How to express conjunction with few variables

Bernardo Rossi

Seminar Algebra and Discrete Mathematics Institut für Algebra, JKU Linz

Boolean conjunction

The function $f: \{0, 1\}^2 \rightarrow \{0, 1\}$ defined by

 $f(0, \overline{0}) = 0$ f(0, 1) = 0 f(1, 0) = 0 f(1, 1) = 1

is called Boolean conjunction. Usually f(x, y) is denoted by $x \wedge y$ or x & y.

Boolean conjunction

The function $f: \{0, 1\}^2 \rightarrow \{0, 1\}$ defined by

f(0,0) = 0f(0,1) = 0 f(1,0) = 0 f(1,1) = 1

is called Boolean conjunction. Usually f(x, y) is denoted by $x \land y$ or x & y. we will use this notation

Generating functions

It is well known that each operation on $\{0, 1\}$ can be defined starting from \land and \neg , where $\neg: \{0, 1\} \rightarrow \{0, 1\}$ is

$$\neg(0) = 1 \quad \neg(1) = 0.$$

Generating functions

It is well known that each operation on $\{0, 1\}$ can be defined starting from \land and \neg , where $\neg: \{0, 1\} \rightarrow \{0, 1\}$ is

$$\neg(0) = 1 \quad \neg(1) = 0.$$

Example Let $\lor: \{0, 1\}^2 \to \{0, 1\}$ be $0 \lor 0 = 0 \quad 0 \lor 1 = 1 \quad 1 \lor 0 = \underline{1 \quad 1 \lor 1 = 1}.$

Generating functions

It is well known that each operation on $\{0, 1\}$ can be defined starting from \land and \neg , where $\neg: \{0, 1\} \rightarrow \{0, 1\}$ is

$$\neg(0) = 1 \quad \neg(1) = 0.$$

Example Let \lor : $\{0, 1\}^2 \rightarrow \{0, 1\}$ be $0 \lor 0 = 0 \quad 0 \lor 1 = 1 \quad 1 \lor 0 = 1 \quad 1 \lor 1 = 1.$ Then $x \lor y = \neg(\neg(x) \land \neg(y)).$

When can we generate the function \land ?

The answer is known and will be presented it in the next slides...

When can we generate the function \land ?

The answer is known and will be presented it in the next slides... Before we consider some more examples...

Example Let
$$f: \{0, 1\}^n \to \{0, 1\}$$
 be

$$f(a_1, \dots, a_n) = \begin{cases} 0 & \text{if } 0 \in \{a_1, \dots, a_n\} \\ 1 & \text{otherwise.} \end{cases}$$

Then

$$\mathbf{x}_1 \wedge \mathbf{x}_2 = \mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_2).$$

Example Let
$$f: \{0, 1\}^n \to \{0, 1\}$$
 be

$$f(a_1, \dots, a_n) = \begin{cases} 0 & \text{if } 0 \in \{a_1, \dots, a_n\} \\ 1 & \text{otherwise.} \end{cases}$$

Then

$$\mathbf{x}_1 \wedge \mathbf{x}_2 = \mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_2).$$

Example Let
$$f: \{0, 1\}^n \to \{0, 1\}$$
 be

$$f(a_1, \dots, a_n) = \begin{cases} 0 & \text{if } 0 \in \{a_1, \dots, a_n\} \\ 1 & \text{otherwise.} \end{cases}$$

Then

$$\mathbf{x}_1 \wedge \mathbf{x}_2 = \mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_2).$$

In fact

 $f(0, 0, \ldots, 0) = 0$

Example Let
$$f: \{0, 1\}^n \to \{0, 1\}$$
 be

$$f(a_1, \dots, a_n) = \begin{cases} 0 & \text{if } 0 \in \{a_1, \dots, a_n\} \\ 1 & \text{otherwise.} \end{cases}$$

Then

$$\mathbf{x}_1 \wedge \mathbf{x}_2 = \mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_2).$$

$$f(0, 0, ..., 0) = 0$$

 $f(1, 0, ..., 0) = 0$

Example Let
$$f: \{0, 1\}^n \to \{0, 1\}$$
 be

$$f(a_1, \dots, a_n) = \begin{cases} 0 & \text{if } 0 \in \{a_1, \dots, a_n\} \\ 1 & \text{otherwise.} \end{cases}$$

Then

$$\mathbf{x}_1 \wedge \mathbf{x}_2 = \mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_2).$$

$$f(0, 0, \dots, 0) = 0$$

f(1, 0, \dots, 0) = 0
f(0, 1, \dots, 1) = 0

Example Let
$$f: \{0, 1\}^n \to \{0, 1\}$$
 be

$$f(a_1, \dots, a_n) = \begin{cases} 0 & \text{if } 0 \in \{a_1, \dots, a_n\} \\ 1 & \text{otherwise.} \end{cases}$$

Then

$$\mathbf{x}_1 \wedge \mathbf{x}_2 = \mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_2).$$

$$f(0, 0, \dots, 0) = 0$$

$$f(1, 0, \dots, 0) = 0$$

$$f(0, 1, \dots, 1) = 0$$

$$f(1, 1, \dots, 1) = 1$$

If we want to generate \wedge from f, we need to identify variables.

If we want to generate \land from f, we need to identify variables. In the language with only one functional symbol f, one needs to write n > 2 variable symbols to represent \land .

If we want to generate \land from f, we need to identify variables. In the language with only one functional symbol f, one needs to write n > 2 variable symbols to represent \land .

When do we only need two variable symbols to represent \land ?

Structure of the talk

Clones and Post's Lattice

Algebras, terms and polynomials

Short conjunctions

Applications to the study of the complexity of the polynomial satisfiability problem

Clones and Post's Lattice

Function composition

Let A be a set, let $f \in A^{A^n}$, let $g_1, \ldots, g_n \in A^{A^k}$. The composition of f with g_1, \ldots, g_n is the element of A^{A^k}

$$(f \circ (g_1, \ldots, g_n))(a_1, \ldots, a_k) = f(g_1(a_1, \ldots, a_k), \ldots, g_n(a_1, \ldots, a_k)).$$

Function composition

Let \overline{A} be a set, let $f \in A^{A^n}$, let $g_1, \ldots, g_n \in A^{A^k}$. The composition of f with g_1, \ldots, g_n is the element of A^{A^k}

$$(f \circ (g_1, \ldots, g_n))(a_1, \ldots, a_k) = f(g_1(a_1, \ldots, a_k), \ldots, g_n(a_1, \ldots, a_k)).$$

Example

Let
$$f = x_1^2 + x_2^2 \in \mathbb{R}^{\mathbb{R}^2}$$

let $g_1 = \cos(x_1) \in \mathbb{R}^{\mathbb{R}^1}$
let $g_2 = \sin(x_1) \in \mathbb{R}^{\mathbb{R}^1}$. Then

$$(f \circ (g_1, g_2)) = \cos^2(x_1) + \sin^2(x_1) = 1 \in \mathbb{R}^{\mathbb{R}^1}$$

Projections

Let A be a set and let $k, n \in \mathbb{N}$ with $k \leq n$. The k-th n-ary projection is the function

$$\pi_k^n(a_1,\ldots,a_n)=a_k.$$

Let A be a set and let C be a set of operations on A. C is a clone if

- C contains all projections π_k^n
- C is closed under composition.

