9]27, [18]27}.



Proof of the Theorem

The graph H for 3Zs7 E(H) = {(z,y) |z —y & {0,9,18} }.




Proof of the Theorem

The graph H for 3Za7 E(H) = {(z,y) |z —y & {0,9,18}}.
» non-edges of H




Proof of the Theorem

» G graph. We want to find out whether
G — H using a quasi-identity on R.

>cI):( /\ a:zu,v-(xu—wv))éa:().
(u,w)EE(Q)

The graph H for 3Za7




Proof of the Theorem

The graph H for 3Za7

v

vVvyVYyyvyy

G graph. We want to find out whether
G — H using a quasi-identity on R.

<I>:( /\ a:zu,v-(xu—wv))éa:().
(u,w)EE(Q)
Suppose ® is invalid. Then a # 0.

Let (u,v) € E(G). Then z, — z, ¢ {0,9, 18}.
Thus (x4, z,) is an edge of H.

U — T, is a homomorphism from G to H.
Hence if @ is invalid, G — H.



Proof of the Theorem

» G graph. We want to find out whether
G — H using a quasi-identity on R.
PCID:( /\ a:zu,v-(xu—wv))éa:().
(uv)EE(G)
Suppose G — H.

The graph H for 3Za7

This is a counterexample to ®.

Hence & is invalid.




Proof of the Theorem

» Hence @ is not valid iff G — H.
» H-coloring is NP-complete [Hell, Nesetfil 1990].
» Thus QUASIIDVAL(R) is co-NP-complete.



Proof for Mal’cev algebras

Theorem
Let A be a finite nonabelian algebra of finite type with a Mal’cev term. Then
QUASIIDVAL(A) is co-NP-complete.

» Instead of the ring multiplication, use commutators [Smith 1976, Hagemann,
Herrmann 1979].

This works for subdirectly irreducible A.

For arbitrary A, use “difference graphs” for several congruences of A.

Order these graphs and pick a maximal one.

vV vyVYyy

Erhard Aichinger and Simon Griinbacher. The Complexity of Checking
Quasi-Identities over Finite Algebras with a Mal’cev Term, STACS 2023.



Additional material on this topic that was not
presented in the talk at AAA104:



Systems of term equations



Systems of term equations

Let A be an algebra.
TERMSYSSAT(A) is the following problem:

Given:

Terms $1(Z1,...,%n), t1(T1, ...y &n), ooy Sp(T1, .o oy x0), (21, . ..

Asked:
Is there a € A" with sf*(a) = t#(a),...,st(a) = ti(a)?



Computational complexity of TERMSYSSAT(A)

One can solve the equations by solving a constraint satisfaction problem.
Idea: (Larose, Zadori 2006)
Instead of solving

fg(z1,22)) = f(21),

solve
($17$2)y1) € 907 (y17y2) S fO’ (xlayQ) S f07 where

go = {(a17a27b) € A3 ’ g(Ch,CLg) = b}

is the graph of g.
This reduces TERMSYSSAT(A4; f, g) to CSP(A; f°, ¢°).



Computational complexity of TERMSYSSAT(A)

For an algebra A = (A; F), let A°:= (A;{f°| f € F}).

As a consequence of the Bulatov-Zhuk-Dichotomy (2017) (in the form of Barto,
Krokhin, Willard (2017)), one obtains:

Theorem (cf. [Mayr, MFCS 2023]).

(Assume P # NP).
Let A be a finite algebra. Then TERMSYSSAT(A) € P <= A° has a (not
necessarily idempotent) Taylor polymorphism.

Otherwise TERMSYSSAT(A) is NP-complete.



Computational complexity of TERMSYSSAT(A)

Question: Algebraic description when A° has a (not necessarily idempotent)
Taylor polymorphism.

Definition. Let A be a finite algebra.

Core(A) is a minimal endomorphic image of A w.r.t C.

(Defined up to isomorphism)

Examples.
» G group. Core(G) = {1}.
> G group. G* := (G;*, 1, (cy)geq)) its expansions with all constants from G.
Then Core(G*) = G.

» Core((S5;0, 7 1,id, (1 2))) = {id, (1 2)}.
N——

nullary



Computational complexity of TERMSYSSAT(A)

Theorem Larose, Zadori 2006 Theorem Mayr 2023
Let A be a finite algebra in a congruence Let A be a finite algebra in a congruence
modular variety. TFAE: modular variety. TFAE:
1. POLSYSSAT(A) = 1. TERMSYSSAT(A) € P.
TERMSYSSAT(A®) € P. 2. Core(A) is abelian.

2. A is abelian.

Both results also hold also if 1 ¢ typ(V(A)) and 5 & typ({A}).



TERMSYSSAT(A) vs. POLSYSSAT(A)

Theorem Mayr 2023.

Let A be a finite algebra of finite type. The following three problems are reducible
to each other in constant time:

1. TERMSYSSAT(A).
2. TERMSYSSAT(Core(A)).
3. PoLSysSAT(Core(A)).



The meta-problem for systems of term

equations



The meta-problem for TERMSYSSAT

Meta-problem for TERMSYSSAT (Assume P # NP)

Given: A = (4; f1,..., fx)
Asked: Is TERMSYSSAT(A) € P?
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Asked: Does Core(A°) have a Siggers polymorphism?



The meta-problem for TERMSYSSAT

Meta-problem for TERMSYSSAT (Assume P # NP)
Given: A = (4; f1,..., fx)

Asked: Is TERMSYSSAT(A) € P?

Asked: Does Core(A°) have a Siggers polymorphism?

In cm varieties: Asked: Does A have an abelian core?

Theorem Mayr 2023

There is a quasi-polynomial algorithm that decides whether a given finite A in a
cm variety has an abelian core.

q(n) is quasi-polynomial if Ic,d, N >0Vn > N : q(n) < c2los(m)?



Solving systems of term equations over
modules



Solving TERMSYSSAT(A)

Let A be an R-module.

» The polynomial algorithm provided by the theory uses the
Bulatov-Dalmau-algorithm (2006) to solve instances of CSP(A°), which has
the Mal’cev term of A as a polymorphism.

» In practice, Hermite-decomposition is useful.



Solving TERMSYSSAT(A)

We solve
10 16 O
15 24 30

over Z.

)



Solving TERMSYSSAT(A)

(12 ;Z 30())'@):(646)

over Z. To this end, we compute a Z-Basis of the row module of

We solve

4 66 1 0 0 O
10 15 0 1 0 O
16 24 0 0 1 O
0 30 0 001

using the Hermite normal form (1851, polynomial time since 1979).



Solving TERMSYSSAT(A)

We solve

Ny

10 16 O (
15 24 30

)=(a)

over Z. We have

4 66 1 0 0 0 2 3 05 -3 0

10 15 0 1 0 O 0 30 0 0 0 1
row ( ) = row(

16 24 0 01 0 0 01 6 —4 -2

0 30 0 001 0 0 0

and thus S = {(—6,4,2) +t(8,—5,0) | t € Z}.



Solving CSP’s through equations

Theorem.

For every finite relational structure D of finite type, there is a finite algebra A (D)
such that CSP(D) and TERMSYSSAT(A (D)) are polynomial time reducible to each
other.

1. Klima, Tesson, Thérien 2007:
Assume D = (D, p) is a digraph. A(D) is a semigroup with 5|/D| + |p| + 1
elements that satisfies 22 ~ = and zyz ~ yzz.

2. Broniek 2015:
Assume D = (D, R) with R C D". A(D) is a unary algebra with |D| + |R| + 2
elements and r + 4 unary operations.
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