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3 Abstract

3 Abstract

We consider Rubik’s Cube mathematically using algebraic group theory. We will see
that the 6 possible rotations on the cube generate a group. With the help of the
computer algebra software GAP we will be able to calculate a guidance to solve the
combination puzzle without using any solving techniques made for humans. Finally, we
want to compare the quality of GAP’s solutions with those of a beginner’s algorithm
for humans.
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4 Kurzfassung

4 Kurzfassung

Wir betrachten Rubiks Zauberwürfel mathematisch mittels algebraischer Gruppenthe-
orie. Mithilfe des Computeralgebrasystems GAP möchten wir eine Anleitung entwick-
eln, um einen beliebig verdrehten Zauberwürfel lösen zu können. Dabei verwenden wir
keinerlei Lösungsalgorithmen für Menschen. Schließlich vergleichen wir die Qualität
der Lösung des Computeralgebrasystems mit jener eines herkömmlichen Anfänger–
Algorithmus.
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5 Introduction

5 Introduction

Rubik’s Cube is a 3 × 3 × 3 cube with 6 sides. Each side is split up into 9 facets.
Every single one of these 6 ⋅ 9 = 54 facets is coloured in one of the six colours
{blue,green,orange, red,white, yellow} such that there are nine facets per colour. One
can rotate each side of the cube and therefore change the colour pattern. The goal
of the combination puzzle then is to have all facets of the same colour on one side by
twisting all six sides in a correct order (see figure 1).
In general, this cannot be done easily. It took the game’s inventor Ernõ Rubik over
a month to solve the very first Rubik’s Cube in 1974. At that time the Hungarian
professor tried to help his students understand three–dimensional problems, hence he
constructed this cube, which would take the world by storm. [1]
In total, there are approximately 4.3 ⋅ 1019 different patterns possible giving us no
chance of simply studying the solutions for all different cubes. [2, p. 12]
Nowadays, there are several algorithms for people to solve a cube. Learning such an
algorithm requires patience and practice. The goal of this thesis is to show that Ru-
bik’s Cube can also be solved using mathematical group theory ignoring any of these
algorithms.

Figure 1: An unsolved Rubik’s Cube and its corresponding solved one.

5.1 Notation

In order to describe Rubik’s Cube, notation is required. Assume that the cube is sitting
on a flat surface.

� Let F ′ denote the front side.

� Let L′ denote the left side.

� Let T ′ denote the top side.

� Let R′ denote the right side.

� Let U ′ denote the underside.

� Let B′ denote the back side.

Figure 2 illustrates this definition.
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5 Introduction 5.1 Notation

F′
L′

T′

R′

U′

B′

F′L′

T′

R′

U′

B′

Figure 2: The 6 sides on the (unfolded) cube.

Each of the 6 possible rotations will be considered as one quarter turn (90 degrees)
counter–clockwise. The turns are done as if the solver is looking at that particular face,
and then turns the face in the counter–clockwise direction. For M ∈ {F,L,T,R,U,B}
we defined M ′ as one side on the cube. Now the rotations on these sides are denoted
as M . Each twist’s inverse is then given by the 90 degree rotation of the face clockwise
and denoted M−1. [3]
Figure 3 shows how the rotations are considered.

F′

(a) Rotating the front side.

L′

(b) Rotating the left side.

T′

(c) Rotating the top side.

R′

(d) Rotating the right side.

U′

(e) Rotating the underside.

B′

(f) Rotating the back side.

Figure 3: Illustration of the six rotations.
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6 Mathematical approach on Rubik’s Cube

6 Mathematical approach on Rubik’s Cube

The cube consists of 26 pieces: There are 8 corner pieces with 3 different coloured
facets, 12 edge pieces, with 2 facets and 2 colours each, and 6 middle pieces, each
having just 1 coloured facet. Taking a closer look at Rubik’s Cube, we realise that
each piece appears on the cube exactly once and is therefore unique. Since all pieces
are unique and the colours occur at most once per piece, their facets are unique as
well. This motivates us to number each facet. Without loss of generality we will
number the unfolded cube as in figure 4.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

37 38 39

40 41 42

43 44 45

46 47 48

49 50 51

52 53 54

Figure 4: The numbered, unfolded cube.

Now, that each facet is numbered from 1 to 54, we can consider one rotation of a side
as a permutation on the 54 facets. We receive 6 permutations representing the twists
of the cube’s 6 sides. Namely, the permutations are

F = (1,7,9,3) (2,4,8,6) (12,37,34,27) (15,38,31,26) (18,39,28,25),
L = (1,19,46,37) (4,22,49,40) (7,25,52,43) (10,16,18,12) (11,13,17,15),
T = (1,28,54,10) (2,29,53,11) (3,30,52,12) (19,25,27,21) (20,22,26,24),
R = (3,39,48,21) (6,42,51,24) (9,45,54,27) (28,34,36,30) (29,31,35,33),
U = (7,16,48,34) (8,17,47,35) (9,18,46,36) (37,43,45,39) (38,40,44,42),
B = (10,21,36,43) (13,20,33,44) (16,19,30,45) (46,52,54,48) (47,49,53,51).

