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Introduction



Problem

We will assume that (G, ·) is a finite group.
Definition (Horváth and Szabó 2006)
Given polynomials p1, . . . , pr, q1, . . . , qr over G we want to decide if
there is an x = (x1, . . . , xn) ∈ Gn such that

pi(x) = qi(x), for all i = 1, . . . , r.

We write POLSYSSAT(G) for short. If r = 1 we write POLSAT(G).

What is a polynomial over G? Each polynomial p over G is of the form

p = w1 · w2 · · ·ws where wj ∈ G ∪ {x1, . . . , xn} ∪ {x−1
1 , . . . , x−1

n }.

Hence we can assume that qi(x) = 1, i.e. our system is given as

pi(x) = 1, for all i = 1, . . . , r.

We ask: For which groups G is POLSYSSAT(G) ∈ P and for which
POLSAT(G) ∈ P?
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Examples

Some examples of polynomial equations include:

• (Z8,+):
2 + 3x1 + 5x2 + 7x3 = 0,

• (D4, ·) with a4 = b2 = 1 (so |D4| = 8):

a · a · x1 · x1 · b · x−1
2 · b · a = x−1

3 · b,

• (S3, ◦):

x ◦
(

1 3 2
)
◦ x−1 ◦

(
1 2 3

)
=

(
1 2 3

)
,

• (S5, ◦):

x1 ◦
(

1 5
)
◦ x2 ◦

(
1 3 5

)
◦
(

2 3
)
=

(
1
)
.
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Goal of today

Goldmann and Russell proved two important theorems:

Theorem 1 (Goldmann and Russell 1999, Thm. 1+2)
If G is an abelian group, then POLSYSSAT(G) ∈ P and
POLSYSSAT(G) ∈ NPC otherwise.

Theorem 2 (Goldmann and Russell 1999, Thm. 10 + Cor. 12)
If G is a nilpotent group, then POLSAT(G) ∈ P and if G is not solvable
then POLSAT(G) ∈ NPC.
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System of Equations



Solving systems over abelian groups

As a first step we will show:

Theorem 1 (part 1, (Goldmann and Russell 1999, Thm. 1))
If G is an abelian group, then POLSYSSAT(G) ∈ P.

Proof: Every finite abelian group G can be written as

G ∼= Zn1 ⊕ · · · ⊕ Znl .

Want to solve system pi(x1, . . . , xn) = 0 for i = 1, . . . , r with polynomials
pi over G. Instead of solving the system over G we can rewrite it as l
individual systems over Znk . Hence we only consider the case Zm. Over
Zm we can solve a system using (essentially) Gaussian elimination.
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Solving systems over Zm

For a polynomial p̃i over Zm we can write:

p̃i(x1, . . . , xn) = p(1)
i x1 + · · ·+ p(n)

i xn − p(0)
i .

Hence the system p̃i(x1, . . . , xn) = 0 is equivalent to

(aij)
r,n
i,j=1x := Ax :=


p(1)

1 . . . p(n)
1

...
...

p(1)
r . . . p(n)

r




x1
...

xn

 =


p(0)

1
...

p(0)
r

 =: b =: (bi)
r
i=1.

We do not change the satisfiablity of the system if we:

• Interchange rows of A: Reordering equations.
• Interchange columns of A: Reordering variables.
• Adding multiple of row to different row.
• Adding multiple of column to different column.
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Algorithm

For computing a diagonal form of the matrix using these operations do:

1. Find a nonzero minimal entry aij of A.
2. Reduce all entries in row i and column j.
3. If all entries in row i and column j (except aij) are zero, then swap

row i with row 1 and column j with column 1 and proceed with step
1 with the submatrix arising by removing the first row and first
column.

4. Otherwise we have created an element which is smaller than aij.
Again proceed with step 1 with the whole matrix.

The elements in the matrix get strictly smaller, so the algorithm
terminates. It has polynomial complexity O(rnmin(r, n)).

Hence in total POLSYSSAT(Zn) ∈ P, so POLSYSSAT(G) ∈ P for abelian
groups G.

6



NP-completeness

The more difficult part of Theorem 1 will be:

Theorem 1 (part 2)
If G is an not abelian, then POLSYSSAT(G) is NP complete.

How can one show NP-completeness? (Polynomially) reduce a problem
which is known to be NP-complete to the problem for which we want to
show NP-completeness. Here: Graph-Colorability.
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Graph-colorability

Theorem (Karp 1972)
Given a graph G and k ≥ 3 different colors. The problem of deciding if
there is a color for each vertex of G such that two vertices which are
connected by an edge do not have the same color is NP-complete.

