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Boolean conjunction

The function f : {0, 1}2 → {0, 1} defined by

f(0, 0) = 0

f(0, 1) = 0

f(1, 0) = 0

f(1, 1) = 1

is called Boolean conjunction.
Usually f(x, y) is denoted by x∧ y or x & y.
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Generating functions

It is well known that each operation on {0, 1} can be defined
starting from ∧ and ¬, where ¬ : {0, 1}→ {0, 1} is

¬(0) = 1 ¬(1) = 0.

Example Let ∨ : {0, 1}2 → {0, 1} be

0∨ 0 = 0 0∨ 1 = 1 1∨ 0 = 1 1∨ 1 = 1.

Then x∨ y = ¬(¬(x)∧ ¬(y)).
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Generating conjunctions

When can we generate the function ∧?

The answer is known and will be presented it in the next slides...

Before we consider some more examples...
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Generating conjunctions

Example Let f : {0, 1}n → {0, 1} be

f(a1, . . . , an) =

{
0 if 0 ∈ {a1, . . . , an}

1 otherwise.

Then
x1 ∧ x2 = f(x1, x2, . . . , x2).

In fact

f(0, 0, . . . , 0) =0

f(1, 0, . . . , 0) =0

f(0, 1, . . . , 1) =0

f(1, 1, . . . , 1) =1
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Generating conjunctions

If we want to generate ∧ from f, we need to identify variables.

In the language with only one functional symbol f, one needs to
write n > 2 variable symbols to represent ∧.

When do we only need two variable symbols to represent ∧?
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Structure of the talk

Clones and Post’s Lattice

Algebras, terms and polynomials

Short conjunctions

Applications to the study of the complexity of the polynomial
satisfiability problem
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Clones and Post’s Lattice
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Function composition

Let A be a set, let f ∈ AAn
, let g1, . . . , gn ∈ AA

k
.

The composition of f with g1, . . . , gn is the element of AA
k

(f ◦ (g1, . . . , gn))(a1, . . . , ak) =
f(g1(a1, . . . , ak), . . . , gn(a1, . . . , ak)).

Example
Let f = x21 + x

2
2 ∈ RR

2

let g1 = cos(x1) ∈ RR
1

let g2 = sin(x1) ∈ RR
1
. Then

(f ◦ (g1, g2)) = cos2(x1) + sin2(x1) = 1 ∈ RR
1

.
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Projections

Let A be a set and let k, n ∈ N with k ≤ n.
The k-th n-ary projection is the function

πnk (a1, . . . , an) = ak.
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Clones

Let A be a set and let C be a set of operations on A.
C is a clone if
• C contains all projections πnk
• C is closed under composition.

Example Let G be a group.
The functions induced by words of the form

g1x
l1
1 g2x

l2
2 . . . gnx

ln
n gn+1

with n ∈ N form a clone on G.
Example Let K be a field. The functions induced on K by the
elements of K[x1, . . . , xn] (i.e. the polynimial functions) form a
clone on K.
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Clones

Less meaningful, but yet useful examples:

Example The set of all operations on a set A is a clone OA.

Example The set of projections on a set A is a clone JA.

Theorem

The set LA of the clones on a set A is a complete lattice with
respect to set inclusion with top element OA and bottom element
JA.

12



Clones

Less meaningful, but yet useful examples:

Example The set of all operations on a set A is a clone OA.

Example The set of projections on a set A is a clone JA.

Theorem

The set LA of the clones on a set A is a complete lattice with
respect to set inclusion with top element OA and bottom element
JA.

12



Clones

Less meaningful, but yet useful examples:

Example The set of all operations on a set A is a clone OA.

Example The set of projections on a set A is a clone JA.

Theorem

The set LA of the clones on a set A is a complete lattice with
respect to set inclusion with top element OA and bottom element
JA.

12



Generating clones

Asking if an operation f on a set A can be defined starting from
operations g1, . . . , gk is equivalent to the question:

Does f belong to the smallest clone that contains g1, . . . , gk?

Example Let A = {0, 1}. The clone generated by ∧,¬ is OA.

