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Nilpotency

We will compare three properties of an algebra A.

(1) A is nilpotent.

(2) A is supernilpotent.

(3) A is finite and has small free spectrum.

All three properties are equivalent for finite groups and

rings.



Small free spectrum

Definition 1. A finite algebra A has small free spectrum

if ∃p ∈ R[x] ∀n ∈ N : |Clon(A)| ≤ 2p(n).

(1) A = (Z2,+). Then Clon(A) = 2n. Hence A has small

free spectrum.

(2) A = (Z2,+, ∗,0,1). Then Clon(A) = 22n. Hence A has

no small free spectrum.



Supernilpotency of expanded groups

A function f : An → A is absorbing if for all x1, . . . , xn ∈ A:

0 ∈ {x1, . . . , xn} ⇒ f(x1, . . . , xn) = 0.

Definition 2 (EA, Ecker, 2006). An expanded group A is
supernilpotent if there is a k ∈ N such that for all n > k,
0 is the only n-ary absorbing polynomial function of A.

Example. A := (Z4,+,2xy). Then every f ∈ Pol n(A) can
be written as

f(x1, . . . , xn) := a+
n∑
i=1

bixi + 2
∑
i≤j

ci,j xixj.

“Hence” all 3-ary absorbing polynomial functions are 0 eve-
rywhere. Thus A is supernilpotent.



Supernilpotency of arbitrary algebras

Definition 3. A is 2-supernilpotent if for all vectors a1,

b1, a2, b2, a3, b3 from A and for all term functions f of A

we have

f(a1, a2, a3) = f(a1, a2, b3)
f(b1, a2, a3) = f(b1, a2, b3)
f(a1, b2, a3) = f(a1, b2, b3)

⇒ f(b1, b2, a3) = f(b1, b2, b3).

This is an infinite set of quasi-identities, which are equi-

valent to the higher commutator identity [α, β, γ] ≈ 0.

k-supernilpotent is defined in the same way.

A supernilpotent ⇔ ∃k ∈ N: A is k-supernilpotent.



Nilpotency

Defined through the binary commutator operation.

Definition 4. For ideals A,B of an expanded group V, the

commutator [A,B] is the ideal of V generated by

{p(a, b) | a ∈ A, b ∈ B, p ∈ Pol 2(V), ∀v ∈ V : p(0, v) = p(v,0) = 0}.

For arbitrary algebras defined by the commutator identity

∃k ∈ N : [. . . [[α1, α2], α3], . . . , αk+1] ≈ 0.



Supernilpotency and small free spectrum

Theorem 5. A finite algebra in a cm variety is supernilpo-
tent iff it has small free spectrum.

Proofs:

For expanded groups, use a combinatorial argument by
G. Higman that connects the number of absorbing poly-
nomial functions to the number of polynomial functions
[EA, 2014].

In cp varieties, combine results by [Berman Blok, 1987],
[Freese McKenzie, 1987], [Hobby McKenzie, 1988], [EA,
Mudrinski, 2010].



Supernilpotency and small free spectrum

Theorem 5. A finite algebra in a cm variety is supernilpo-

tent iff it has small free spectrum.

Proofs:

In cm varieties, use [Wires, arXiv 2017] to obtain that a

finite snp algebra in a cm variety has a Mal’cev term.

Detailled discussion in [EA, Mudrinski, Opřsal, arXiv 2017]

and [EA, arXiv 2018].



Supernilpotency implies Nilpotency (?)

Theorem 6 (EA, Mudrinski, 2010). Every supernilpotent

algebra in a cp variety is nilpotent.

Proof through the nested commutators property (HC8)

[α1, . . . , αi−1, [αi, . . . , αk]] ≤ [α1, . . . , αk].

Theorem 7 (Wires, arXiv 2017). Every supernilpotent al-

gebra in a cm variety is nilpotent.

Proof: By Theorem 4.11 of [Wires, arXiv 2017], every su-

pernilpotent algebra in a cm variety has a Mal’cev term.



Supernilpotency implies Nilpotency

Theorem 8 (Kearnes, 1999, in a formulation justified by

[Wires, arXiv 2017]). Every finite supernilpotent algebra in

a cm variety is a direct product of nilpotent algebras of

prime power order.



On the implication Nilpotency ⇒ Supernilpotency

The following algebras are nilpotent and not supernilpo-

tent:

• B = (Z4,+,2x1x2,2x1x2x3, . . .) satisfies [[1,1],1] = 0

and is nilpotent.

2x1x2 . . . xn is absorbing but not zero.