Figure 1: Source: Wikimedia Commons (David Eppstein),
https://commons.wikimedia.org/wiki/File:Triangulation_3-coloring.svg
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Small groups

order abelian groups non-abelian groups
1 Z1
2 Z2
3 Z3
4 Z4,Z2 × Z2
5 Z5
6 Z6 D3 ∼= S3
7 Z7
8 Z8,Z2 × Z4,Z2 × Z2 × Z2 D4,Q8
9 Z9,Z3 × Z3
10 Z10 D5
11 Z11
12 Z12,Z2 × Z6 D6,A4,T
13 Z13
14 Z14 D7
15 Z15

Table 1: Hungerford 2003
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POLSYSSAT(S3)

To prove that POLSYSSAT(G) is NP-complete for non-abelian groups G
we use induction on order of the groups. Smallest non-abelian group is
S3.

Lemma (Goldmann and Russell 1999, Thm. 3)
POLSYSSAT(S3) is NP-complete.

Proof: We will show that coloring a graph with 6 colors can be reduced
to POLSYSSAT(S3). Every element in S3 corresponds to a color (6 colors
total). With each vertex i in the graph we associate a variable xi. For
each edge (i, j) in the graph we introduce two variables yij, zij and the
equation

yij xi x−1
j zij xj x−1

i z−1
ij y−1

ij =
(

1 2 3
)
.
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POLSYSSAT(S3)

If the coloring is legal, then for every edge (i, j) we have
α := xix−1

j ̸=
(

1
)

. The equation

yij αzij α
−1 z−1

ij y−1
ij =

(
1 2 3

)
has a solution if and only if α is not the identity:

α zij yij α zij yij(
1 2

) (
1 2 3

) (
1
) (

1 2 3
) (

2 3
) (

2 3
)(

1 3
) (

1 2 3
) (

1
) (

1 3 2
) (

2 3
) (

1
)(

2 3
) (

1 2 3
) (

1
)

Hence we have reduced the problem of coloring a graph to the problem of
solving a system of equations over S3. If we can solve the system of
equations over S3 we can color the graph. Therefore
POLSYSSAT(S3) ∈ NPC.
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Inducible subgroups

Having the base-case S3 settled we will introduce some more concepts
before we will prove the general result.
Definition (Goldmann and Russell 1999, Def. 1)
A subset H ⊆ G is called inducible if there is a polynomial p over G
such that

H = Im(p) = {p(g1, . . . , gn) : g1, . . . , gn ∈ G}.

Inducible subgroups have the nice property that NP completeness carries
over to the larger group. Namely:
Lemma (Goldmann and Russell 1999, Lemma 4)
Let H be an inducible subgroup of G.

1. If POLSYSSAT(H) ∈ NPC, then POLSYSSAT(G) ∈ NPC.
2. If H is a normal subgroup of G and POLSYSSAT(G/H) ∈ NPC, then

POLSYSSAT(G) ∈ NPC. 12



Proof complexity of inducible subgroups

Proof of POLSYSSAT(H) ∈ NPC =⇒ POLSYSSAT(G) ∈ NPC:

Since H is inducible there exists a polynomial p(x1, . . . , xn) over G such
that H = Im(p). Given an equation

w1 · w2 · · ·ws = 1 over H with wi ∈ H ∪ {y1, . . . , ym} ∪ {y−1
1 , . . . , y−1

m }

we can replace every occurrence of yi with p(x(i)1 , . . . , x(i)n ) where x(i)j are
new variables over G and every occurrence of y−1

i with p(x(i)1 , . . . , x(i)n )−1.
Then we have a new equation over G which can be satisfied if and only if
the original one can be satisfied.
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Proof complexity of inducible subgroups

Proof of POLSYSSAT(G/H) ∈ NPC =⇒ POLSYSSAT(G) ∈ NPC:

Now an equation over G/H looks like

(w1 · w2 · · ·ws)H = w1H · w2H · · ·wsH = H

with wi ∈ G ∪ {y1, . . . , ym} ∪ {y−1
1 , . . . , y−1

m } which we can rewrite as

w1 · w2 · · ·ws = p(x1, . . . , xn)

and
w1 · w2 · · ·ws · p(x1, . . . , xn)

−1 = 1

over G for new variables x1, . . . , xn.
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Commutators

Definition
For two elements a, b ∈ G we write

[a, b] := aba−1b−1

and call [a, b] a commutator.