Example Let A = {0, 1}. The clone generated by ∧,∨, 0, 1 is the
clone of monotone operations.
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Clones on finite sets

Theorem [Ágoston, Demetrovics, Hánnak, 1983]

Let A be a finite set with at least three elements.
The following sets have cardinality 2ℵ0 :
• R;

• {L ∈ LA | L contains all constant operations on A};
• P(OA).
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Post’s Lattice

Theorem [Post, 1944]

On the two-element set there are
• ℵ0 distinct clones;
• ℵ0 distinct clones that contain ∧;
• 7 distinct clones that contain all constants.

The lattice of clones on the two-element set is called Post’s Lattice
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Post’s Lattice
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Clones that contain the Boolean conjunction
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Constantive clones on {0, 1}
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Algebras, terms and polynomials
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Algebras

An algebra is a first order structure with only functional symbols.

A = (A ; {fAi | i ∈ I} )

Example The lattice L = ( {0, 1} ; ∧,∨ )
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Algebras

Example
A group G = (G; +,−, 0) is an algebra on the language {f+, f−, f0}.

The operation fG+ : G2 → G is defined by

(g1, g2) 7→ g1 + g2.

The operation fG− : G→ G is defined by

g 7→ −g.

The operation fG0 : {∅}→ G is defined by

0.
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Term operations

Let G = (G; +,−, 0) be a group.

A term operation is an operation that can be written composing
• +,−, 0, i.e. the basic operations of G,
• the projections.

The map f : S23 → S3 given by

(x1, x2) 7→ () ◦ x1 ◦ () ◦ x−12 ◦ x1

is a term operation.

The term operations form a clone
CloG = the clone generated by the basic operations of G.
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Term operations

Is the map f given by
0 7→ 1

1 7→ 0

a term operation of the two element lattice ({0, 1};∨,∧)?

No!

The maps ∨ and ∧ both preserve the order 0 ≤ 1.
The map f does not:

0 ≤ 1 and f(0) = 1 � 0 = f(1).

Hence f cannot be a composition of maps that preserve ≤.
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Terms

How can we formally define a notion of length for a term
operation?

How can we formally define the number of variables needed to
represent a term operation?
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Terms

Let L be a language with only functional symbols.

Let X be a set with X ∩ L = ∅.
TL(X) is the smallest set of words on L ∪ X with
1 X ∪ {f ∈ L | arity(f) = 0} ⊆ TL(X);
2 f ∈ L, arity(f) = n, t1, . . . , tn ∈ TL(X)⇒ ft1 . . . tn ∈ TL(X).

TL(X) is called the set of L-terms on X.
When X = {x1, . . . , xn} we write TL(n).
When X = {xi | i ∈ N} we write TL(ω).

TL(n) is a L-algebra with the following interpretation of each f ∈ L

fTL(n)( t1 , . . . , tarity(f) ) = ft1 . . . tarity(f) .
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When X = {xi | i ∈ N} we write TL(ω).

TL(n) is a L-algebra with the following interpretation of each f ∈ L

fTL(n)( t1 , . . . , tarity(f) ) = ft1 . . . tarity(f) .
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From terms to term operations

Theorem

Let L be a language.
1 The algebra TL(X) is generated by X;
2 every mapping φ of X into any L-algebra A uniquely extends

to a homomorphism φ of TL(X) into A.

Let A be a L-algebra. For k ∈ N and a1, . . . , ak ∈ Ak we let

φa := {(xi, ai) | i ∈ {1, . . . , k}}.

For t ∈ TL(x1, . . . , xk), we let tA : Ak → A be

tA (a1, . . . , ak) = φa (t) .

We have that
CloA =

{
tA | t ∈ TL(n)

}
.
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Term operations: Length and number of variables

L = {f} is a language with a unique functional symbol of arity 4.

Let A = ({0, 1}; f) where

fA(a1, a2, a3, a4) =

{
0 if 0 ∈ {a1, a2, a3, a4}

1 otherwise.

We claim that ∧ ∈ CloA.

fx1x2x2x2 ∈ TL(2);

∧ = (fx1x2x2x2)
A:

(fx1x2x2x2)
A(0, 0) = fA(0, 0, 0, 0) = 0
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Term operations: Length and number of variables

The term fx2x2x1x2 also induces the function ∧ on {0, 1}.

In general the map t 7→ tA is not injective.