Let A be a set and let C be a set of operations on A. C is a clone if

- C contains all projections π_k^n
- C is closed under composition.

 $\frac{\mathsf{Example}}{\mathsf{The functions induced by words of the form}}$

$$g_1 x_1^{l_1} g_2 x_2^{l_2} \dots g_n x_n^{l_n} g_{n+1}$$

with $n \in \mathbb{N}$ form a clone on G.

Let A be a set and let C be a set of operations on A. C is a clone if

- C contains all projections π_k^n
- C is closed under composition.

 $\frac{\mathsf{Example}}{\mathsf{The functions induced by words of the form}}$

$$g_1 x_1^{l_1} g_2 x_2^{l_2} \dots g_n x_n^{l_n} g_{n+1}$$

with $n \in \mathbb{N}$ form a clone on G.

Example Let **K** be a field. The functions induced on K by the elements of $\mathbf{K}[x_1, \ldots, x_n]$ (i.e. the polynimial functions) form a clone on K.

Less meaningful, but yet useful examples:

Example The set of all operations on a set A is a clone \mathcal{O}_A .

Less meaningful, but yet useful examples:

Example The set of all operations on a set A is a clone \mathcal{O}_A .

Example The set of projections on a set A is a clone \mathcal{J}_A .

Less meaningful, but yet useful examples:

Example The set of all operations on a set A is a clone \mathcal{O}_A .

Example The set of projections on a set A is a clone \mathcal{J}_A .

Theorem

The set \mathcal{L}_A of the clones on a set A is a complete lattice with respect to set inclusion with top element \mathcal{O}_A and bottom element \mathcal{J}_A .

Generating clones

Asking if an operation f on a set A can be defined starting from operations g_1, \ldots, g_k is equivalent to the question:

Does f belong to the smallest clone that contains g_1, \ldots, g_k ?

Generating clones

Asking if an operation f on a set A can be defined starting from operations g_1, \ldots, g_k is equivalent to the question:

Does f belong to the smallest clone that contains g_1, \ldots, g_k ?

Example Let $A = \{0, 1\}$. The clone generated by \land, \neg is \mathcal{O}_A .

Generating clones

Asking if an operation f on a set A can be defined starting from operations g_1, \ldots, g_k is equivalent to the question:

Does f belong to the smallest clone that contains g_1, \ldots, g_k ?

Example Let $A = \{0, 1\}$. The clone generated by \land, \neg is \mathcal{O}_A .

Example Let $A = \{0, 1\}$. The clone generated by $\land, \lor, 0, 1$ is the clone of monotone operations.

Clones on finite sets

Theorem [Ágoston, Demetrovics, Hánnak, 1983]

Let A be a finite set with at least three elements. The following sets have cardinality 2^{\aleph_0} :

• R;

Clones on finite sets

Theorem [Ágoston, Demetrovics, Hánnak, 1983]

Let A be a finite set with at least three elements. The following sets have cardinality 2^{\aleph_0} :

- R;
- $\{L \in \mathcal{L}_A \mid L \text{ contains all constant operations on } A\};$

Clones on finite sets

Theorem [Ágoston, Demetrovics, Hánnak, 1983]

Let A be a finite set with at least three elements. The following sets have cardinality 2^{\aleph_0} :

- ℝ;
- { $L \in \mathcal{L}_A \mid L$ contains all constant operations on A};
- $\mathcal{P}(\mathcal{O}_A)$.

Post's Lattice

Theorem [Post, 1944]

On the two-element set there are

- \aleph_0 distinct clones;
- \aleph_0 distinct clones that contain \wedge ;
- 7 distinct clones that contain all constants.

Post's Lattice

Theorem [Post, 1944]

On the two-element set there are

- \aleph_0 distinct clones;
- \aleph_0 distinct clones that contain \wedge ;
- 7 distinct clones that contain all constants.

The lattice of clones on the two-element set is called Post's Lattice

Post's Lattice

Clones that contain the Boolean conjunction

Constantive clones on {0, 1}

Algebras, terms and polynomials

$$\mathbf{A} = (\mathbf{A}; \{\mathbf{f}_i^{\mathbf{A}} \mid i \in I\})$$

universe of \mathbf{A}

$$\mathbf{A} = (\mathbf{A}; \{f_i^A \mid i \in I\})$$

universe of \mathbf{A} basic operations of \mathbf{A}

$$\mathbf{A} = (\mathbf{A}; \{\mathbf{f}_i^{\mathbf{A}} \mid i \in I\})$$

universe of \mathbf{A} basic operations of \mathbf{A}
Example The lattice $\mathbf{L} = (\{0, 1\}; \land, \lor)$

$$\mathbf{A} = (A; \{f_i^A \mid i \in I\})$$

universe of A basic operations of A
Example The lattice $\mathbf{L} = (\{0,1\}; \land, \lor)$
universe

$$\mathbf{A} = (\mathbf{A}; \{f_i^{\mathbf{A}} \mid i \in I\})$$

universe of \mathbf{A} basic operations of \mathbf{A}
Example The lattice $\mathbf{L} = (\{0, 1\}; \land, \lor)$
basic operations

A group $\mathbf{G} = (G; +, -, 0)$ is an algebra on the language $\{f_+, f_-, f_0\}$.

Example

A group G = (G; +, -, 0) is an algebra on the language $\{f_+, f_-, f_0\}$. The operation $f_+^G: G^2 \to G$ is defined by

 $(g_1,g_2)\mapsto g_1+g_2.$

Example

A group G = (G; +, -, 0) is an algebra on the language $\{f_+, f_-, f_0\}$. The operation $f_+^G \colon G^2 \to G$ is defined by

 $(g_1, \overline{g_2}) \mapsto g_1 + g_2.$

The operation $f_-^{\mathbf{G}}\colon G\to G$ is defined by

$$g \mapsto -g$$

Example

A group G = (G; +, -, 0) is an algebra on the language $\{f_+, f_-, f_0\}$. The operation $f_+^G \colon G^2 \to G$ is defined by

 $(g_1, \overline{g_2}) \mapsto g_1 + g_2.$

The operation $f_{-}^{\mathbf{G}} \colon \mathbf{G} \to \mathbf{G}$ is defined by

$$g \mapsto -g$$
.