For two subsets A,B ⊆ G we write

[A,B] := {[a, b] = aba−1b−1 : a ∈ A, b ∈ B}

and (A,B) = ⟨[A,B]⟩ for the group generated by the commutators [a, b]
and call (A,B) a commutator subgroup.

In particular (G,G) is the commutator subgroup of G. In fact (G,G) is
the smallest subgroup of G such that G/(G,G) is abelian. Furthermore
(G,G) = {1} if and only if G is abelian.
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Commutator subgroup

Lemma (Goldmann and Russell 1999, Lemma 5)
(G,G) ⊆ G is inducible.

Reminder: [a, b] = aba−1b−1 and (G,G) = ⟨{[a, b] : a, b ∈ G}⟩.

Proof: Every element g ∈ (G,G) can be written as

g = [a1, b1][a2, b2] · · · [am, bm].

Since G is finite and [a, a] = 1 we have a fixed m ∈ N such that

(G,G) = {[a1, b1][a2, b2] · · · [am, bm] : ai, bi ∈ G}.

Hence we can choose the polynomial

p(x1, y1, . . . , xm, ym) := [x1, y1][x2, y2] · · · [xm, ym].

This p induces (G,G), i.e. p(G2m) = (G,G).
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Commutator facts

Later we will need the commutator subgroups

(a,G) := ({a},G) = {[a, g1][a, g2] · · · [a, gm] : gi ∈ G}.

Lemma (Goldmann and Russell 1999, Lemma 6)
Let a ∈ G. Then

1. (a,G) ⊆ (G,G),
2. (a,G) is inducible and
3. (a,G) is normal in G.

Proof of (a,G) ⊆ (G,G): For

[a, g1][a, g2] · · · [a, gm] ∈ (a,G)

we also have
[a, g1][a, g2] · · · [a, gm] ∈ (G,G).
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Commutator facts

Proof of (a,G) inducible: We can choose the polynomial

p(x1, . . . , xm) := [a, x1][a, x2] · · · [a, xm],

then p(Gm) = (a,G).

Proof of (a,G) normal: Since (a,G) = ⟨{[a, g] : g ∈ G}⟩, it is sufficient
to show b[a, g]b−1 ∈ (a,G) for all g, b ∈ G. This follows as

b[a, g]b−1 = b(aga−1g−1)b−1 = (ba b−1a−1)(ab︸ ︷︷ ︸
=1

ga−1g−1b−1)

= (aba−1b−1)−1(abga−1g−1b−1) = [a, b]−1[a, bg].

As (a,G) is a subgroup [a, b]−1 ∈ (a,G), so b[a, g]b−1 ∈ (a,G) and (a,G)
is normal in G.

18



Commutator simple

Definition
We call

Z(G) := {g ∈ G : gh = hg for all h ∈ G}

the center of G.

Definition (Goldmann and Russell 1999, Def. 3)
We call G commutator simple if for all a /∈ Z(G) we have
(G,G) = (a,G).

The last Lemma we need before we can finish the proof that
POLSYSSAT(G) ∈ NPC for non-abelian G:

Lemma (Goldmann and Russell 1999, Lemma 7)
Let G be a non-abelian commutator simple group. Then
POLSYSSAT(G) ∈ NPC.
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Commutator simple

Proof: If G is non-abelian, then G/Z(G) is not cyclic. Therefore G/Z(G)
contains at least four elements, we will write k = |G/Z(G)|. Again we
reduce the colorability of a graph with k colors to solving systems over
G/Z(G). For every vertex v in the graph we introduce a variable xv. Then
xvZ(G) ∈ G/Z(G) will determine the color of v. So two vertices v,w will
have the same color if and only if xvx−1

w ∈ Z(G).

If xvx−1
w /∈ Z(G), then (xvx−1

w ,G) = (G,G) as G is commutator simple.

Otherwise if xvx−1
w ∈ Z(G), then for all g ∈ G we have

[xvx−1
w , g] = xvx−1

w gxwx−1
v g−1 = gxvx−1

w xwx−1
v g−1 = 1,

so (xvx−1
w ,G) = {1}.
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Commutator simple

There is a constant m ∈ N such that

(a,G) = {[a, g1][a, g2] · · · [a, gm] : gi ∈ G}.