For t ∈ TL(ω), |t| is the length of t as a word on {xi | i ∈ N} ∪ L.

t ∈ TL(n) is frugal if t contains exactly one occurrence of each
symbol x1, . . . , xn.
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Short conjunctions

Let A = ({0, 1};L). Is there a frugal t ∈ TL(2) such that tA is
the Boolean conjunction?

29



Polynomials

Let A be an algebra with language L.
To each a ∈ A we associate a 0-ary functional symbol ca.

L∗ := L ∪ {ca | a ∈ A}.

The polynomials of A on X are the elements of TL∗(X).

We write TA(X) for the set of polynomials of A on X.

The polynomial operations of A are the operations induced by the
elements of TA(ω). They form a clone PolA.
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Polynomials and polynomial operations

The map f : Z22 → Z2 given by

(x1, x2) 7→ 1+ x1 + 0− x2 + x1 + 0

is a polynomial operation of the group G = (Z2; +,−, 0).
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Short conjunctions
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Main result

Theorem [Aichinger, R.]
Let A = ({0, 1};L) and let us assume that ∧ ∈ PolA.
Then there exists a frugal t ∈ TA(2) such that tA = ∧.

Example

Let f : {0, 1}n → {0, 1} be

f(a1, . . . , an) =

{
0 if 0 ∈ {a1, . . . , an}

1 otherwise.

Then for all a1, a2 ∈ {0, 1} : f(a1, a2, . . . , a2) = a1 ∧ a2

and

f(a1, a2, 1, . . . , 1) = a1 ∧ a2.
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Example

Let A = GF(2) and let p ∈ TA(4) = GF(2)[x1, x2, x3, x4] be

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x
2
3 + x

2
4
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2 = a1 ∧ a2
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2
4

Then for all a1, a2 ∈ {0, 1}

pA(a1, a2, a2, a2) = 3a1a2 + 4a
2
2 = a1 ∧ a2

and

frugal

pA(a1, a2, 0, 0) = a1a2 + 0 = a1 ∧ a2.
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Main result

Theorem [Aichinger, R.]
Let A = ({0, 1};L) and let us assume that ∧ ∈ PolA.
Then there exists a frugal t ∈ TA(2) such that tA = ∧.

Proof by example

∧ ∈ PolA⇒∃m ∈ N
∃s ∈ TA(m) frugal
∃τ : {1, . . . ,m}→ {1, 2}

∀a1, a2 ∈ {0, 1} :

a1∧a2 = s
A(aτ(1), . . . , aτ(m)) =

(
sTA(2)(xτ(1), . . . , xτ(m))

)A
(a1, a2)
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Proof by example

Let m = 5, and τ = {(1, 1), (2, 2), (3, 2), (4, 1), (5, 1)}. Then

a1 ∧ a2 = s
A(a1, a2, a2, a1, a1).

Equivalently

sA(0, 0, 0, 0, 0) = 0

sA(0, 1, 1, 0, 0) = 0

sA(1, 0, 0, 1, 1) = 0

sA(1, 1, 1, 1, 1) = 1

We construct s̃ ∈ TA(m̃) frugal and τ̃ : {1, . . . , m̃}→ {1, 2} with

m̃ < m,

∧ =
(
s̃TA(2)(xτ̃(1), . . . , xτ̃(m̃))

)A

36



Proof by example

Let m = 5, and τ = {(1, 1), (2, 2), (3, 2), (4, 1), (5, 1)}. Then

a1 ∧ a2 = s
A(a1, a2, a2, a1, a1).

Equivalently

sA(0, 0, 0, 0, 0) = 0

sA(0, 1, 1, 0, 0) = 0

sA(1, 0, 0, 1, 1) = 0

sA(1, 1, 1, 1, 1) = 1

We construct s̃ ∈ TA(m̃) frugal and τ̃ : {1, . . . , m̃}→ {1, 2} with

m̃ < m,

∧ =
(
s̃TA(2)(xτ̃(1), . . . , xτ̃(m̃))

)A

36



Proof by example

Let m = 5, and τ = {(1, 1), (2, 2), (3, 2), (4, 1), (5, 1)}. Then

a1 ∧ a2 = s
A(a1, a2, a2, a1, a1).