The operation $f_0^G \colon \{\emptyset\} \to G$ is defined by

Let $\mathbf{G} = (G; +, -, 0)$ be a group.

Let $\mathbf{G} = (G; +, -, 0)$ be a group.

A term operation is an operation that can be written composing

• +, -, 0, i.e. the basic operations of G,

Let $\mathbf{G} = (G; +, -, 0)$ be a group.

A term operation is an operation that can be written composing

- +, -, 0, i.e. the basic operations of G,
- the projections.

Let $\mathbf{G} = (G; +, -, 0)$ be a group.

A term operation is an operation that can be written composing

- +, -, 0, i.e. the basic operations of ${\bf G},$
- the projections.

The map f: $S_3^2 \rightarrow S_3$ given by $(x_1, x_2) \mapsto () \circ x_1 \circ () \circ x_2^{-1} \circ x_1$

is a term operation.

Let $\mathbf{G} = (G; +, -, 0)$ be a group.

A term operation is an operation that can be written composing

- +, -, 0, i.e. the basic operations of ${\bf G},$
- the projections.

The map $f \colon S_3^2 \to S_3$ given by

$$(x_1, x_2) \mapsto () \circ x_1 \circ () \circ x_2^{-1} \circ x_1$$

is a term operation.

The term operations form a clone $\operatorname{Clo} \mathbf{G} =$ the clone generated by the basic operations of \mathbf{G} .

Is the map f given by

$$\begin{array}{cccc} 0 & \mapsto & 1 \\ 1 & \mapsto & 0 \end{array}$$

a term operation of the two element lattice $(\{0, 1\}; \lor, \land)$?

Is the map f given by

$$\begin{array}{cccc} 0 & \mapsto & 1 \\ 1 & \mapsto & 0 \end{array}$$

a term operation of the two element lattice $(\{0, 1\}; \lor, \land)$?

No!

The maps \lor and \land both preserve the order $0 \le 1$.

Is the map f given by

$$\begin{array}{cccc} 0 & \mapsto & 1 \\ 1 & \mapsto & 0 \end{array}$$

a term operation of the two element lattice $(\{0, 1\}; \lor, \land)$?

No!

The maps \vee and \wedge both preserve the order 0 \leq 1. The map f does not:

 $0 \leq 1 \text{ and}$

Is the map f given by

$$\begin{array}{cccc} 0 & \mapsto & 1 \\ 1 & \mapsto & 0 \end{array}$$

a term operation of the two element lattice $(\{0, 1\}; \lor, \land)$?

No!

The maps \vee and \wedge both preserve the order 0 \leq 1. The map f does not:

$$0 \le 1$$
 and $f(0) = 1 \nleq 0 = f(1)$.

Hence f cannot be a composition of maps that preserve \leq .

How can we formally define a notion of length for a term operation?

How can we formally define a notion of length for a term operation?

How can we formally define the number of variables needed to represent a term operation?

Let L be a language with only functional symbols.

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$.

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with $\mathbf{1} \ X \cup \{f \in L \mid arity(f) = 0\} \subset T_L(X);$

```
Let L be a language with only functional symbols.
Let X be a set with X \cap L = \emptyset.
T_L(X) is the smallest set of words on L \cup X with
1 X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);
2 f \in L,
```

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with $\mathbf{1} \ X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);$

2
$$f \in L$$
, arity $(f) = n, t_1, \dots, t_n \in T_L(X)$

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with $\mathbf{1} \ X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);$

 $\textbf{2} \ f \in L, \ \mathsf{arity}(f) = n, \ t_1, \dots, t_n \in \mathsf{T}_L(X) \Rightarrow ft_1 \dots t_n \in \mathsf{T}_L(X).$

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with **1** $X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);$ **2** $f \in L$, arity(f) = n, $t_1, \ldots, t_n \in T_L(X) \Rightarrow ft_1 \ldots t_n \in T_L(X)$. $T_L(X)$ is called the set of L-terms on X.

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with $1 \ X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);$ $2 \ f \in L, arity(f) = n, t_1, \dots, t_n \in T_L(X) \Rightarrow ft_1 \dots t_n \in T_L(X).$ $T_L(X)$ is called the set of L-terms on X. When $X = \{x_1, \dots, x_n\}$ we write $T_L(n)$.

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with $1 \quad X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);$ $2 \quad f \in L, arity(f) = n, t_1, \dots, t_n \in T_L(X) \Rightarrow ft_1 \dots t_n \in T_L(X).$ $T_L(X)$ is called the set of L-terms on X. When $X = \{x_1, \dots, x_n\}$ we write $T_L(n)$. When $X = \{x_1, \dots, x_n\}$ we write $T_L(\omega)$.

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_{I}(X)$ is the smallest set of words on $L \cup X$ with 1 $X \cup \{f \in L \mid arity(f) = 0\} \subset T_I(X)$; **2** f \in L, arity(f) = n, t₁,..., t_n \in T_I(X) \Rightarrow ft₁...t_n \in T_I(X). $T_{I}(X)$ is called the set of L-terms on X. When $X = \{x_1, \ldots, x_n\}$ we write $T_I(n)$. When $X = \{x_i \mid i \in \mathbb{N}\}\$ we write $T_I(\omega)$. $\mathbf{T}_{I}(n)$ is a L-algebra with the following interpretation of each $f \in L$

$$f^{\mathbf{T}_L(n)}(\,t_1\,,\ldots,\,t_{\mathsf{arity}(f)}\,)=ft_1\ldots t_{\mathsf{arity}(f)}\,.$$

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with $1 \ X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);$ $2 \ f \in L, arity(f) = n, t_1, \dots, t_n \in T_L(X) \Rightarrow ft_1 \dots t_n \in T_L(X).$ $T_L(X)$ is called the set of L-terms on X. When $X = \{x_1, \dots, x_n\}$ we write $T_L(n)$. When $X = \{x_i \mid i \in \mathbb{N}\}$ we write $T_L(\omega)$.