Let 1 ̸= b ∈ (G,G). This b exists as G is not abelian. Than for every
edge e = (v,w) in the graph we introduce the equation

[xvx−1
w , se

1] · · · [xvx−1
w , se

m] = b

over G where the se
i are new variables.

If this system has a solution, then xvx−1
w /∈ Z(G), because if

xvx−1
w ∈ Z(G), then b /∈ (xvx−1

w ,G) = {1}. So in this case we have legal
coloring with k ≥ 4 colors.

On the other hand, if it has a legal coloring, i.e. xvx−1
w /∈ Z(G), then we

can find a solution of the system since in this case (xvx−1
w ,G) = (G,G).

So we have reduced the colorability problem of a graph to the problem of
solving a system of equations over G, so POLSYSSAT(G) ∈ NPC.
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Solving systems over non-abelian groups

Theorem 1 (part 2, Goldmann and Russell 1999, Thm. 2)
If G is an not abelian, then POLSYSSAT(G) is NP complete.

Proof: By Induction over the group order. For the smallest non-abelian
group S3 we have already shown it.

So assume that the theorem holds for all non-abelian groups of order
n − 1 or less and let G be a non-abelian group of order n. If G is
commutator simple, the previous lemma has shown that
POLSYSSAT(G) ∈ NPC.

So we assume that G is not commutator simple. Hence there exists
a ∈ G − Z(G) with (a,G) ( (G,G). Then (a,G) is nontrivial, because if
[a, g] = 1 for every g ∈ G, then a ∈ Z(G), a contradiction.

Then G/(a,G) is non-abelian as (a,G) ( (G,G). As |G/(a,G)| < n we
have POLSYSSAT(G/(a,G)) ∈ NPC by induction. Since (a,G) is a normal
inducible subgroup of G by a previous Lemma we have
POLSYSSAT(G) ∈ NPC. 22



Single Equation



Single equation

Theorem 2
If G is a nilpotent group, then POLSAT(G) ∈ P and if G is not solvable
then POLSAT(G) ∈ NPC.

Before we can look at the proof we need to understand what nilpotent
and solvable groups are.
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Nilpotent groups

Definition
Let G0 := G and

Gi+1 := (G,Gi) = ⟨{[g, h] = ghg−1h−1 : g ∈ G, h ∈ Gi}⟩

for i ≥ 0. Then G is called nilpotent if Gn = {1} for some n ∈ N.

The groups Gi form the lower central series.

Abelian groups are nilpotent as G1 = (G,G) = {1}.

Let p ∈ P be a prime. A group of order pn is nilpotent (and called a
p-group). Since |D4| = 8 = 23, the group D4 is nilpotent. However, it is
not abelian!
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Solvable groups

We have already seen

(G,G) = ⟨{[g, h] = ghg−1h−1 : g, h ∈ G}⟩.

Definition
Let G(1) := (G,G). By Induction we define

G(i+1) := (G(i),G(i)) := ⟨{[g, h] : g ∈ G(i), h ∈ G(i)}⟩

and call G(i) the derived subgroups of G.

If G(n) = {1} for some n ∈ N, then we call G solvable.

Abelian groups are solvable as G(1) = {1}. Nilpotent groups are solvable.

Groups of order pnqm for primes p, q ∈ P are solvable (Burnside). Groups
of odd order are solvable (Feit-Thompson).

S3 and S4 are solvable but not nilpotent. Sn for n ≥ 5 are not solvable.
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Solvable groups

The derived subgroups G(i) form the derived series of G:

G ≥ G(1) ≥ · · · ≥ G(n) ≥ · · · .

If G is solvable, there is an n ∈ N such that G(n) = {1}.

If G is not solvable there is (since G is finite) an n ∈ N such that

G(∗) := G(n) = G(n+1) = G(n+2) = · · · ,

i.e. (G(∗),G(∗)) = G(∗). By a previous Lemma applied inductively G(∗) is
an inducible subgroup of G.

Lemma
Let H be a normal subgroup of G. Then G is solvable if and only if H
and G/H are solvable.
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Nilpotent groups solvable

Lemma
A nilpotent group G is solvable.

Proof: We will show first by induction that G(i) ⊆ Gi for all i, i.e.
derived series is under the lower central series.

Clearly G(1) = (G,G) = G1 by their definitions.

Now let G(i) ⊆ Gi. Then

G(i+1) = (G(i),G(i)) ⊆ (G,G(i)) ⊆ (G,Gi) = Gi+1.

