Bounding the free spectrum of nilpotent algebras of prime power order

Erhard Aichinger

Institute for Algebra Johannes Kepler University Linz, Austria

Supported by the Austrian Science Fund FWF P 29931

Nilpotency

We will compare three properties of an algebra A.

(1) A is nilpotent.

(2) A is supernilpotent.

(3) A is finite and has **small free spectrum**.

All three properties are **equivalent** for finite **groups** and **rings**.

Small free spectrum

Definition 1. A finite algebra **A** has **small free spectrum** if $\exists p \in \mathbb{R}[x] \forall n \in \mathbb{N} : |Clo_n(\mathbf{A})| \leq 2^{p(n)}$.

- (1) $A = (\mathbb{Z}_2, +)$. Then $Clo_n(A) = 2^n$. Hence A has small free spectrum.
- (2) $\mathbf{A} = (\mathbb{Z}_2, +, *, 0, 1)$. Then $Clo_n(\mathbf{A}) = 2^{2^n}$. Hence \mathbf{A} has **no small free spectrum.**

Supernilpotency of expanded groups

A function $f : A^n \to A$ is **absorbing** if for all $x_1, \ldots, x_n \in A$: $0 \in \{x_1, \ldots, x_n\} \Rightarrow f(x_1, \ldots, x_n) = 0.$

Definition 2 (EA, Ecker, 2006). An expanded group A is **supernilpotent** if there is a $k \in \mathbb{N}$ such that for all n > k, 0 is the only *n*-ary absorbing polynomial function of A.

Example. A := $(\mathbb{Z}_4, +, 2xy)$. Then every $f \in \text{Pol}_n(A)$ can be written as

$$f(x_1,...,x_n) := a + \sum_{i=1}^n b_i x_i + 2 \sum_{i \le j} c_{i,j} x_i x_j.$$

"Hence" all 3-ary absorbing polynomial functions are 0 everywhere. Thus ${\bf A}$ is supernilpotent.

Supernilpotency of arbitrary algebras

Definition 3. A is 2-supernilpotent if for all vectors a_1 , b_1 , a_2 , b_2 , a_3 , b_3 from A and for all term functions f of A we have

$$\begin{cases} f(a_1, a_2, a_3) = f(a_1, a_2, b_3) \\ f(b_1, a_2, a_3) = f(b_1, a_2, b_3) \\ f(a_1, b_2, a_3) = f(a_1, b_2, b_3) \end{cases} \Rightarrow f(b_1, b_2, a_3) = f(b_1, b_2, b_3).$$

This is an **infinite set** of **quasi-identities**, which are equivalent to the **higher commutator identity** $[\alpha, \beta, \gamma] \approx 0$.

k-supernilpotent is defined in the same way. A supernilpotent $\Leftrightarrow \exists k \in \mathbb{N}$: A is *k*-supernilpotent.

Nilpotency

Defined through the **binary commutator operation**.

Definition 4. For ideals A, B of an expanded group V, the commutator [A, B] is the ideal of V generated by

 $\{p(a,b) \mid a \in A, b \in B, p \in \text{Pol}_2(\mathbf{V}), \forall v \in V : p(0,v) = p(v,0) = 0\}.$

For arbitrary algebras defined by the **commutator identity**

 $\exists k \in \mathbb{N} : [\dots [[\alpha_1, \alpha_2], \alpha_3], \dots, \alpha_{k+1}] \approx 0.$

Supernilpotency and small free spectrum

Theorem 5. A finite algebra in a cm variety is supernilpotent iff it has small free spectrum.

Proofs:

For **expanded groups**, use a combinatorial argument by G. Higman that connects the number of **absorbing polynomial functions** to the number of **polynomial functions** [EA, 2014].

In **cp varieties**, combine results by [Berman Blok, 1987], [Freese McKenzie, 1987], [Hobby McKenzie, 1988], [EA, Mudrinski, 2010].

Supernilpotency and small free spectrum

Theorem 5. A finite algebra in a cm variety is supernilpotent iff it has small free spectrum.

Proofs:

In **cm varieties**, use [Wires, arXiv 2017] to obtain that a finite snp algebra in a cm variety has a Mal'cev term.

Detailled discussion in [EA, Mudrinski, Opršal, arXiv 2017] and [EA, arXiv 2018].

Supernilpotency implies Nilpotency (?)

Theorem 6 (EA, Mudrinski, 2010). Every supernilpotent algebra in a cp variety is nilpotent.

Proof through the **nested commutators** property (HC8) $[\alpha_1, \ldots, \alpha_{i-1}, [\alpha_i, \ldots, \alpha_k]] \leq [\alpha_1, \ldots, \alpha_k].$

Theorem 7 (Wires, arXiv 2017). Every supernilpotent algebra in a cm variety is nilpotent.

Proof: By Theorem 4.11 of [Wires, arXiv 2017], every supernilpotent algebra in a cm variety has a Mal'cev term.

Supernilpotency implies Nilpotency

Theorem 8 (Kearnes, 1999, in a formulation justified by [Wires, arXiv 2017]). Every finite supernilpotent algebra in a cm variety is a direct product of nilpotent algebras of prime power order.

The following algebras are nilpotent and not supernilpotent:

• B = $(\mathbb{Z}_4, +, 2x_1x_2, 2x_1x_2x_3, ...)$ satisfies [[1, 1], 1] = 0and is nilpotent.

