Clonoids

Erhard Aichinger

Institute for Algebra Johannes Kepler University Linz, Austria

Supported by the Austrian Science Fund FWF P 29931

The origin of the word "clonoids"

In 2009, EA & Peter Mayr & Ralph McKenzie proved:

• Every finite algebra with a Mal'cev term is finitely related.

•
$$C$$
 clone on a finite set A , C contains an edge term $\Rightarrow \exists n \in \mathbb{N}, \rho \subseteq A^n : C = \text{Pol}(\{\rho\}).$

• Let $k \in \mathbb{N}$, A finite set,

 $\mathcal{C}_k := \{ C \mid C \text{ clone on } A \text{ with } k\text{-edge term} \}.$ Then $(\mathcal{C}_k, \subseteq) \models (\mathsf{DCC}).$

(DCC) yields finitely related

Proposition 1. Let A be a finite set, C clone on A. If $({D \mid D \text{ clone on } A, C \subseteq D}, \subseteq)$ has (DCC), then C is finitely related.

Proof: Pol $Inv^{[1]}C \supseteq Pol Inv^{[2]}(C) \supseteq Pol Inv^{[3]}(C) \supseteq \cdots$ becomes constant after N steps. Then $C = Pol Inv^{[N]}C$.

Inner working of the "Finite relatedness"-proof

Let C be a clone on the finite set A.

(1) Encode clones by forks:

- Order A linearly, and A^n lexicographically.
- Forks $(C, x) := \{(f_1(x), f_2(x)) | f_1, f_2 \in C, \forall z < x : f_1(z) = f_2(z)\}.$

(2) Recover clone from forks:

Lemma 2 (Fork lemma). **Suppose:** *C* has Mal'cev operation, $C \subseteq D$, $\forall x \in A^*$: Forks(C, x) = Forks(D, x). **Then** C = D.

Inner working of the "Finite relatedness"-proof

- There is a connection between forks of different arity.
- Use: if $f \in C^{[19]}$, then

 $((x_1, x_2, x_3, x_4, x_5, x_6) \mapsto f(x_1, x_1, x_2, x_1, x_3, x_1, x_3, x_4, x_4, x_3, x_1, x_4, x_5, x_1, x_4, x_4, x_6, x_4, x_4)) \in C^{[6]}.$

This implies Forks(C, aabcca) ⊇ Forks(C, <u>aaaababccbaccaccaccacc</u>)
 for all a, b, c ∈ A. (= Embedded forks lemma).

Analysis of the proof

Where do we use:

- Mal'cev/edge term? Allows translation from forks to clones via Fork Lemma.
- clones are closed under ∇ (cylindrification), Δ (identification), ζ , τ (permutation)? Allows to use Embedded Forks Lemma.
- clones are closed under * (composition)? NOT USED AT ALL!

Finitely generated varieties

Theorem 3 (EA, Peter Mayr, 2014). Let A be a finite algebra with edge term, $W \leq V(A)$. Then $\exists B: W = V(B)$ and B finite.

Idea of the proof: W is determined by its equational theory Th(W).

The equational theory as a set of functions

 $\mathsf{Th}(W) = \{(s,t) \mid n \in \mathbb{N}, s, t \text{ } n\text{-ary terms}, W \models s \approx t\}.$

Inside A:

$$\begin{array}{l} \mathsf{Th}_{\mathbf{A}}(W) = \{ a \mapsto \left(\begin{array}{c} s^{\mathbf{A}}(a) \\ t^{\mathbf{A}}(a) \end{array} \right) \mid n \in \mathbb{N}, \, s,t \, n \text{-ary terms}, \, W \models \\ s \approx t \}. \end{array}$$

 $\mathsf{Th}_{\mathbf{A}}(V(\mathbf{A})) = \{(c,c) \mid c \in \mathsf{Clo}(\mathbf{A})\}\$

 $\mathsf{Th}_{\mathbf{A}}(\mathsf{Mod}(\mathsf{x} \approx \mathsf{y})) = \{(c, d) \mid n \in \mathbb{N}, c, d \in \mathsf{Clo}_n(\mathbf{A})\}.$

Finitely generated varieties

 $\Phi: W \mapsto \mathsf{Th}_{\mathbf{A}}(W)$ is **injective** and **order reverting**. What is the image of Φ ?

Definition 4 (Clonoids; EA, Mayr, JPAA 2016). Let B be an algebra, $A \neq \emptyset$. For a subset C of $\bigcup_{n \in \mathbb{N}} B^{A^n}$ and $k \in \mathbb{N}$, we let $C^{[k]} := C \cap B^{A^k}$. We call C a **clonoid with source set** A **and target algebra** B if

(1) for all $k \in \mathbb{N}$: $C^{[k]} \leq \mathbf{B}^{A^k}$,

(2) for all
$$k, n \in \mathbb{N}$$
, $(i_1, \dots, i_k) \in \{1, \dots, n\}^k$, $c \in C^{[k]}$,
 $((a_1, \dots, a_n) \mapsto c(a_{i_1}, \dots, a_{i_k})) \in C^{[n]}$.