Equivalently

sA(0, 0, 0, 0, 0) = 0

sA(0, 1, 1, 0, 0) = 0

sA(1, 0, 0, 1, 1) = 0

sA(1, 1, 1, 1, 1) = 1

We construct s̃ ∈ TA(m̃) frugal and τ̃ : {1, . . . , m̃}→ {1, 2} with

m̃ < m,

∧ =
(
s̃TA(2)(xτ̃(1), . . . , xτ̃(m̃))

)A
36



Proof by example

Case 1: The negation is induced by a frugal polynomial

∃w ∈ TA(1) : w is frugal, wA(0) = 1, wA(1) = 0

Case 1.1: sA(0, 1, 1, 0, 1 ) = 1 and sA(0, 0, 0, 0, 1) = 0:

∧ =
(
sTA(2)( 0 , x1, x1 , 0 , x2)

)A

Case 1.2: sA(0, 1, 1, 0, 1) = 0 and sA(0, 0, 0, 0, 1) = 1:

∧ =
(
sTA(2)(0,wTA(1)(x1), w

TA(1)(x1), 0, x2)
)A
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Proof by example

Case 2: The negation is not induced by a frugal polynomial.

Case 2.1: sA(0, 1, 1, 1, 1) = 1:

∧ =
(
sTA(2)( 0 , x2, x2 , x1, x1 )

)A
.

In fact sA(0, 0, 0, 1, 1) = 0. Since, if sA(0, 0, 0, 1, 1) = 1, then
sTA(1)(x1, 0, 0, 1, 1) would induce the negation and be frugal.
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Proof by example

Case 2: The negation is not induced by a frugal polynomial.

Case 2.2: sA(1, 0, 1, 1, 1) = 1:

∧ =
(
sTA(2)(x2, 0, x1, x2, x2)

)A
.

In fact sA(0, 0, 1, 0, 0) = 0. Since, if sA(0, 0, 1, 0, 0) = 1, then
sTA(1)(0, x1, 1, 0, 0) would induce the negation and be frugal.
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Proof by example

Case 2: The negation is not induced by a frugal polynomial.
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sTA(1)(0, x1, 1, 0, 0) would induce the negation and be frugal.
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Proof by example

Case 2: The negation is not induced by a frugal polynomial.

Case 2.3: sA(0, 1, 1, 1, 1) = sA(1, 0, 1, 1, 1) = 0:

∧ =
(
sTA(2)(x1, x2, 1, 1, 1)

)A
.

Note that if sA(0, 0, 1, 1, 1) = 1, then sTA(1)(x1, 0, 1, 1, 1) would
induce the negation and be frugal.

41



Proof by example

Case 2: The negation is not induced by a frugal polynomial.

Case 2.3: sA(0, 1, 1, 1, 1) = sA(1, 0, 1, 1, 1) = 0:

∧ =
(
sTA(2)(x1, x2, 1, 1, 1)

)A
.

Note that if sA(0, 0, 1, 1, 1) = 1, then sTA(1)(x1, 0, 1, 1, 1) would
induce the negation and be frugal.

41



Proof by example

Case 2: The negation is not induced by a frugal polynomial.

Case 2.3: sA(0, 1, 1, 1, 1) = sA(1, 0, 1, 1, 1) = 0:

∧ =
(
sTA(2)(x1, x2, 1, 1, 1)

)A
.

Note that if sA(0, 0, 1, 1, 1) = 1, then sTA(1)(x1, 0, 1, 1, 1) would
induce the negation and be frugal.

41



Applications to the study of the complexity of PolSatA

42



The polynomial satifiability problem

The problem PolSat(A) is the following search problem:

Given p, q ∈ TA(n)
find a ∈ An such that
pA(a) = qA(a).

The complexity parameter of PolSat(A) is |p|+ |q|.
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The Exponential Time Hypothesis

The exponential time hypothesis implies that there exists no
sub-exponential time algorithm that solves 3SAT.

44



When is PolSat(A) not solvable in sub-exponential time

Theorem
[Gorazd, Krzaczkowski, 2011]

Let A be an algebra on {0, 1}.

CloA ⇒ PolSat(A) in P.

CloA ⇒
no sub-exponential time
algorithm that solves
PolSat(A) under ETH.
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When is PolSat(A) not solvable in sub-exponential time

Theorem
[Gorazd, Krzaczkowski, 2011]

Let A be an algebra on {0, 1}.

CloA ⇒ PolSat(A) in P.

CloA ⇒
PolSat(A) NP-complete.
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