 $\mathbf{T}_L(n)$ is a L-algebra with the following interpretation of each $f\in L$

$$\begin{array}{c} f^{\mathbf{T}_{L}(n)}(\underbrace{t_{1}},\ldots,\,t_{\mathsf{arity}(f)}\,) = ft_{1}\ldots t_{\mathsf{arity}(f)}\,.\\ \in \mathsf{T}_{L}^{|}(n) \end{array}$$

Terms

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with $1 \quad X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);$ $2 \quad f \in L, arity(f) = n, t_1, \dots, t_n \in T_L(X) \Rightarrow ft_1 \dots t_n \in T_L(X).$ $T_L(X)$ is called the set of L-terms on X. When $X = \{x_1, \dots, x_n\}$ we write $T_L(n)$. When $X = \{x_i \mid i \in \mathbb{N}\}$ we write $T_L(\omega)$.

 $\mathbf{T}_L(n)$ is a L-algebra with the following interpretation of each $f\in L$

$$\begin{split} f^{\mathbf{T}_L(n)}(\,t_1\,,\ldots,\underbrace{t_{\mathsf{arity}(f)}}_{\in T_L^l(n)}) &= ft_1\ldots t_{\mathsf{arity}(f)}\,. \end{split}$$

Terms

Let L be a language with only functional symbols. Let X be a set with $X \cap L = \emptyset$. $T_L(X)$ is the smallest set of words on $L \cup X$ with $1 \ X \cup \{f \in L \mid arity(f) = 0\} \subseteq T_L(X);$ $2 \ f \in L, arity(f) = n, t_1, \dots, t_n \in T_L(X) \Rightarrow ft_1 \dots t_n \in T_L(X).$ $T_L(X)$ is called the set of L-terms on X. When $X = \{x_1, \dots, x_n\}$ we write $T_L(n)$. When $X = \{x_i \mid i \in \mathbb{N}\}$ we write $T_L(\omega)$.

 $\mathbf{T}_L(n)$ is a L-algebra with the following interpretation of each $f\in L$

$$\mathbf{f}^{\mathbf{T}_{L}(n)}(t_{1},\ldots,t_{\mathsf{arity}(f)}) = \underbrace{\mathbf{f}t_{1}\ldots t_{\mathsf{arity}(f)}}_{\in \mathsf{T}_{L}^{\mathsf{I}}(n)}.$$

Theorem

Let L be a language.

- 1 The algebra $\mathbf{T}_L(X)$ is generated by X;

Theorem

Let L be a language.

- 1 The algebra $\mathbf{T}_L(X)$ is generated by X;

Let A be a L-algebra. For $k \in \mathbb{N}$ and $a_1, \ldots, a_k \in A^k$ we let

 $\phi_a := \{(\mathbf{x}_i, \mathbf{a}_i) \mid i \in \{1, \ldots, k\}\}.$

Theorem

Let L be a language.

- 1 The algebra $\mathbf{T}_L(X)$ is generated by X;

Let $\mathbf A$ be a L-algebra. For $k\in\mathbb N$ and $\alpha_1,\ldots,\alpha_k\in A^k$ we let

$$\boldsymbol{\varphi}_{\boldsymbol{a}} := \{ (\boldsymbol{x}_{\mathfrak{i}}, \boldsymbol{a}_{\mathfrak{i}}) \mid \mathfrak{i} \in \{1, \dots, k\} \}.$$

For $t\in \overline{T_L(x_1,\ldots,x_k)},$ we let $t^A\colon A^k\to A$ be

$$\mathbf{t}^{\mathbf{A}}(a_{1},\ldots,a_{k})=\overline{\mathbf{\phi}_{a}}(\mathbf{t}).$$

Theorem

Let L be a language.

- 1 The algebra $\mathbf{T}_L(X)$ is generated by X;

Let $\mathbf A$ be a L-algebra. For $k\in\mathbb N$ and $\alpha_1,\ldots,\alpha_k\in A^k$ we let

$$\boldsymbol{\varphi}_{\boldsymbol{a}} := \{ (\mathbf{x}_{i}, \mathbf{a}_{i}) \mid i \in \{1, \ldots, k\} \}.$$

For $t\in T_L(x_1,\ldots,x_k),$ we let $t^{\mathbf{A}}\colon A^k\to A$ be

$$\mathbf{t^{A}}(a_{1},\ldots,a_{k}) = \mathbf{\phi_{a}}(\mathbf{t}) \,.$$
$$\mathsf{T}_{L}(\mathbf{k}) \xrightarrow{\mathbf{I}} A$$

Theorem

Let L be a language.

- 1 The algebra $\mathbf{T}_L(X)$ is generated by X;

Let $\mathbf A$ be a L-algebra. For $k\in\mathbb N$ and $\alpha_1,\ldots,\alpha_k\in A^k$ we let

$$\phi_a := \{ (\mathbf{x}_i, \mathbf{a}_i) \mid i \in \{1, \ldots, k\} \}.$$

For $t\in \overline{T_L(x_1,\ldots,x_k)},$ we let $t^A\colon A^k\to A$ be

$$\mathbf{t}^{\mathbf{A}}\left(a_{1},\ldots,a_{k}
ight)=\overbrace{\substack{\mathbf{\phi}_{a}\left(\mathbf{t}
ight)}_{\in\mathcal{A}}}^{\mathbf{\phi}_{a}\left(\mathbf{t}
ight)}$$

Theorem

Let L be a language.

- 1 The algebra $\mathbf{T}_L(X)$ is generated by X;

Let $\mathbf A$ be a L-algebra. For $k\in\mathbb N$ and $\alpha_1,\ldots,\alpha_k\in A^k$ we let

$$\phi_a := \{(\mathbf{x}_i, \mathbf{a}_i) \mid i \in \{1, \ldots, k\}\}.$$

For $t\in \overline{T_L(x_1,\ldots,x_k)},$ we let $t^A\colon A^k\to A$ be

$$\begin{array}{c} \mathbf{t}^{\mathbf{A}}(a_{1},\ldots,a_{k})=\overline{\varphi_{a}}\left(\mathbf{t}\right). \\ \mathbf{t}\mapsto\mathbf{t}^{\mathbf{A}}\colon\mathsf{T}_{L}^{\mathsf{I}}(\mathbf{k})\to\mathcal{A}^{\mathcal{A}^{\mathsf{k}}} \end{array}$$

Theorem

Let L be a language.

- 1 The algebra $\mathbf{T}_L(X)$ is generated by X;

Let $\mathbf A$ be a L-algebra. For $k\in\mathbb N$ and $\alpha_1,\ldots,\alpha_k\in A^k$ we let

$$\phi_a := \{(\mathbf{x}_i, \mathbf{a}_i) \mid i \in \{1, \ldots, k\}\}.$$

For $t\in T_L(x_1,\ldots,x_k),$ we let $t^A\colon A^k\to A$ be

$$\mathbf{t}^{\mathbf{A}}\left(\mathfrak{a}_{1},\ldots,\mathfrak{a}_{k}\right)=\overline{\mathbf{\phi}_{a}}\left(\mathbf{t}\right).$$

We have that

$$\operatorname{Clo} \mathbf{A} = \left\{ \, t^{\mathbf{A}} \mid t \in T_{L}(n) \, \right\}.$$

 $L=\{f\}$ is a language with a unique functional symbol of arity 4.