Furthermore, several twists equal a composition of these 6 permutations which results
in another permutation. Hence, the rotations form an algebraic permutation group
G with generators F,L,T,R,U and B. All properties of a group follow directly from
the properties of permutations. Also, the group is not abelian, as permuations do not
commute in general. Apparently G ⊆ S54, however we have G ⊊ S54, since we cannot
permute all facets. For instance, by twisting the cube’s sides, the six middle facets
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6 Mathematical approach on Rubik’s Cube

cannot be moved at all and a facet sitting in a corner will always remain in one of the
corners.
One can easily find out the permutation which should be applied on the unsolved cube
in order to receive the solved one. But in general it is impossible to split this single
permutation into a composition of our six permutations F,L,T,R,U,B. This is where
today’s computer algebra systems come in handy, especially GAP [4] with an emphasis
on computational group theory.
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7 A GAP–program for solving Rubik’s Cube

7 A GAP–program for solving Rubik’s Cube

In section 11 one can find the GAP–code for the program described here. Its functions
are characterised and tested in section 9.

The GAP–program for solving any Rubik’s Cube using group theory consists of two
main functions, Solve and SolveGuide, which call several auxiliary functions.
Both main functions take an unsolved Rubik’s Cube represented by a list of 54 colours
as input. The order of these colours is meant to be as shown in figure 4. Since the
user needs to type the colours of 54 facets sitting on a three–dimensional object, the
input is first checked for typos.
Next, the pattern of the solved cube is being calculated according to the input of an
unsolved cube. This can vary depending on which way the user holds the cube.
As mentioned in section 6, all facets are unique, thus the main functions are able to
determine the single permutation between the unsolved cube and its corresponding
solved one.
Then, this permutation is split up into the group generators, i.e. the six rotations of
the sides, using a GAP–internal function.
Solve simply returns a word consisting of the six sides’ twists which solve the input
cube in that exact order.
On the other hand, the function SolveGuide not only gives a solution for an unsolved
cube, it also presents a guidance to apply it on a physical cube. We are going to see in
section 8 that most solutions for our program are quite large. Also, it is easy to read
it wrong. Since the group is not abelian, forgetting or misinterpreting one single move
will result in not being able to solve the cube. And we will only realise our mistake at
the very end, when the solution is nowhere near. Therefore we want to check every
now and then whether we are still on the right path. If we then realise a mistake, we
can either restart the program with our current position or even undo the mistake.
Due to that, SolveGuide takes two arguments: The unsolved cube and a non–negative
integer n. The program will then display every n–th twist a cube showing what it
should look like at that stage in order to make comparison possible.
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8 Quality of the program

8 Quality of the program

As we now have a program to compute a guidance to solve Rubik’s Cube, we are
interested in how well it actually works. In particular, we want to know how many
rotations the program suggests in order to solve an unsolved cube. The provided
solution should consist of few enough twists such that we can actually apply it on a
physical cube.
In 2014, Tomas Rokicki and Morley Davidson proved that every possible Rubik’s cube
can be solved within 26 quarter–moves and that there exist indeed cubes for which 26
quarter–twists are necessary. In this context, the number 26 is referred to as ”God’s
Number”. [5] If we consider M2 for M ∈ {F,L,T,R,U,B} as one move instead of
two, God’s number was found as well and equals 20. [6]
We want to compare God’s Number in the quarter–turn metric with the GAP–program.
Hence, we let it solve 1 million randomly generated cubes and measure the number
of moves the program suggests for each solution. This can be done easily with the
function DistrNumberOfMoves( n ), where in our case n = 106. The results are
shown in table 1.

# moves # cubes
31 2
33 2
34 1
37 4
38 2
39 4
40 2
41 13
42 9
43 28
44 26
45 30
46 46
47 51
48 95
49 101
50 119
51 143
52 213
53 267
54 320
55 396
56 502
57 548
58 687
59 886
60 1016
61 1242

# moves # cubes
62 1507
63 1741
64 1975
65 2376
66 2621
67 3163
68 3600
69 4052
70 4465
71 5172
72 5935
73 6681
74 7639
75 8531
76 9221
77 10433
78 11534
79 12698
80 13783
81 15118
82 16479
83 17520
84 19040
85 20338
86 21560
87 22917
88 24378
89 25114

# moves # cubes
90 26245
91 26977
92 27952
93 28628
94 28992
95 29974
96 29966
97 30003
98 29872
99 29600

100 29211
101 28762
102 27755
103 26714
104 25802
105 24345
106 23218
107 21653
108 19910
109 18479
110 17422
111 15967
112 14617
113 13379
114 12394
115 11150
116 10392
117 9431

# moves # cubes
118 8479
119 7491
120 6699
121 5844
122 5083
123 4330
124 3650
125 3100
126 2538
127 2011
128 1541
129 1137
130 841
131 670
132 485
133 307
134 222
135 163
136 95
137 74
138 34
139 14
140 14
141 12
142 7
143 1
144 1
145 1

Table 1: One million random cubes grouped by the number of moves to solve them.

We can see that most Rubik’s Cubes are solved within 60 to 130 twists. This might
sound a lot considering every possible cube requires theoratically at most 26 quarter–
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Figure 5: The distribution of 1 million random cubes regarding the number of moves.

rotations. But following algorithms, people need a lot more in general. Daniel Duberg
and Jakob Tideström studied the algorithm featured on the official Rubik’s Cube
website and concluded that the average number of moves for this beginner’s algorithm
is approximately 135. [7]
Figure 5 visualises the distribution of table 1 together with God’s Number and the
average number of moves for the beginner’s algorithm.
Still, there are other more advanced techniques requiring very few moves. Some so
called speedcubing–algorithms can be found in [8].
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9 Functions

9 Functions

The following GAP–code is defined globally in order to let several funtions as well as
the solver use it:

GAP

gap > F := (1,7,9,3)(2,4,8,6)(12,37,34,27)(15,38,31,26)

