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Higher Commutators

Higher Commutators:

� Higher commutators were introduced (as multi-placed commutators) in 2001
by A. Bulatov to distinguish the clones

Pol(B2) = Pol (Z4,+, 2x1x2) and
Pol(B3) = Pol (Z4,+, 2x1x2x3).

� These clones differ in their 8-ary invariant relations.

� The top congruence 1 satisfies [1, 1, 1]B2 = 0 and [1, 1, 1]B3 > 0.
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What are higher commutators?

Let A be an algebra, n ∈ N, α1, . . . , αn ∈ Con(A). Then

[α1, . . . , αn]A

is an element of Con(A). It is called the higher commutator of α1, . . . , αn.

Lemma. Let V = (V,+,−, 0, (fi)i∈I) be an expanded group, and let A1, . . . , An be
ideals of V.
Then [A1, . . . , An]V is the ideal generated by

{p(a1, . . . , an) | p ∈ Poln(V), a1 ∈ A1, . . . , an ∈ An,
∀x1, . . . , xn ∈ V : 0 ∈ {x1, . . . , xn} ⇒ p(x1, . . . , xn) = 0}.
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Definitions of higher commutators

� Bulatov’s definition applies to every algebraic structure (A,F ).

� Different types of higher commutators, the two term higher commutator and
the hypercommutator, have been introduced by A. Moorhead in 2018 and
2021.
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Applications of Higher Commutators

Definition. A is supernilpotent if ∃k ∈ N ∀n ∈ N ∀α1, . . . , αn ∈ Con(A):

n > k ⇒ [α1, . . . , αn]A = 0A.

Theorem [G. Higman (1965) – Berman, Blok, Freese, Hobby, McKenzie –
A. Wires (2019)]
Let A be a finite algebra in a cm variety. Then A is supernilpotent if and only if

∃p ∈ R[x] ∀n ∈ N : |Clon(A)| ≤ 2p(n).

Theorem [Kearnes, Rasstrigin (2020)]
If A is two term supernilpotent, then every subalgebra of A is a homomorphic
image of a finite subdirect power of A.
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The sequence of higher commutator operations

Let A be an algebra with congruence lattice L. The higher commutator operations
of A can be collected into the function

CA : (
⋃
n∈N Ln) → L,

CA(α1, . . . , αn) = [α1, . . . , αn]A.

First goal:

� Finite representation of CA for finite A (or L).
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The sequence of higher commutator operations

We want to represent

CA : (
⋃
n∈N Ln) → L,

CA(α1, . . . , αn) = [α1, . . . , αn]A.

Theorem

� CA(α1, α2, . . . , αn) ≤ CA(α2, . . . , αn) (omission property).

� CA(α1, . . . , αn) = CA(απ(1), . . . , απ(n)) for all π ∈ Sn with π(n) = n.

� A in a cm variety⇒ CA(α1, . . . , αn) = CA(απ(1), . . . , απ(n)) for all π ∈ Sn.
(symmetry, [Moorhead 2018]).
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Encoding

We call A hc-symmetric if CA(α1, . . . , αn) = CA(απ(1), . . . , απ(n)) for all n ∈ N,
π ∈ Sn.

For hc-symmetric finite A and L = Con(A) = {λ1, . . . , λm}, we can compute

CA(α1, . . . , αn) = CA(λ1, . . . , λ1︸ ︷︷ ︸
a1

, . . . , λm, . . . , λm︸ ︷︷ ︸
am

),

where aj is the number of occurrences of λj in (α1, . . . , αn).

Definition. F : N0
m → L with

F (a1, . . . , am) := CA(λ1, . . . , λ1︸ ︷︷ ︸
a1

, . . . , λm, . . . , λm︸ ︷︷ ︸
am

)

is the encoding of CA. 7/23



Encoding as an antitone function

The omission property

CA(α1, α2, . . . , αn) ≤ CA(α2, . . . , αn)

and hc-symmetry imply:

(a1, . . . , am) ≤ (b1, . . . , bm)⇒ F (a1, . . . , am) ≥ F (b1, . . . , bm).

Theorem. The encoding of CA of a finite hc-symmetric algebra A is an antitone
function from N0

m to L = Con(A).
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An antitone function from N0
2 to {1, . . . , 10}
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An antitone function from N0 to {1, . . . , 10}
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Fact on antitone functions

Let f : N0
m → L be antitone (L finite). Then there is a finite set G ⊆ N0

m × L such
that

f(x ) =
∧
{α | (a , α) ∈ G,a ≤ x}.
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Consequence for Commutators

� B = (Z4,+, (2x1 · · ·xn)n∈N), Con(B) = {0, α, 1}. Then CB is the largest
function with symmetry and the omission property such that

[1, 1] = α, [1, α] = 0, [α, α] = 0, [α] = α, [0] = 0.

� B3 = (Z4,+, 2x1x2x3). Then CB3 is the largest function with symmetry and
the omission property such that

[1, 1, 1, 1] = 0, [1, 1] = α, [1, α] = 0, [α, α] = 0, [α] = α, [0] = 0.