 $L=\{f\}$ is a language with a unique functional symbol of arity 4. Let $\mathbf{A}=(\{0,1\};f)$ where

$$f^{\mathbf{A}}(a_1, a_2, a_3, a_4) = \begin{cases} 0 & \text{ if } 0 \in \{a_1, a_2, a_3, a_4\} \\ 1 & \text{ otherwise.} \end{cases}$$

 $L=\{f\}$ is a language with a unique functional symbol of arity 4. Let $\mathbf{A}=(\{0,1\};f)$ where

$$f^{\mathbf{A}}(\mathfrak{a}_{1},\mathfrak{a}_{2},\mathfrak{a}_{3},\mathfrak{a}_{4}) = \begin{cases} \mathfrak{0} & \text{ if } \mathfrak{0} \in \{\mathfrak{a}_{1},\mathfrak{a}_{2},\mathfrak{a}_{3},\mathfrak{a}_{4}\} \\ \mathfrak{1} & \text{ otherwise.} \end{cases}$$

We claim that $\wedge \in \operatorname{Clo} \mathbf{A}$.

 $L=\{f\}$ is a language with a unique functional symbol of arity 4. Let $\mathbf{A}=(\{0,1\};f)$ where

$$f^{\mathbf{A}}(\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4) = \begin{cases} 0 & \text{ if } 0 \in \{\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4\} \\ 1 & \text{ otherwise.} \end{cases}$$

We claim that $\wedge \in \operatorname{Clo} \mathbf{A}$.

 $fx_1x_2x_2x_2 \in T_L(2);$

 $L=\{f\}$ is a language with a unique functional symbol of arity 4. Let $\mathbf{A}=(\{0,1\};f)$ where

$$f^{\mathbf{A}}(\mathfrak{a}_{1},\mathfrak{a}_{2},\mathfrak{a}_{3},\mathfrak{a}_{4}) = \begin{cases} \mathfrak{0} & \text{ if } \mathfrak{0} \in \{\mathfrak{a}_{1},\mathfrak{a}_{2},\mathfrak{a}_{3},\mathfrak{a}_{4}\} \\ \mathfrak{1} & \text{ otherwise.} \end{cases}$$

We claim that $\land \in \operatorname{Clo} \mathbf{A}$. $fx_1x_2x_2x_2 \in T_L(2);$ $\land = (fx_1x_2x_2x_2)^{\mathbf{A}}:$

 $L=\{f\}$ is a language with a unique functional symbol of arity 4. Let $\mathbf{A}=(\{0,1\};f)$ where

$$\mathbf{f}^{\mathbf{A}}(\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4) = egin{cases} \mathfrak{0} & ext{ if } \mathfrak{0} \in \{\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4\} \ 1 & ext{ otherwise.} \end{cases}$$

We claim that $\wedge \in \operatorname{Clo} \mathbf{A}$.

 $fx_1x_2x_2x_2 \in T_L(2);$

 $\wedge = (\mathbf{f}\mathbf{x}_1\mathbf{x}_2\mathbf{x}_2\mathbf{x}_2)^{\mathbf{A}}:$

$$(fx_1x_2x_2x_2)^{\mathbf{A}}(0,0) = f^{\mathbf{A}}(0,0,0,0) = 0,$$

 $L=\{f\}$ is a language with a unique functional symbol of arity 4. Let $\mathbf{A}=(\{0,1\};f)$ where

$$\mathbf{f}^{\mathbf{A}}(\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4) = egin{cases} \mathfrak{0} & ext{ if } \mathfrak{0} \in \{\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4\} \ 1 & ext{ otherwise.} \end{cases}$$

We claim that $\wedge \in \operatorname{Clo} \mathbf{A}$.

 $fx_1x_2x_2x_2 \in T_L(2);$

 $\wedge = (\mathbf{f}\mathbf{x}_1\mathbf{x}_2\mathbf{x}_2\mathbf{x}_2)^{\mathbf{A}}:$

$$(fx_1x_2x_2x_2)^{\mathbf{A}}(1,0) = f^{\mathbf{A}}(1,0,0,0) = 0,$$

 $L=\{f\}$ is a language with a unique functional symbol of arity 4. Let $\mathbf{A}=(\{0,1\};f)$ where

$$\mathbf{f}^{\mathbf{A}}(\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4) = egin{cases} \mathfrak{0} & ext{ if } \mathfrak{0} \in \{\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4\} \ 1 & ext{ otherwise.} \end{cases}$$

We claim that $\wedge \in \operatorname{Clo} \mathbf{A}$.

 $fx_1x_2x_2x_2 \in T_L(2);$

 $\wedge = (\mathbf{f}\mathbf{x}_1\mathbf{x}_2\mathbf{x}_2\mathbf{x}_2)^{\mathbf{A}}:$

$$(fx_1x_2x_2x_2)^{\mathbf{A}}(0,1) = f^{\mathbf{A}}(0,1,1,1) = 0,$$

 $L=\{f\}$ is a language with a unique functional symbol of arity 4. Let $\mathbf{A}=(\{0,1\};f)$ where

$$f^{\mathbf{A}}(\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4) = \begin{cases} 0 & \text{ if } 0 \in \{\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4\} \\ 1 & \text{ otherwise.} \end{cases}$$

We claim that $\wedge \in \operatorname{Clo} \mathbf{A}$. $fx_1x_2x_2x_2 \in T_L(2)$; $\wedge = (fx_1x_2x_2x_2)^{\mathbf{A}}$:

$$(fx_1x_2x_2x_2)^{\mathbf{A}}(1,1) = f^{\mathbf{A}}(1,1,1,1) = 1.$$

The term $fx_2x_2x_1x_2$ also induces the function \wedge on $\{0, 1\}$.

The term $fx_2x_2x_1x_2$ also induces the function \wedge on $\{0, 1\}$. In general the map $t \mapsto t^A$ is not injective.

The term $fx_2x_2x_1x_2$ also induces the function \wedge on $\{0, 1\}$. In general the map $t \mapsto t^A$ is not injective. For $t \in T_I(\omega)$, |t| is the length of t as a word on $\{x_i \mid i \in \mathbb{N}\} \cup L$.