(18,39,28,25);;

gap > L := (1,19,46,37)(4,22,49,40)(7,25,52,43)(10,16,18,12)

(11,13,17,15);;

gap > T := (1,28,54,10)(2,29,53,11)(3,30,52,12)(19,25,27,21)

(20,22,26,24);;

gap > R := (3,39,48,21)(6,42,51,24)(9,45,54,27)(28,34,36,30)

(29,31,35,33);;

gap > U := (7,16,48,34)(8,17,47,35)(9,18,46,36)(37,43,45,39)

(38,40,44,42);;

gap > B := (10,21,36,43)(13,20,33,44)(16,19,30,45)(46,52,54,48)

(47,49,53,51);;

gap > cube := Group( F, L, T, R, U, B );;

gap > f := FreeGroup( "F", "L", "T", "R", "U", "B" );;

gap > hom := GroupHomomorphismByImages( f, cube,

GeneratorsOfGroup( f ), GeneratorsOfGroup( cube ) );;

gap > b := "blue";;

gap > g := "green";;

gap > o := "orange";;

gap > r := "red";;

gap > w := "white";;

gap > y := "yellow";;

First, there are the 6 rotations F,L,T,R,U,B defined, which are used as group gen-
erators for the group cube.
Next we define a free group f with ”F”,”L”,”T”,”R”,”U”,”B” as generators. Note
that these generators are strings and not the above variables.
Then we form a homomorphism between these groups. It maps the generators from
the free group to the related permutation.
Lastly, we define the six colours as variables. Since the input cube is a list of 54
colours, the user surely appreciates that he can type the variables rather than the
whole strings.

9.1 IsInputCorrect

This function checks whether the input cube, represented by a list of 54 colors, has ob-
vious typos. Possible inputerrors would be for instance forgetting or double-counting
one facet. However the function does not check if the list of colours does indeed
represent an existing cube. There might be for instance the unlikely case of acciden-
tally swapping two colours, which are either both middle pieces or both not middle
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9.1 IsInputCorrect 9 Functions

pieces, such that solving the cube becomes impossible. Then IsInputCorrect would
return true, even though the cube is not solvable. This problem is fixed in the main
functions Solve and SolveGuide, which will return an error if an input cube does not
actually exist.

Test 1

For our first test we use the solved cube itself and rotate the front side once. The
code

GAP

gap > c := [w,w,w,w,w,w,w,w,w,o,o,b,o,o,b,o,o,b,b,b,b,b,b,b,r,

r,r,g,r,r,g,r,r,g,r,r,o,o,o,g,g,g,g,g,g,y,y,y,y,y,y,y,y,y];;

gap > IsInputCorrect[ c ];

true

returns true as desired.

Test 2

Now we want to see how input errors are handled. We exchange two middle pieces,
change the first colour from ”white” to ”red” and omit the second colour.

GAP

gap > c := [r,w,w,o,w,w,w,w,o,o,b,o,w,b,o,o,b,b,b,b,b,b,b,r,r,

r,g,r,r,g,r,r,g,r,r,o,o,o,g,g,g,g,g,g,y,y,y,y,y,y,y,y,y];;

gap > IsInputCorrect[ c ];

Typo. Cube must have 54 colours instead of 53.

Typo. Middle facets are not duplicate free.

Typo. 10 facets coloured in red instead of 9.

Typo. 7 facets coloured in white instead of 9.

false

Test 3

For the third test we want to input a non–existing cube which is not treated as wrong
input. If we consider a solved cube and just swap one edge, the cube is not solvable
any more. However, we will consider the same example later on and see that the
functions Solve and SolveGuide will take care of this kind of input.

9



9 Functions 9.2 DisplayCube

GAP

gap > (2,26) in cube;

false

gap > doesNotExist := [w,o,w,w,w,w,w,w,w,g,g,g,g,g,g,g,g,g,

o,o,o,o,o,o,o,w,o,b,b,b,b,b,b,b,b,b,

r,r,r,r,r,r,r,r,r,y,y,y,y,y,y,y,y,y];;

gap > IsInputCorrect( doesNotExist );

true

9.2 DisplayCube

A list of 54 colours is quite difficult to read. Therefore, the function DisplayCube(l)

displays a list l as an unfolded cube. First of all, we can compare the input with
the actual cube which helps us prevent typos and correct them. Furthermore, we can
check while solving the cube whether we made a mistake. We can then try to undo the
mistake or restart the program using the current position rather than realising at the
very end that we made a mistake several twists ago. We want to test DisplayCube

together with the function SolvedCube.

9.3 SolvedCube

SolvedCube calculates the order of colours of the solved cube depending on the input
cube.
We could also fix the solved cube. Then the user would have to rotate the cube as
a whole in order to match the middle facets with the fixed solved cube which would
decrease user friendliness. As writing the input for our program already takes a long
time compared to solving it afterwards, we should be as quick as possible to get the
program started.

10



9.3 SolvedCube 9 Functions

Test 1

We test two unsolved cubes with two different solved cubes. In order to be able to
read them properly we will make use of the function DisplayCube.