Closed sets of finitary functions

Definition 5 (Composition, Miguel Couceiro and Stephan Foldes, Acta Cybernetica 2007). Fin $(A, B) := \bigcup_{n \in \mathbb{N}} B^{A^n}$ $X \subseteq Fin(A, B), Y \subseteq Fin(B, C)$ $YX := \{g(f_1, \dots, f_n) \mid m, n \in \mathbb{N}, g \in Y^{[n]}, f_1, \dots, f_n \in X^{[m]}\}.$

Lemma 6 (Associativity Lemma, Couceiro & Foldes). Let J be the projection clone. Then $(XY)Z \subseteq X(YZ) \subseteq (X(YJ))Z$. Names of closed sets of finitary functions

Definition 7. $X \subseteq Fin(A, A)$ is a

- clone $\Leftrightarrow J \subseteq X$, $XX \subseteq X$.
- iterative algebra (Harnau) $\Leftrightarrow X(J \cup X) \subseteq X$ and $X \neq \emptyset$.

Other flowers in the garden $\mathcal{P}(Fin(A, A))$:

- rose $\Leftrightarrow XJ \subseteq X$, $XX \subseteq X$,
- daisy $\Leftrightarrow XX \subseteq X$,
- iris $\Leftrightarrow XX \subseteq X$ and closed under τ, ζ, ∇ .

On the group S_3 , $X := \{x \mapsto [x_i, x_j] | i, j \in \mathbb{N}\}$ is a rose, but not an iterative algebra, since $[[x_1, x_2], x_3] = [x_1, x_2] *$ $[x_1, x_2]$ is in $X(X \cup J)$, but not in XX. **Definition 8.** Let $A \neq \emptyset$, **B** an algebra. $C \subseteq Fin(A, B)$ is a **clonoid** \Leftrightarrow $Clo(B) C \subseteq C$, $CJ_A \subseteq C$.

Relational description of clonoids: (Couceiro, Foldes, Discuss. Math. Gen. Algebra Appl. 29 (2009)).

- dual objects: relational pairs (R,S) with $S \subseteq A$, $S \leq \mathbf{B}^n$,
- closure of dual objects: (*J_A*, Clo(B))-conjunctive minors.

Finiteness result for clonoids

Theorem 9 (EA, Peter Mayr, JPAA 2016). Let A be a finite set, **B** a finite algebra with edge term. Let C be the set of clonoids with source A and target algebra **B**. Then (C, \subseteq) has the (DCC).

Corollaries:

- Finite algebras with edge term are finitely related.
- Subvarieties of f.g. varieties with edge term are f.g.

Further consequences of "DCC for subclonoids"

• Every iterative algebra on a finite algebra that is closed under an edge term is determined by one finite relation pair (*R*, *S*).

Clonoids in the description of clones

Goal: Describe all clones on $(\mathbb{Z}_p \times \mathbb{Z}_q)$ that contain +.

Results:

- In the case p = q all *constantive* clones have been determined by Andrei Bulatov (there are infinitely many).
- In the case $p \neq q$ all *constantive* clones have been determined by Peter Mayr & EA (there are 17).

Clonoids inside clones

Let C be a clone on
$$\mathbb{Z}_q \times \mathbb{Z}_p$$
.
 $D := \{f : \mathbb{Z}_q^* \to \mathbb{Z}_p \mid (x, y) \mapsto (0, f(y)) \in C\}.$
 $L_q := \operatorname{Clo}(\mathbb{Z}_q, +), \ L_p := \operatorname{Clo}(\mathbb{Z}_p, +).$
Then $L_p(DL_q) \subseteq D.$

Hence D is a clonoid from \mathbb{Z}_p to $(\mathbb{Z}_q, +)$ because $L_p(DJ) \subseteq D$.

Definition 10. D is a (p,q)-linearly closed clonoid from \mathbb{Z}_p to $(\mathbb{Z}_q, +) :\iff L_p(DL_q) \subseteq D$.

Present + Future

The description of (p,q)-closed linearly closed clonoids is useful for:

- Describe all clones on \mathbb{Z}_p with +.
- Describe all clones on $\mathbb{Z}_p \times \mathbb{Z}_q$ with +.
- Provide examples of a finite set with infinitely many nonfinitely generated Mal'cev clones.

Parts of this program have been realized by Sebastian Kreinecker and Stefano Fioravanti.