Now if G is nilpotent, then Gn = {1} for some n ∈ N. Then
G(n) ⊆ Gn = {1}, so G is solvable.
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Single equation

Theorem 2
If G is a nilpotent group, then POLSAT(G) ∈ P and if G is not solvable
then POLSAT(G) ∈ NPC.

S5
solvable

S3

nilpotent
D4

abelian
Zk
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Single equation NPC for non-solvable groups

Theorem 2, part 1
If G is not solvable then POLSAT(G) ∈ NPC.

Again need some preparation.

Lemma (Goldmann and Russell 1999, Lemma 8)
Let H be an inducible subgroup of G.

1. If POLSAT(H) ∈ NPC, then POLSAT(G) ∈ NPC.
2. If H is normal in G and POLSAT(G/H) ∈ NPC, then

POLSAT(G) ∈ NPC.

Proof : In the same way as for POLSYSSAT.
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Commutator simple non-solvable groups

Reminder: G is commutator simple if ∀a /∈ Z(G) : (G,G) = (a,G).

Lemma (Goldmann and Russell 1999, Lemma 9)
Let G be a non-solvable group with G = (G,G) and G is commutator
simple. Then POLSAT(G) ∈ NPC.

Proof : Similar to previous Lemma.
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Single equation

Theorem 2 (part 1, Goldmann and Russell 1999, Thm. 10)
If G is not solvable then POLSAT(G) ∈ NPC.

Proof: Again by induction on group order.

Basis: Let G be the smallest non-solvable group (which is A5 with order
60). Then G must be simple, because otherwise there is a nontrivial
normal subgroup H and then G/H as well as H would be solvable as G is
chosen with minimal order. Since (G,G) is a normal subgroup and by
assumption (G,G) ̸= {1} we must have (G,G) = G. As (a,G) are normal
subgroups in G again we have (a,G) = G for a /∈ Z(G):

Suppose (a,G) = {1}, then [a, g] = aga−1g−1 = 1 for all g ∈ G, so
a ∈ Z(G), a contradiction.

Therefore by the previous Lemma POLSAT(G) ∈ NPC for G = A5.
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Single equation

Induction step: Consider arbitrary non-solvable group G. We look at G(∗):

If G(∗) ( G, then by induction POLSAT(G(∗)) ∈ NPC. Furthermore G(∗) is
an inducible subgroup of G, so POLSAT(G) ∈ NPC.

If G(∗) = G = (G,G) and G is commutator simple, the previous lemma
showed POLSAT(G) ∈ NPC. So we assume that G is not commutator
simple, i.e. there is an a ∈ G − Z(G) such that (a,G) ( (G,G). As
a /∈ Z(G) we have (a,G) ̸= {1}, so |G/(a,G)| < |G|. As G is non-solvable
either (a,G) or G/(a,G) have to be non-solvable. By the induction
hypothesis POLSAT((a,G)) ∈ NPC or POLSAT(G/(a,G)) ∈ NPC. Again
by a previous lemma POLSAT(G) ∈ NPC.
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Theorem 2 (part 2, Goldmann and Russell 1999, Cor. 12)
If G is nilpotent then POLSAT(G) ∈ P.

Proof: See Goldman and Russell.
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What happened in the last 20
years?



Nilpotent solvable groups

What about the nilpotent non-solvable groups? Goldmann and Russell
did not know.

Still, we do not know. Ongoing research.

However, we already have examples of nilpotent non-solvable groups G
for which POLSAT(G) ∈ P, e.g. groups of order pq for primes p, q
(Horváth and Szabó 2006). This shows that POLSAT(S3) ∈ P.

S5
solvable

S3

nilpotent
D4

abelian
Zk
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Generalising the results

Goldmann and Russell ”only” considered groups. What about other or
more general algebras?

Example Rings
Let R be a finite ring.

• If R is nilpotent (i.e. Rn = {0} for some n ∈ N), then
POLSAT(R) ∈ P, otherwise POLSAT(R) ∈ NPC (Horváth 2011).

• If R is essentially an abelian group (i.e. xy = 0 for all x, y ∈ R), then
POLSYSSAT(R) ∈ P and POLSYSSAT(R) ∈ NPC otherwise (Larose
and Zádori 2006).

More general results can be found e.g. in Larose and Zádori 2006, Gorazd
and Krzaczkowski 2011, Idziak and Krzaczkowski 2018, Aichinger 2019.
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