The term $fx_2x_2x_1x_2$ also induces the function \wedge on $\{0, 1\}$. In general the map $t \mapsto t^{\mathbf{A}}$ is not injective. For $t \in T_L(\omega)$, |t| is the length of t as a word on $\{x_i \mid i \in \mathbb{N}\} \cup L$. $t \in T_L(n)$ is frugal if t contains exactly one occurrence of each symbol x_1, \ldots, x_n . Short conjunctions

Let $A = (\{0, 1\}; L)$. Is there a frugal $t \in T_L(2)$ such that t^A is the Boolean conjunction?

Let A be an algebra with language L. To each $a \in A$ we associate a 0-ary functional symbol c_a .

Let A be an algebra with language L. To each $a \in A$ we associate a 0-ary functional symbol c_a .

 $L^* := L \cup \{c_{\mathfrak{a}} \mid \mathfrak{a} \in A\}.$

Let A be an algebra with language L. To each $a \in A$ we associate a 0-ary functional symbol c_a .

 $L^*:=L\cup\{c_{\mathfrak{a}}\mid \mathfrak{a}\in A\}.$

The polynomials of A on X are the elements of $\mathbf{T}_{L^*}(X)$. We write $T_{\mathbf{A}}(X)$ for the set of polynomials of A on X.

Let A be an algebra with language L. To each $a \in A$ we associate a 0-ary functional symbol c_a .

 $L^*:=L\cup\{c_{\mathfrak{a}}\mid \mathfrak{a}\in A\}.$

The polynomials of **A** on X are the elements of $\mathbf{T}_{L^*}(X)$.

We write $T_{\mathbf{A}}(X)$ for the set of polynomials of \mathbf{A} on X.

The polynomial operations of \mathbf{A} are the operations induced by the elements of $T_{\mathbf{A}}(\omega)$. They form a clone Pol \mathbf{A} .

Polynomials and polynomial operations

The map $f: \mathbb{Z}_2^2 \to \mathbb{Z}_2$ given by

$$(x_1, x_2) \mapsto 1 + x_1 + 0 - x_2 + x_1 + 0$$

is a polynomial operation of the group $\mathbf{G} = (\mathbb{Z}_2; +, -, 0).$

Short conjunctions

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let $f \colon \{0,1\}^n \to \{0,1\}$ be $f(a_1,\ldots,a_n) = \begin{cases} 0 & \text{ if } 0 \in \{a_1,\ldots,a_n\}\\ 1 & \text{ otherwise.} \end{cases}$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let $f: \{0, 1\}^n \to \{0, 1\}$ be $f(a_1, \dots, a_n) = \begin{cases} 0 & \text{ if } 0 \in \{a_1, \dots, a_n\} \\ 1 & \text{ otherwise.} \end{cases}$

Then for all $a_1, a_2 \in \{0, 1\}$: $f(a_1, a_2, \dots, a_2) = a_1 \wedge a_2$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let f: $\{0,1\}^n \to \{0,1\}$ be $f(a_1,\ldots,a_n) = \begin{cases} 0 & \text{if } 0 \in \{a_1,\ldots,a_n\}\\ 1 & \text{otherwise.} \end{cases}$ Then for all $a_1, a_2 \in \{0,1\}$: $f(a_1,a_2,\ldots,a_2) = a_1 \land a_2$ not frugal

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let $f: \{0,1\}^n \to \{0,1\}$ be $f(a_1,\ldots,a_n) = \begin{cases} 0 & \text{ if } 0 \in \{a_1,\ldots,a_n\} \\ 1 & \text{ otherwise.} \end{cases}$

Then for all $a_1, a_2 \in \{0, 1\}$: $f(a_1, a_2, \dots, a_2) = a_1 \land a_2$ and

 $f(a_1, a_2, 1, \ldots, 1) = a_1 \wedge a_2.$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let $f \colon \{0,1\}^n \to \{0,1\}$ be $f(a_1,\ldots,a_n) = \begin{cases} 0 & \text{ if } 0 \in \{a_1,\ldots,a_n\}\\ 1 & \text{ otherwise.} \end{cases}$

Then for all $a_1, a_2 \in \{0, 1\}$: $f(a_1, a_2, \dots, a_2) = a_1 \wedge a_2$ and

$$\underbrace{f(a_1, a_2, 1, \dots, 1)}_{\text{frugal}} = a_1 \wedge a_2.$$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let ${\bf A}=GF(2)$ and let $p\in {\sf T}_{{\bf A}}(4)=GF(2)[x_1,x_2,x_3,x_4]$ be $x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3^2+x_4^2$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let $\mathbf{A}=GF(2)$ and let $p\in\mathsf{T}_{\mathbf{A}}(4)=GF(2)[x_1,x_2,x_3,x_4]$ be

$$x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3^2 + x_4^2$$

Then for all $a_1, a_2 \in \{0, 1\}$

$$p^{\mathbf{A}}(a_1, a_2, a_2, a_2) = 3a_1a_2 + 4a_2^2 = a_1 \wedge a_2$$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let $\mathbf{A}=\mathsf{GF}(2)$ and let $p\in\mathsf{T}_{\mathbf{A}}(4)=\mathsf{GF}(2)[x_1,x_2,x_3,x_4]$ be

$$x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3^2 + x_4^2$$

Then for all $a_1, a_2 \in \{0, 1\}$

$$p^{A}(a_{1}, a_{2}, a_{2}, a_{2}) = 3a_{1}a_{2} + 4a_{2}^{2} = a_{1} \wedge a_{2}$$

not frugal

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let $\mathbf{A}=GF(2)$ and let $p\in\mathsf{T}_{\mathbf{A}}(4)=GF(2)[x_1,x_2,x_3,x_4]$ be

$$x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3^2 + x_4^2$$

Then for all $a_1, a_2 \in \{0, 1\}$

$$p^{\mathbf{A}}(a_1, a_2, a_2, a_2) = 3a_1a_2 + 4a_2^2 = a_1 \wedge a_2$$

and

$$p^{\mathbf{A}}(a_1, a_2, 0, 0) = a_1 a_2 + 0 = a_1 \wedge a_2.$$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Example

Let $\mathbf{A}=\mathsf{GF}(2)$ and let $p\in\mathsf{T}_{\mathbf{A}}(4)=\mathsf{GF}(2)[x_1,x_2,x_3,x_4]$ be

$$x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3^2 + x_4^2$$

Then for all $a_1, a_2 \in \{0, 1\}$

$$p^{\mathbf{A}}(a_1, a_2, a_2, a_2) = 3a_1a_2 + 4a_2^2 = a_1 \wedge a_2$$

and

$$\underbrace{p^{\mathbf{A}}(a_1, a_2, 0, 0)}_{\text{frugal}} = a_1 a_2 + 0 = a_1 \wedge a_2.$$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Proof by example

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Proof by example

 $\wedge \in \operatorname{Pol} \mathbf{A}$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Proof by example

$$\begin{split} \wedge \in \operatorname{Pol} \mathbf{A} \Rightarrow &\exists m \in \mathbb{N} \\ \exists s \in \mathsf{T}_{\mathbf{A}}(m) \text{ frugal} \\ \exists \tau \colon \{1, \dots, m\} \to \{1, 2\} \\ \forall a_1, a_2 \in \{0, 1\} \colon \end{split}$$

Theorem [Aichinger, R.]