GAP

gap > unsolved := [w,o,r,w,w,b,o,g,r,g,g,o,w,g,o,b,r,y,r,b,w,o,o,

b,b,y,b,y,r,o,y,b,y,y,o,y,g,y,g,w,r,b,r,r,o,w,g,b,g,y,r,w,w,g];;

gap > DisplayCube( unsolved );

r b w

o o b

b y b

g g o w o r y r o

w g o w w b y b y

b r y o g r y o y

g y g

w r b

r r o

w g b

g y r

w w g

gap > DisplayCube( SolvedCube( unsolved ) );

o o o

o o o

o o o

g g g w w w b b b

g g g w w w b b b

g g g w w w b b b

r r r

r r r

r r r

y y y

y y y

y y y

We can see clearly that the middle facets match.
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9 Functions 9.4 FindPosCornerCInCornersC

Test 2

GAP

gap > unsolved := [w,o,r,w,y,b,o,g,r,g,g,o,w,b,o,b,r,y,r,b,w,o,o,

b,b,y,b,y,r,o,y,g,y,y,o,y,g,y,g,w,w,b,r,r,o,w,g,b,g,o,r,w,w,g];;

gap > DisplayCube( unsolved );

r b w

o o b

b y b

g g o w o r y r o

w g b w w r y g y

b r y o g r y o y

g y g

w w b

r r o

w g b

g o r

w w g

gap > DisplayCube( SolvedCube( unsolved ) );

o o o

o o o

o o o

g g g w w w b b b

g g g w w w b b b

g g g w w w b b b

r r r

r r r

r r r

y y y

y y y

y y y

Again, the middle facets match perfectly.

9.4 FindPosCornerCInCornersC

As mentioned in section 6, each corner is unique.
The function FindPosCornerCInCornersC takes as argument one corner piece repre-
sented by its three different colours and determines the position of that piece on the
solved cube together with the permutation it needs in order to fit on the solved cube.
In other words, it finds out where that specific corner piece should lie on the solved
cube. This is needed for the function ColoursToNumbers.

12



9.5 FindPosEdgeCInEdgesC 9 Functions

Test 1

Let A = [[w,b,o], [r,b,w], [r,w,g]] be a list of corners. We want to find the position
and permutation p of the corner a = [w,g,r] in A, such that a ○ p ∈ A.

GAP

gap > A := [[w,b,o],[r,b,g],[r,w,g]];;

gap > a := [w,g,r];;

gap > FindPosCornerCInCornersC( a, A );

[ 3, (1,2,3) ]

This means that a ○ (1,2,3) is located at the third position in A, which is true.

Test 2

Let A = [[w,b,o], [r,b,w], [r,w,g]] be the same list of corners as in Test 1. Let
a = [w,r,o], which is not in the list A.

GAP

gap > A := [[w,b,o],[r,b,g],[r,w,g]];;

gap > a := [w,r,o];;

gap > FindPosCornerCInCornersC( a, A );

Error, Corner [white,red,orange] not found on the cube.

called from <function "FindPosCornerCInCornersC">( <arguments> )

Since the corner cannot be found, an error is returned.

9.5 FindPosEdgeCInEdgesC

This function is the equivalence to the function FindPosCornerCInCornersC, but
this time for edges on Rubik’s cube instead of corners, meaning that the lists consist
of two colours rather than three.

9.6 ColoursToNumbers

As mentioned in section 6, all facets on Rubik’s Cube are unique and we can there-
fore number them. It makes sense to first number the solved cube. Then, we can
deduce the numbering on the unsolved cube from it. This is exactly what the function
ColoursToNumbers does. It takes the list of 54 shuffled colours, derives the solved
cube from it, numbers the solved cube and then calculates the unique numbering of
the unsolved cube. This function is crucial in order to find out the desired permutation
in our Rubik’s Cube group.

13



9 Functions 9.7 Solve

9.7 Solve

Finally, we are able to solve a Rubik’s cube. The input of the function Solve is a
list of 54 colours representing an arbitrary cube. The output is desired to be a word
consisting of the six group generators F,L,T,R,U,B. Applying these permutations
(i.e. twisting the cube’s sides) in this very order should then solve the input cube.

Test 1

In order to test the function we generate a random group element on the cube. This
is achieved by the GAP–internal function Random. Since all group elements are just
permutations, we first apply it on a fixed solved cube.
Note that the function Solve returns a ”word”, which is why we cannot use it as
permutation on the unsolved cube. Therefore we use the GAP–internal function Image

which finds the image of the word on our globally defined mapping hom.

GAP

gap > solved := [w,w,w,w,w,w,w,w,w,g,g,g,g,g,g,g,g,g,o,o,o,o,o,

o,o,o,o,b,b,b,b,b,b,b,b,b,r,r,r,r,r,r,r,r,r,y,y,y,y,y,y,y,y,y];;

gap > unsolved := Permuted( solved, Random( cube ) );;

gap > DisplayCube( unsolved );

r o w

y o r

r b o

b r b w w g w g g

g g g o w r w b g

r b y b r o b o y

o b w

y r y

y o g

g w o

y y w

y b r

gap> sol := Solve( unsolved );

L*B^-1*R^-1*F*T*R^-1*F*U^-1*R^2*U*B^-1*U^-1*B*R^-1*T*R*L^-1*F*

T^-1*L*F^-1*(T*L)^2*T^-1*L^-1*T^-1*U*L^-1*(U^-1*F)^2*(U*L)^2*

U^-1*F^-1*L^-1*T*F*T^-1*L*T^-1*L^-1*T*L^-1*F^-1*L*F*T*F*R*F^-1*

R^-1*T^-1*F^-1*T*R*F^-1*R^-1*T^-1*L^-1*F*L

14



9.8 SolveGuide 9 Functions

gap > DisplayCube( Permuted( unsolved, Image( hom, sol ) ) );

o o o

o o o

o o o

g g g w w w b b b

g g g w w w b b b

g g g w w w b b b

r r r

r r r

r r r

y y y

y y y

y y y

The combination of group generators solves the cube.