On the implication Nilpotency ⇒ Supernilpotency

The following algebras are nilpotent and not supernilpo-

tent:

• S = (Z6,+, (−1)x) has ≡2 as a central congruence,

and is hence nilpotent.

f(x1, . . . , xn) :=
∏n
i=1(1−(−1)xi) is absorbing, non zero,

and polynomial because of

n∏
i=1

(1− (−1)xi) =
∑

I⊆{1,...,n}
(−1)|I| · (−1)

∑
i∈I xi .



Comparison

In a cm variety, we have

• supernilpotent ⇔ small free spectrum (for finite A),

• supernilpotent ⇒ nilpotent,

• supernilpotent and finite ⇒ product of prime power
order,

• nilpotent 6⇒ supernilpotent,

• nilpotent 6⇒ small free spectrum.



On the implication Nilpotency ⇒ Supernilpotency

In a cm variety, we have

• nilpotent, finite type, finite, product of ppo algebras ⇒
small free spectrum [Blok, Berman, 1987].

For the rest of the talk, we will discuss this result.



On the implication Nilpotency ⇒ Supernilpotency

Theorem 9 (Berman Blok, 1987). Let A be a finite nilpo-
tent algebra of finite type in a congruence modular variety.
If A is a direct product of algebras of prime power order,
then A has small free spectrum.

Proof relies on:

• A generalization of Higman’s combinatorial argument
from groups to congruence uniform algebras.

• A bound on the length of commutator terms found
by [Vaughan-Lee, 1983] and [Freese, McKenzie, 1987,
Chapter 14]. Used in proving that such an A is finitely
based.



On the implication Nilpotency ⇒ Supernilpotency

Theorem 9 (Berman Blok, 1987). Let A be a finite nilpo-

tent algebra of finite type in a cm variety. If A is a direct

product of algebras of prime power order, then A has small

free spectrum.

Question: How small?



On the implication Nilpotency ⇒ Supernilpotency

Theorem 10 (EA, arXiv 2018).

Let A be in a cm variety, nilpotent, |A| = q prime power,

all fundamental operations of arity ≤ m. Let

h := height of Con (A), and
s := (m(q − 1))h−1.

Then

• A is s-supernilpotent.

• ∃p ∈ R[x] : deg(p) ≤ s and ∀n ∈ N : |Clon(A)| = 2p(n).



Nilpotent, finite type, ppo ⇒ supernilpotent

Ingredients of the proof: Coordinatization

Theorem 11 (EA, arXiv 2018).

A = (A;F ) nilpotent algebra in a cp variety, p prime,

|A| = pn.

Then there is + such that A′ = (A;F ∪ {+}) is still nilpo-

tent, and (A; +) ∼= (Zpn; +).

Proof: 5 pages.



Nilpotent, finite type, ppo ⇒ supernilpotent

Ingredients of the proof:

By the coordinatization result, we assume that

A = (GF(pn); +, (fAi )i∈I)

with

fi(x1, . . . , xn) ∈ GF(pn)[x1, . . . , xn].

We show that there is a bound on absorbing polynomials

of A.



Nilpotent, finite type, ppo ⇒ supernilpotent

Key idea of the proof:

A = (GF(pn); +, (fi)i∈I).

We find (hj)j∈J such that A is term equivalent to

A′ = (GF(pn); +, (hj)j∈J) such that

• all hj are absorbing,

• CloA({hj|j ∈ J}) generates Clo(A) as an additive group,

• we have a bound on the arity of hj.



Nilpotent, finite type, ppo ⇒ supernilpotent

Ingredients of the proof:

A = (GF(pn); +, (hj)j∈J)

g(x1, x2, x3) = h1(h2(x1, x2), x3)

... bound on the arity because of nilpotency.

h(x1 + x2, x3)

= h(x1+x2, x3)−h(x1, x3)−h(x2, x3)+h(x1, x3)+h(x2, x3)

= h′(x1, x2, x3) + h(x1, x3) + h(x2, x3)

... every function is a sum of compositions of absorbing

functions.



Nilpotent, finite type, ppo ⇒ supernilpotent

Technical simplification:

Work with polynomials over GF(pn) instead of functions:

we then have monomials, degree, ... and

clones of polynomials, Couceiro-Foldes product of function

sets, Associativity Lemma, decomposition of a polynomial

into its homovariate components.

[9 pages]



On the implication Nilpotency ⇒ Supernilpotency

Theorem 9 (Berman Blok, 1987). Let A be a finite nilpo-
tent algebra of finite type in a cm variety. If A is a direct
product of algebras of prime power order, then A has small
free spectrum.

Question: How small? Answer: 2p(n) with

deg(p) ≤ (m(|A| − 1))log2(|A|)−1,

where m is the maximal arity of fundamental operations of
A (if |A| > 1).

[EA, Bounding the free spectrum of nilpotent algebras of
prime power order, arXiv, 2018]