 $2x_1x_2...x_n$ is absorbing but not zero.

The following algebras are nilpotent and not supernilpotent:

• $S = (\mathbb{Z}_6, +, (-1)^x)$ has \equiv_2 as a central congruence, and is hence nilpotent. $f(x_1, \ldots, x_n) := \prod_{i=1}^n (1 - (-1)^{x_i})$ is absorbing, non zero, and polynomial because of

$$\prod_{i=1}^{n} (1-(-1)^{x_i}) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} \cdot (-1)^{\sum_{i \in I} x_i}$$

Comparison

In a cm variety, we have

- supernilpotent \Leftrightarrow small free spectrum (for finite A),
- supernilpotent \Rightarrow nilpotent,
- supernilpotent and finite \Rightarrow product of prime power order,
- nilpotent \Rightarrow supernilpotent,
- nilpotent \Rightarrow small free spectrum.

In a cm variety, we have

• nilpotent, finite type, finite, product of ppo algebras \Rightarrow small free spectrum [Blok, Berman, 1987].

For the rest of the talk, we will discuss this result.

Theorem 9 (Berman Blok, 1987). Let A be a finite nilpotent algebra of finite type in a congruence modular variety. If A is a direct product of algebras of prime power order, then A has small free spectrum.

Proof relies on:

- A generalization of Higman's combinatorial argument from groups to congruence uniform algebras.
- A bound on the length of **commutator terms** found by [Vaughan-Lee, 1983] and [Freese, McKenzie, 1987, Chapter 14]. Used in proving that such an A is **finitely based**.

Theorem 9 (Berman Blok, 1987). Let \mathbf{A} be a finite nilpotent algebra of finite type in a cm variety. If \mathbf{A} is a direct product of algebras of prime power order, then \mathbf{A} has small free spectrum.

Question: How small?

Theorem 10 (EA, arXiv 2018). Let A be in a cm variety, nilpotent, |A| = q prime power, all fundamental operations of arity $\leq m$. Let

$$h :=$$
 height of Con(A), and
 $s := (m(q-1))^{h-1}$.

Then

- A is *s*-supernilpotent.
- $\exists p \in \mathbb{R}[x]$: deg $(p) \leq s$ and $\forall n \in \mathbb{N}$: $|\mathsf{Clo}_n(\mathbf{A})| = 2^{p(n)}$.

Nilpotent, finite type, ppo \Rightarrow supernilpotent

Ingredients of the proof: Coordinatization

Theorem 11 (EA, arXiv 2018). A = (A; F) nilpotent algebra in a cp variety, p prime, $|A| = p^n$. Then there is + such that $A' = (A; F \cup \{+\})$ is still nilpotent, and $(A; +) \cong (\mathbb{Z}_p^n; +)$.

Proof: 5 pages.

Nilpotent, finite type, ppo \Rightarrow supernilpotent

Ingredients of the proof:

By the coordinatization result, we assume that

$$\mathbf{A} = (\mathsf{GF}(p^n); +, (f_i^{\mathbf{A}})_{i \in I})$$

with

$$f_i(x_1,\ldots,x_n) \in \mathsf{GF}(p^n)[x_1,\ldots,x_n].$$

We show that there is a bound on absorbing polynomials of $\ensuremath{\mathbf{A}}.$

Nilpotent, finite type, ppo \Rightarrow supernilpotent Key idea of the proof:

 $\mathbf{A} = (\mathsf{GF}(p^n); +, (f_i)_{i \in I}).$

We find $(h_j)_{j\in J}$ such that A is term equivalent to

 $\mathbf{A}' = (\mathsf{GF}(p^n); +, (h_j)_{j \in J})$ such that

- all h_j are absorbing,
- $Clo_A(\{h_j | j \in J\})$ generates Clo(A) as an additive group,
- we have a bound on the arity of h_j .

Nilpotent, finite type, ppo \Rightarrow supernilpotent

Ingredients of the proof:

 $\mathbf{A} = (\mathsf{GF}(p^n); +, (h_j)_{j \in J})$

 $g(x_1, x_2, x_3) = h_1(h_2(x_1, x_2), x_3)$

... bound on the arity because of nilpotency.

$$h(x_1 + x_2, x_3)$$

= $h(x_1 + x_2, x_3) - h(x_1, x_3) - h(x_2, x_3) + h(x_1, x_3) + h(x_2, x_3)$
= $h'(x_1, x_2, x_3) + h(x_1, x_3) + h(x_2, x_3)$

... every function is a sum of compositions of absorbing functions.

Nilpotent, finite type, ppo \Rightarrow supernilpotent

Technical simplification:

Work with polynomials over $GF(p^n)$ instead of functions: we then have monomials, degree, ... and

clones of polynomials, Couceiro-Foldes product of function sets, Associativity Lemma, decomposition of a polynomial into its **homovariate components**.

[9 pages]

Theorem 9 (Berman Blok, 1987). Let A be a finite nilpotent algebra of finite type in a cm variety. If A is a direct product of algebras of prime power order, then A has small free spectrum.

Question: How small? **Answer:** $2^{p(n)}$ with

 $\deg(p) \le (m(|A|-1))^{\log_2(|A|)-1},$

where *m* is the maximal arity of fundamental operations of A (if |A| > 1).

[EA, Bounding the free spectrum of nilpotent algebras of prime power order, *arXiv*, 2018]