Test 2

We consider again the non–existing Rubik’s cube from Test 3 of function IsInputCorrect.
The function IsInputCorrect only checks for obvious mistakes but is not able to de-
termine whether the cube actually exists. This problem is now handled in the functions
Solve and SolveGuide.

GAP

gap > doesNotExist := [w,o,w,w,w,w,w,w,w,g,g,g,g,g,g,g,g,g,

o,o,o,o,o,o,o,w,o,b,b,b,b,b,b,b,b,b,

r,r,r,r,r,r,r,r,r,y,y,y,y,y,y,y,y,y];;

gap> Solve( doesNotExist );

Error, Cube does not exist. Check input.

called from <function "Solve">( <arguments> )

9.8 SolveGuide

As mentioned in section 7, SolveGuide does not only take the list of 54 colours
as input, but also a non–negative integer n as a second argument and displays a
guidance for solving the cube. It splits the whole solution into smaller steps of length
n and displays the Rubik’s Cube in between these steps to allow comparing it with the
physical cube.

Test 1

Let us first test a solved Rubik’s Cube, which was only twisted a little bit in order
to receive a short solution. We take n = 3, meaning that the cube is being displayed
every third move.

15
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GAP

gap > unsolved := [b,o,g,b,w,g,o,o,w,o,g,y,y,g,w,y,g,g,

b,o,r,y,o,r,r,b,y,o,w,w,r,b,b,b,y,o,

w,w,r,w,r,o,g,y,w,r,b,b,r,y,r,y,g,g];;

gap> SolveGuide( unsolved, 3 );

Your initial cube:

b o r

y o r

r b y

o g y b o g o w w

y g w b w g r b b

y g g o o w b y o

w w r

w r o

g y w

r b b

r y r

y g g

Step 1:

F^-1*L*R^-1

o o b

o o o

w w g

w w r b b o y b r

g g g w w o y b w

o y y g g w o b w

r r b

r r r

y y g

b b r

y y r

g g y
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Step 2:

R^-1*T*U

o o w

o o w

o o w

g g g w w r b b b

g g g w w r b b b

g g g w w r b b b

r r y

r r y

r r y

y y o

y y o

y y o

Step 3:

R

Your cube is now solved.

Test 2

Now we consider a random cube. Let n = 25 to keep the output small.

GAP

gap > solved := [w,w,w,w,w,w,w,w,w,g,g,g,g,g,g,g,g,g,o,o,o,o,o,

o,o,o,o,b,b,b,b,b,b,b,b,b,r,r,r,r,r,r,r,r,r,y,y,y,y,y,y,y,y,y];;

gap > unsolved := Permuted( solved, Random( cube ) );;

gap > SolveGuide( unsolved, 25 );

Your initial cube:

r b o

o o w

y b w

y w g o o r b g b

g g y b w r w b y

r g o w b r g g w

g r w

r r o

b y b

y r o

y y o

g w y

17



9 Functions 9.8 SolveGuide

Step 1:

L^-1*F^-1*L*F*L*T^-1*L^-1*T^-2*F*T^-1*F^-1*

T^-1*L*T*L^-1*F^-1*L*F*T*F^-1*T^-1*L^-1*F*T^-1

b o r

b o b

y w o

r y g o g b y w g

g g b o w r b b y

r g g w r w g g w

r w o

r r o

b y b

y r o

y y o

w w y

Step 2:

L*T*L^-1*F^-1*L^-1*F*L*F^-2*L^-1*F*L*T^-1*L*

T*L^-1*F^-2*T*(F^-1*T^-1*L^-1)^2

g y y

r o b

r w o

o g g y g b y w b

r g o b w o w b y

g y w r r b r g w

g w w

b r o

y y b

o r o

b y o

w g r

Step 3:

L^-1*T*L^2*F^-1*L^-1*F*L^-2*F^-2*T*L*T*L^-1*

T^-1*F^-1*(F^-1*T^-1)^2*F*B^-1*U*B
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y b b

g o o

g o o

g y o y b b y w w

r g b w w w g b y

b w w g g r g b w

o o w

r r y

y y b

r r o

g y o

r r r

Step 4:

F^-2*T^-1*U^-1*R^-1*U*F*R^-2*F^-1*B^-1*R^-1*U^-1

Your cube is now solved.

We can verify the result by applying the twists’ inverses on a solved cube. Note that
since the permutation group is not abelian, for two moves A,B ∈ {F,L,T,R,U,B}
we have (AB)−1 = B−1A−1 [9, p. 83].

9.9 DistrNumberOfMoves

This function is used for testing purposes (see section 8).
For n ∈ N, DistrNumberOfMoves( n ) calculates how many moves the program
suggests to solve n randomly chosen Rubik’s cubes. It then groups all cubes with
the same amount of twists in order to get a distribution. The function returns a list
consisting of lists with 2 elements. The first entry of each inner list contains the
number of moves while the second one features the number of cubes requiring this
number of moves to be solved by the GAP–program.
DistrNumberOfMoves( n ) terminates for n ≤ 106 within reasonable time (a few
seconds).

Test

We test the function for n = 20.