Let $\mathbf{A} = (\{0, 1\}; L)$ and let us assume that $\wedge \in \operatorname{Pol} \mathbf{A}$. Then there exists a frugal $t \in T_{\mathbf{A}}(2)$ such that $t^{\mathbf{A}} = \wedge$.

Proof by example

$$\wedge \in \operatorname{Pol} \mathbf{A} \Rightarrow \exists m \in \mathbb{N}$$

$$\exists s \in \mathsf{T}_{\mathbf{A}}(\mathfrak{m}) \text{ frugal}$$

$$\exists \tau: \{1, \dots, m\} \rightarrow \{1, 2\}$$

$$\forall a_1, a_2 \in \{0, 1\}:$$

$$a_2 = s^{\mathbf{A}}(a_1(z), \dots, a_{n-1}(z)) = (s^{\mathsf{T}_{\mathbf{A}}(2)}(x_1(z), \dots, x_{n-1}(z)))^{\mathbf{A}}(a_1, a_2)$$

 a_1

Let m = 5, and $\tau = \{(1, 1), (2, 2), (3, 2), (4, 1), (5, 1)\}$. Then $a_1 \wedge a_2 = s^{\mathbf{A}}(a_1, a_2, a_2, a_1, a_1).$

Let m=5, and $\tau=\{(1,1),(2,2),(3,2),(4,1),(5,1)\}.$ Then $a_1\wedge a_2=s^{\bf A}(a_1,a_2,a_2,a_1,a_1).$

Equivalently

$$\begin{split} s^{\mathbf{A}}(0,0,0,0,0) &= 0\\ s^{\mathbf{A}}(0,1,1,0,0) &= 0\\ s^{\mathbf{A}}(1,0,0,1,1) &= 0\\ s^{\mathbf{A}}(1,1,1,1,1) &= 1 \end{split}$$

Let m=5, and $\tau=\{(1,1),(2,2),(3,2),(4,1),(5,1)\}.$ Then $a_1\wedge a_2=s^{\bf A}(a_1,a_2,a_2,a_1,a_1).$

Equivalently

$$s^{\mathbf{A}}(0, 0, 0, 0, 0) = 0$$

$$s^{\mathbf{A}}(0, 1, 1, 0, 0) = 0$$

$$s^{\mathbf{A}}(1, 0, 0, 1, 1) = 0$$

$$s^{\mathbf{A}}(1, 1, 1, 1, 1) = 1$$

We construct $\tilde{s} \in T_{\mathbf{A}}(\tilde{m})$ frugal and $\tilde{\tau}: \{1, \dots, \tilde{m}\} \rightarrow \{1, 2\}$ with

$$\begin{split} \tilde{\mathfrak{m}} &< \mathfrak{m}, \\ \wedge &= \left(\tilde{s}^{\mathbf{T}_{\mathbf{A}}(2)}(\boldsymbol{x}_{\tilde{\tau}(1)}, \dots, \boldsymbol{x}_{\tilde{\tau}(\tilde{\mathfrak{m}})}) \right)^{\mathbf{A}} \end{split}$$

Case 1: The negation is induced by a frugal polynomial

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1, w^{\mathbf{A}}(1) = 0$

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1$, $w^{\mathbf{A}}(1) = 0$

Case 1.1: $s^{\mathbf{A}}(0, 1, 1, 0, \mathbf{1}) = 1$ and $s^{\mathbf{A}}(0, 0, 0, 0, 1) = 0$: the last 0 of (0, 1, 1, 0, 0)

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1, w^{\mathbf{A}}(1) = 0$

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{0}, \mathbf{x}_1, \mathbf{x}_1, \mathbf{0}, \mathbf{x}_2)\right)^{\mathbf{A}}$$

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1) \colon w \text{ is frugal, } w^{\mathbf{A}}(0) = 1, w^{\mathbf{A}}(1) = 0$

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{0}, x_1, x_1, \mathbf{0}, x_2))^{\mathbf{A}}$$

$$1^{\text{st}} \ 0 \ \text{of} \ (0, 1, 1, 0, 0)$$

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1$, $w^{\mathbf{A}}(1) = 0$

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(0, x_1, x_1, \mathbf{0}, x_2)\right)^{\mathbf{A}}$$
 last but one 0 of (0, 1, 1, 0, 0

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1) \colon w \text{ is frugal, } w^{\mathbf{A}}(0) = 1, w^{\mathbf{A}}(1) = 0$

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(0, x_{1}, x_{1}, 0, x_{2}) \right)^{\mathbf{A}}$$

$$\text{last 0 of } (0, 1, 1, 0, 0)$$

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1$, $w^{\mathbf{A}}(1) = 0$

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(0, \mathbf{x}_{1}, \mathbf{x}_{1}, 0, \mathbf{x}_{2}))^{\mathbf{A}}$$

$$1s \text{ of } (0, 1, 1, 0, 0)$$

Case 1: The negation is induced by a frugal polynomial

$$\exists w \in \mathsf{T}_{\mathbf{A}}(\mathsf{1}) \colon w$$
 is frugal, $w^{\mathbf{A}}(\mathsf{0}) = \mathsf{1}, \, w^{\mathbf{A}}(\mathsf{1}) = \mathsf{0}$

Case 1.1: $s^{\mathbf{A}}(0, 1, 1, 0, 1) = 1$ and $s^{\mathbf{A}}(0, 0, 0, 0, 1) = 0$:

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{0}, \mathbf{x}_1, \mathbf{x}_1, \mathbf{0}, \mathbf{x}_2)\right)^{\mathbf{A}}$$

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{0}, w^{\mathbf{T}_{\mathbf{A}}(1)}(\mathbf{x}_1), w^{\mathbf{T}_{\mathbf{A}}(1)}(\mathbf{x}_1), \mathbf{0}, \mathbf{x}_2)\right)^{\mathbf{A}}$$