From these finite lists of commutator equalities, we can compute all higher
commutators.
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Representing CA by commutator equalities

Theorem. Let A be a finite algebra in a cm variety. Then there is a finite set Φ of
commutator equalities of the form

[α1, . . . , αn] = β

such that the higher commutator function CA is the largest function with symmetry
and the omission property that satisfies Φ.

From Φ, we can then compute all [γ1, . . . , γk].

Question: Is Φ computable from (A, (fi)i∈I)?
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Computing higher commutators

On input A = (A, (fi)i∈I) (finite, finite type), we can compute

� [α1, . . . , αn] for each given tuple ᾱ (almost by Bulatov’s definition).
� If A lies in a cm variety, we can decide whether

[1, 1] ∩ [1, 1, 1] ∩ [1, 1, 1, 1] ∩ · · · = 0,

i.e., whether A is supernilpotent, and hence we can compute
[1, 1] ∩ [1, 1, 1] ∩ [1, 1, 1, 1] ∩ · · · .

� If A lies in a cm variety, then given α, we can compute

[α, α] ∩ [α, α, α] ∩ [α, α, α, α] ∩ · · · .

[Mayr, Á. Szendrei 2021].
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Computing higher commutators

� We do not know whether we can compute
[α, β] ∩ [α, α, β, β] ∩ [α, α, α, β, β, β] ∩ · · · .
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Determining CA uniquely
Observation. There is no finite
set of points P such that
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Determining Higher Commutators Uniquely

Proposition. For every finite set Ψ and for every sequence with

[1, 1, . . . , 1]n > 0 for all n ∈ N,

the sequence is not determined uniquely by Ψ among all sequences with
symmetry and the omission property.

Solution. Allow extended equalities of the form

[S;α1, . . . , αn] = β,

where
[S;α1, . . . , αn] :=

∧
k∈N0

∧
(σ1,...,σk)∈Sk

[σ1, . . . , σk, α1, . . . , αn].
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Determining Higher Commutators Uniquely

� B = (Z4,+, (2x1 · · ·xn)n∈N), Con(B) = {0, α, 1}. Then CB is the unique
function with symmetry and the omission property such that

[1, 1] = α, [1, α] = 0, [α, α] = 0, [0] = 0, [α] = α,

[1] = 1, [{1}; 1, 1] = α, [{0, α, 1}; 1] = 0,

� Some equalities are redundant if we know more commutator properties.

� [{1}; 1, 1] = α excludes [1, . . . , 1]99 = α, [1, . . . , 1]100 = 0.
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Determining Higher Commutators Uniquely

Theorem. Let A be a finite algebra in a cm variety. Then there is a finite set Ψ of
extended commutator equalities such that the higher commutator operations CA

of A are the unique sequence satisfying Ψ, symmetry and the omission property.

From Ψ, we can effectively evaluate all [α1, . . . , αn] and [S;α1, . . . , αn].
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Extensions of antitone functions

� We represented CA by an antitone function F : N0
m → L.

� Its extension F̂ : (N0 ∪ {∞})m → L is defined by

F̂ (x ) :=
∧
{F (b) | b ≤ x , b ∈ N0

m}.

This is the continuous extension of F to (N0 ∪ {∞})m, seen as the m-fold
product of the Alexandroff extension of N0 with the discrete topology.

� Continuous antitone functions can be represented by finite subsets of their
graph.
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Unique representation of antitone functions
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The upper function is uniquely determined among antitone functions by

black points and f̂(∞) = 2,

the lower function by

black points and f(20) = 2 and f(21) = 1 and f̂(∞) = 1.
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Distinguishing higher commutator operations

Problem. We are given two finite algebras A and B in cm varieties with the same
congruence lattice. Task: Determine whether they have the same higher
commutator operations.

� After verifying a finite number of [α1, . . . , αn]A = [α1, . . . , αn]B, we may still
have CA 6= CB.

� We can determine CA = CB, provided we can solve one of the following
tasks:
� Find sets of commutator equalities ΦA,ΦB such that CA is largest with ΦA +

symmetry + omission property, similar for CB and ΦB.
� Find a sets of extended commutator equalities ΨA, ΨB such that they uniquely

determine CA and CB.
� Evaluate [S;α1, . . . , αn]A for S ⊆ Con(A) and α1, . . . , αn ∈ Con(A).
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Learning higher commutator operations

We have an algorithm that finds a set of extended commutator equalities ΨA by
evaluating finitely many expressions of the form [S;α1, . . . , αn]A.

Definition. A class V of algebras has computable extended commutator
sequences if there is an algorithm which, given A = (A, (fi)i∈N ) ∈ V (by the
operation tables of all fi), S ⊆ Con(A) and α1, . . . , αn ∈ Con(A), computes the
extended commutator [S;α1, . . . , αn].

Open Question.
Which hc-symmetric classes of algebras have computable extended commutator
sequences?
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