GAP

gap > DistrNumberOfMoves( 20 );

[ [ 85, 1 ], [ 87, 2 ], [ 89, 1 ], [ 91, 1 ], [ 92, 1 ],

[ 94, 1 ], [ 97, 2 ], [ 98, 1 ], [ 101, 1 ], [ 103, 1 ],

[ 107, 1 ], [ 108, 2 ], [ 109, 3 ], [ 113, 1 ], [ 114, 1 ] ]

This means that for 20 randomly generated Rubik’s Cubes, there is one having 85
moves to be solved, there are two cubes which need 87 twists and so on. Once more,
note that all these cubes are still theoratically solvable within 26 twists (see section
8).
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10 Outlook

10 Outlook

Ernõ Rubik’s original cube is 3 × 3 × 3, but other versions are produced in different
shapes and sizes. Since those cubes’ operations also generate permutation groups,
they can be dealt with GAP as well.
Christoph Bandelow and also David Joyner not only considered a 2 × 2 × 2–cube,
but likewise more abstract ones including a pyramid or a dodecahedron. Again, all
sides are rotatable and permute the facets. The number of sides, which equals the
number of different colours, impacts the size of the generated permutation group.
For instance, the Magic Dodecahedron with twelve faces allows approximately 1068

different patterns. [10, 11]
Although the solutions for larger groups will not be as short as those for the original
Rubik’s Cube (∼ 1019 possibilities), one can still find a guidance for every pattern using
group theory without any solving algorithm for humans.
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11 Appendix

11.1 GAP–Code

1 #global definitions

2

3 F := (1,7,9,3)(2,4,8,6)(12,37,34,27)(15,38,31,26)(18,39,28,25);

4 L := (1,19,46,37)(4,22,49,40)(7,25,52,43)(10,16,18,12)(11,13,17,15);

5 T := (1,28,54,10)(2,29,53,11)(3,30,52,12)(19,25,27,21)(20,22,26,24);

6 R := (3,39,48,21)(6,42,51,24)(9,45,54,27)(28,34,36,30)(29,31,35,33);

7 U := (7,16,48,34)(8,17,47,35)(9,18,46,36)(37,43,45,39)(38,40,44,42);

8 B := (10,21,36,43)(13,20,33,44)(16,19,30,45)(46,52,54,48)(47,49,53,51);

9

10 cube := Group( F, L, T, R, U, B );

11 f := FreeGroup( ”F”, ”L”, ”T”, ”R”, ”U”, ”B” );

12 hom := GroupHomomorphismByImages( f, cube, GeneratorsOfGroup( f ), GeneratorsOfGroup( ⤦

Ç cube ) );

13

14 b := ”blue”;

15 g := ”green”;

16 o := ”orange”;

17 r := ”red”;

18 w := ”white”;

19 y := ”yellow”;

20

21 ######################################

22

23 IsInputCorrect := function( c )

24 #######

25 #Input: c, a cube represented by a list of colours.

26 #Precondition: IsList( c )

27 #Output: true if there are no obvious typos in c, otherwise false.

28 #Postcondition: c does not have obvious typos.

29 #######

30

31 local flag, col, i;

32

33 flag := true;

34 if not( Size( c ) = 54 ) then

35 Print( ”Typo. Cube must have 54 colours instead of ”, Size( c ), ”.\n”);

36 flag := false;

37 fi;

38 if not( IsDenseList( c ) ) then

39 Print( ”Typo. List of colours is not dense.\n”);

40 flag := false;
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41 fi;

42 if not( IsDuplicateFree( [c[5],c[14],c[23],c[32],c[41],c[50]] ) ) then

43 Print( ”Typo. Middlepieces are not duplicate free.\n” );

44 flag := false;

45 fi;

46 col := Collected( c );

47 if not( Size( col ) = 6 ) then

48 Print( ”Typo. Cube must have 6 different colours instead of ”, Size( col ), ”.\n”);

49 flag := false;

50 fi;

51 i := 1;

52 while i <= Size( col ) do

53 if col[i][1] in [b,g,o,r,w,y] then

54 if not( col[i][2] = 9 ) then

55 Print( ”Typo. ”, col[i][2], ” pieces coloured in ”, col[i][1], ” instead of 9.\⤦
Ç n”);

56 flag := false;

57 fi;

58 else

59 Print( ”Typo. Colour ”, col[i][1], ” does not exist.\n”);

60 flag := false;

61 fi;

62 i := i + 1;

63 od;

64 return flag;

65 end;

66

67 ######################################

68

69 SolvedCube := function( u )

70 #######

71 #Input: u, an unsolved cube represented by a list of 54 colours

72 #Precondition: IsInputCorrect( u )

73 #Output: solved cube, represented by a list of 54 colours

74 #Postcondition: middlepiecesC( u ) = middlepiecesC( solved ) and

75 # solved represents a solved cube

76 #######

77

78 local middlePiecesC, solved, i, j;

79

80 middlePiecesC := [u[5],u[14],u[23],u[32],u[41],u[50]];

81 solved := [];

82 i := 1;

83 while i <= Size( middlePiecesC ) do

84 j := 1;
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85 while j <= 9 do

86 Add( solved, middlePiecesC[i] );

87 j := j + 1;

88 od;

89 i := i + 1;

90 od;

91 return solved;

92 end;

93

94 ######################################

95

96 DisplayCube := function( cube )

97 #######

98 #Input: cube, represented by a list of 54 colours.

99 #Precondition: IsInputCorrect( cube )

100 #Output: none, function prints the unfolded cube.