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1$, $w^{\mathbf{A}}(1) = 0$

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1, w^{\mathbf{A}}(1) = 0$

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(x_{2}, x_{1}, x_{1}, x_{2}, \mathbf{1}) \right)^{\mathbf{A}}$$
 last 0 of (0, 1, 1, 0, 0

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1$, $w^{\mathbf{A}}(1) = 0$

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{x}_{2}, x_{1}, x_{1}, x_{2}, 1)\right)^{\mathbf{A}}$$
 first 0 of (0, 1, 1, 0, 0)

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1$, $w^{\mathbf{A}}(1) = 0$

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(x_2, x_1, x_1, \mathbf{x_2}, 1))^{\mathbf{A}}$$
last but one 0 of (0, 1, 1, 0, 0

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in \mathsf{T}_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1, w^{\mathbf{A}}(1) = 0$

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(x_2, \mathbf{x}_1, \mathbf{x}_1, x_2, 1))^{\mathbf{A}} \\ 1 \text{ s of } (0, 1, 1, 0, 0)$$

Case 1: The negation is induced by a frugal polynomial

 $\exists w \in T_{\mathbf{A}}(1)$: w is frugal, $w^{\mathbf{A}}(0) = 1$, $w^{\mathbf{A}}(1) = 0$

Case 1.3: $s^{\mathbf{A}}(0, 1, 1, 0, 1) = s^{\mathbf{A}}(0, 0, 0, 0, 1) = 0$:

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\, \mathbf{x}_{2} \,,\, \mathbf{x}_{1}, \mathbf{x}_{1} \,,\, \mathbf{x}_{2} \,,\, \mathbf{1} \,)\right)^{\mathbf{A}}$$

$$\wedge = \left(w^{\mathbf{T}_{\mathbf{A}}(2)} \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{x}_{2}, w^{\mathbf{T}_{\mathbf{A}}(1)}(\mathbf{x}_{1}), w^{\mathbf{T}_{\mathbf{A}}(1)}(\mathbf{x}_{1}), \mathbf{x}_{2}, 1) \right) \right)^{\mathbf{A}}$$

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(0, x_2, x_2, x_1, x_1))^{\mathbf{A}}.$$

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{0}, x_2, x_2, x_1, x_1)\right)^{\mathbf{A}}.$$

$$1^{\text{st component}}$$

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(0, \mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{x}_{1}))^{\mathbf{A}}.$$

$$1s \text{ of } (0, 1, 1, 0, 0)$$

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(0, x_2, x_2, x_1, x_1))^{\mathbf{A}}.$$

0s of (0, 1, 1, 0, 0

Case 2: The negation is not induced by a frugal polynomial. **Case 2.1**: $s^{A}(0, 1, 1, 1, 1) = 1$:

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(0, x_2, x_2, x_1, x_1))^{\mathbf{A}}.$$

In fact $s^{A}(0,0,0,1,1) = 0$. Since, if $s^{A}(0,0,0,1,1) = 1$, then $s^{T_{A}(1)}(x_{1},0,0,1,1)$ would induce the negation and be frugal.

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{x}_2, \mathbf{0}, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_2)\right)^{\mathbf{A}}.$$

Case 2: The negation is not induced by a frugal polynomial. **Case 2.2**: $s^{A}(1,0,1,1,1) = 1$:

$$\wedge = \left(s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{x}_2, \mathbf{0}, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_2)\right)^{\mathbf{A}}.$$

In fact $s^{\mathbf{A}}(0,0,1,0,0) = 0$. Since, if $s^{\mathbf{A}}(0,0,1,0,0) = 1$, then $s^{\mathbf{T}_{\mathbf{A}}(1)}(0,x_1,1,0,0)$ would induce the negation and be frugal.

Case 2: The negation is not induced by a frugal polynomial. Case 2.3: $s^{A}(0, 1, 1, 1, 1) = s^{A}(1, 0, 1, 1, 1) = 0$:

Case 2: The negation is not induced by a frugal polynomial. Case 2.3: $s^{A}(0, 1, 1, 1, 1) = s^{A}(1, 0, 1, 1, 1) = 0$:

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(x_1, x_2, 1, 1, 1))^{\mathbf{A}}.$$

Case 2: The negation is not induced by a frugal polynomial. Case 2.3: $s^{A}(0, 1, 1, 1, 1) = s^{A}(1, 0, 1, 1, 1) = 0$:

$$\wedge = (s^{\mathbf{T}_{\mathbf{A}}(2)}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{1}, \mathbf{1}, \mathbf{1}))^{\mathbf{A}}.$$

Note that if $s^{\mathbf{A}}(0,0,1,1,1) = 1$, then $s^{\mathbf{T}_{\mathbf{A}}(1)}(x_1,0,1,1,1)$ would induce the negation and be frugal.

Applications to the study of the complexity of POLSAT A

The polynomial satifiability problem

The problem POLSAT(A) is the following search problem:

The polynomial satifiability problem

The problem $POLSAT(\mathbf{A})$ is the following search problem:

Given $p, q \in T_A(n)$ find $a \in A^n$ such that $p^A(a) = q^A(a)$.

The polynomial satifiability problem

The problem POLSAT(A) is the following search problem:

Given $p, q \in T_A(n)$ find $a \in A^n$ such that $p^A(a) = q^A(a)$.

The complexity parameter of $POLSAT(\mathbf{A})$ is $|\mathbf{p}| + |\mathbf{q}|$.

The Exponential Time Hypothesis

The exponential time hypothesis implies that there exists no sub-exponential time algorithm that solves 3SAT.

When is $\mathsf{PolSat}(\mathbf{A})$ not solvable in sub-exponential time

Theorem [Gorazd, Krzaczkowski, 2011]

Let A be an algebra on $\{0, 1\}$.

When is PolSat(A) not solvable in sub-exponential time

Theorem [Gorazd, Krzaczkowski, 2011] Let **A** be an algebra on $\{0, 1\}$. Clo **A** \Rightarrow POLSAT(**A**) in P.

When is PolSat(A) not solvable in sub-exponential time

Theorem [Gorazd, Krzaczkowski, 2011] Let A be an algebra on $\{0, 1\}$. Clo A \Rightarrow POLSAT(A) in P. Clo A \Rightarrow POLSAT(A) NP-complete.

When is PolSat(A) not solvable in sub-exponential time

Theorem [Aichinger, R.]

- Let A be an algebra on $\{0, 1\}$.
- $\underline{\operatorname{Clo} \mathbf{A}} \Rightarrow \operatorname{PolSat}(\mathbf{A}) \text{ in } \mathsf{P}.$

 $Clo \mathbf{A} \Rightarrow$ no sub-exponential time algorithm that solves $PolSAT(\mathbf{A})$ under ETH.