101 #Postcondition: none

102 #######

103

104 local c, i;

105

106 #only display first character of strings

107 c := ShallowCopy( cube );

108 i := 1;

109 while i <= 54 do

110 c[i] := c[i]{[1]};

111 i := i + 1;

112 od;

113

114 Print( ” ”, c[19], ” ”, c[20], ” ”, c[21], ”\n” );

115 Print( ” ”, c[22], ” ”, c[23], ” ”, c[24], ”\n” );

116 Print( ” ”, c[25], ” ”, c[26], ” ”, c[27], ”\n” );

117 Print( c[10], ” ”, c[11], ” ”, c[12], ” ”, c[1], ” ”, c[2], ” ”, c[3], ” ”, c[28], ” ”, c[29], ” ”, c⤦

Ç [30], ”\n” );

118 Print( c[13], ” ”, c[14], ” ”, c[15], ” ”, c[4], ” ”, c[5], ” ”, c[6], ” ”, c[31], ” ”, c[32], ” ”, c⤦

Ç [33], ”\n” );

119 Print( c[16], ” ”, c[17], ” ”, c[18], ” ”, c[7], ” ”, c[8], ” ”, c[9], ” ”, c[34], ” ”, c[35], ” ”, c⤦

Ç [36], ”\n” );

120 Print( ” ”, c[37], ” ”, c[38], ” ”, c[39], ”\n” );

121 Print( ” ”, c[40], ” ”, c[41], ” ”, c[42], ”\n” );

122 Print( ” ”, c[43], ” ”, c[44], ” ”, c[45], ”\n” );

123 Print( ” ”, c[46], ” ”, c[47], ” ”, c[48], ”\n” );

124 Print( ” ”, c[49], ” ”, c[50], ” ”, c[51], ”\n” );

125 Print( ” ”, c[52], ” ”, c[53], ” ”, c[54] );

126 end;
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127

128 ######################################

129

130 FindPosCornerCInCornersC := function( cC, csC )

131 #######

132 #Input: cC, a list of 3 colours and

133 # csC, a list of lists of 3 colors

134 #Precondition: IsList( cC ) and

135 # IsList( csC )

136 #Output: i, an index which marks the position of cC in csC and

137 # the permutation p s.t. cC*p in csC

138 #Postcondition: cC = csC[i] and

139 # IsPerm( p ) and

140 # cC*p in csC

141 #######

142

143 local s3, i;

144

145 s3 := [(),(1,2),(1,3),(2,3),(1,2,3),(1,3,2)];

146 i := 1;

147 while i <= Size( s3 ) do

148 if Permuted( cC, s3[i] ) in csC then

149 return [Position( csC, Permuted( cC, s3[i] ) ),s3[i]];

150 fi;

151 i := i + 1;

152 od;

153 ErrorNoReturn( ”Corner [”, cC[1], ”,”, cC[2], ”,”, cC[3], ”] not found on the cube.” );

154 end;

155

156 ######################################

157

158 FindPosEdgeCInEdgesC := function( eC, esC )

159 #######

160 #Input: eC, a list of 2 colours and

161 # esC, a list of lists of 2 colors

162 #Precondition: IsList( eC ) and

163 # IsList( esC )

164 #Output: i, an index which marks the position of eC in esC and

165 # the permutation p s.t. eC*p in esC

166 #Postcondition: eC = esC[i] and

167 # IsPerm( p ) and

168 # eC*p in esC

169 #######

170

171 local s2, i;

24



11.1 GAP–Code 11 Appendix

172

173 s2 := [(),(1,2)];

174 i := 1;

175 while i <= Size( s2 ) do

176 if Permuted( eC, s2[i] ) in esC then

177 return [Position( esC, Permuted( eC, s2[i] ) ),s2[i]];

178 fi;

179 i := i + 1;

180 od;

181 ErrorNoReturn( ”Edge [”, eC[1], ”,”, eC[2], ”] not found on the cube.” );

182 end;

183

184 ######################################

185

186 ColoursToNumbers := function( unsolved, solved )

187 #######

188 #Input: unsolved, a cube represented by a list of 54 colours and

189 # solved, a cube represented by a list of 54 colours

190 #Precondition: IsList( unsolved ) and

191 # IsList( solved ) and

192 # IsInputCorrect( unsolved ) and

193 # solved = SolvedCube( unsolved )

194 #Output: l, a list containing the numbers 1..54

195 #Postcondition: IsList( l ) and

196 # Permuted( l, MappingPermListList( solvedNr, unsolvedNr ) ) = ⤦

Ç [1..54]

197 #######

198

199 local l, cornersC, cornersNr, edgesC, edgesNr, i, j, cornerC, edgeC, posPerm, n, c, e;

200

201 l := [,,,,5,,,,,,,,,14,,,,,,,,,23,,,,,,,,,32,,,,,,,,,41,,,,,,,,,50,,,,];

202

203 #Calculate corners of solved cube as colour triples

204 cornersNr := ⤦

Ç [[1,12,25],[3,27,28],[7,18,37],[9,34,39],[10,19,52],[16,43,46],[21,30,54],[36,45,48]];

205 cornersC := [];

206 i := 1;

207 while i <= Size( cornersNr ) do

208 j := 1;

209 c := [];

210 while j <= Size( cornersNr[1] ) do

211 Add( c, solved[cornersNr[i][j]] );

212 j := j + 1;

213 od;

214 Add( cornersC, c );
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215 i := i + 1;

216 od;

217

218 #Calculate edges of solved cube as colour doubles

219 edgesNr := ⤦

Ç [[2,26],[4,15],[6,31],[8,38],[11,22],[13,49],[17,40],[20,53],[24,29],[33,51],[35,42],[44,47]];

220 edgesC := [];

221 i := 1;

222 while i <= Size( edgesNr ) do

223 j := 1;

224 e := [];

225 while j <= Size( edgesNr[1] ) do

226 Add( e, solved[edgesNr[i][j]] );

227 j := j + 1;

228 od;

229 Add( edgesC, e );

230 i := i + 1;

231 od;

232

233 #Locate corners of unsolved cube in solved cube

234 i := 1;

235 while i <= Size( cornersNr ) do

236 cornerC := [unsolved[cornersNr[i][1]],unsolved[cornersNr[i][2]],unsolved[cornersNr[i][3]]];

237 posPerm := FindPosCornerCInCornersC( cornerC, cornersC );

238 n := Permuted( cornersNr[posPerm[1]], posPerm[2]ˆ−1 );

239 j := 1;

240 while j <= 3 do

241 l[cornersNr[i][j]] := n[j];

242 j := j + 1;

243 od;

244 i := i + 1;

245 od;

246

247 #Locate edges of unsolved cube in solved cube

248 i := 1;

249 while i <= Size( edgesNr ) do

250 edgeC := [unsolved[edgesNr[i][1]],unsolved[edgesNr[i][2]]];

251 posPerm := FindPosEdgeCInEdgesC( edgeC, edgesC );

252 n := Permuted( edgesNr[posPerm[1]], posPerm[2] );

253 j := 1;

254 while j <= 2 do

255 l[edgesNr[i][j]] := n[j];

256 j := j + 1;

257 od;

258 i := i + 1;
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259 od;

260 return l;

261 end;

262

263 ######################################

264

265 Solve := function( unsolved )

266 #######

267 #Input: unsolved, a cube represented by a list of 54 colours

268 #Precondition: IsList( unsolved )

269 #Output: solution, a word representing a composition of group generators

270 #Postcondition: IsWord( solution) and

271 # solution applied to unsolved results in SolvedCube( unsolved )

272 #######

273

274 local solved, solvedNr, unsolvedNr, p, solution;

275

276 if not( IsInputCorrect( unsolved ) ) then

277 return;

278 fi;

279

280 solved := SolvedCube( unsolved );

281 solvedNr := [1..54];

282 unsolvedNr := ColoursToNumbers( solved, unsolved );

283

284 #Evaluate single permutation to solve cube

285 p := MappingPermListList( unsolvedNr, solvedNr );

286

287 #Handle non−existing cubes

288 if not( p in cube ) then

289 ErrorNoReturn( ”Cube does not exist. Check input.” );

290 fi;

291

292 #Decompose single permutation into group generators

293 solution := PreImagesRepresentative( hom, p );

294

295 return solution;

296 end;

297

298 ######################################

299

300 SolveGuide := function( unsolved, n )

301 #######

302 #Input: unsolved, a cube represented by a list of 54 colours and

303 # n, a non−negativ integer
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304 #Precondition: IsList( unsolved ) and

305 # IsInt( n ) and

306 # n >= 0

307 #Output: nothing is returned, solution gets printed

308 #Postcondition: none

309 #######

310

311 local solved, solvedNr, unsolvedNr, p, solution, i, j, partlysolved, middlePiecesC, c, s;

312

313 Print( ”Your initial cube:\n” );

314 DisplayCube( unsolved );

315 Print( ”\n\n” );

316 if not( IsInputCorrect( unsolved ) ) then

317 return;

318 fi;

319

320 solved := SolvedCube( unsolved );

321 solvedNr := [1..54];

322 unsolvedNr := ColoursToNumbers( unsolved, solved );

323

324 #Evaluate single permutation to solve cube

325 p := MappingPermListList( solvedNr, unsolvedNr );

326

327 #Handle non−existing cubes

328 if not( p in cube ) then

329 ErrorNoReturn( ”Cube does not exist. Check input.” );

330 fi;

331

332 #Decompose single permutation into group generators

333 solution := PreImagesRepresentative( hom, p );

334

335 if n = 0 then

336 Print( Length( solution ), ” turns required:\n”, solution, ”\nYour cube is then solved.\⤦
Ç n ” );

337 return;

338 fi;

339 partlysolved := unsolved;

340 i := 1;

341 j := 1;

342 while i <= Length( solution ) − n do

343 s := Subword( solution, i, i + n − 1 );

344 Print( ”Step ”, j, ”:\n” );

345 Print( s, ”\n” );

346 partlysolved := Permuted( partlysolved, Image( hom, s ) );

347 DisplayCube( partlysolved );
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348 Print( ”\n\n” );

349 i := i + n;

350 j := j + 1;

351 od;

352 Print( ”Step ”, j, ”: \n” );

353 Print( Subword( solution, i, Length( solution ) ) );

354 Print( ”\nYour cube is now solved.\n ” );

355 return;

356 end;

357

358 ######################################

359

360 DistrNumberOfMoves := function( n )

361 #######

362 #Input: n, an integer

363 #Precondition: IsList( unsolved ) and

364 # IsInt( n )

365 #Output: a, a list

366 #Postcondition: IsList( a )

367 #######

368

369 local c, i, a;

370

371 hom := GroupHomomorphismByImages( f, cube, GeneratorsOfGroup( f ), ⤦

Ç GeneratorsOfGroup( cube ) );

372 a := [];

373 i := 1;

374 while i <= n do

375 c := PreImagesRepresentative( hom, Random( cube ) );

376 Add( a, Length( c ) );

377 i := i + 1;

378 od;

379 a := Collected( a );

380 return a;

381 end;
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