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1 Introduction

The study of polynomials, in one form or another, is probably one of the
oldest entities studied in mathematics. From ancient times, through the
middle ages, the renaissance and moden times, polynomial functions and
related topics played a central role in the development of mathematics in
most cultures. The Hindus knew how to solve quadratics in 600 BC, and the
Babylonians by then had developed considerable skill at algebraic manipula-
tion and were using special cases of the quadratic formula. Symbolic algebra
as we know it today, developed in Arabia between 600 and 1000 AD. They
were solving cubic equations and, in the work of Al-Khowarizmi (c. 825),
they were starting to identify geometric magnitudes with numbers. These
led to formulas for areas, volume, etc. By Descarte�s time (1596 - 1658),
analytic geometry was well understood, so that the computational power of
algebra and the intuitive power of geometry could each enhance the other.

Subsequently the theory of equations attracted the attention of the best
mathematicians. Euler (1707 - 1783) and Lagrange (1736 - 1813) considered
the problem of �nding a general formula, analogous to the quadratic formula,
for the roots of any polynomial of degree 5. Their work led to the epoch
making discoveries of Abel (1802 - 1829) and Galois (1811 - 1832), who
brought groups into the picture.

The general study of curves and surfaces obtained as the graphs of poly-
nomials is known as algebraic geometry. Invariant theory, which dates from
the time of Cayley (1821 - 1895) and Sylvester (1814 - 1897), is the study
of which properties of a curve or surface remain invariant under certain
transformations related to polynomials. And I hardly need to mention the
hype and in�uence of elliptic curves and related topics during the last two
decades.

Heinrich Hertz (1857 - 1894), the well-known German physicist from
Hamburg, said of polynomials:
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"One cannot escape the feeling that these mathematical formulae
have an independent existence and an intelligence of their own, that they
are wiser than we are, wiser even than their discoverers, that we get more
out of them than was originally put into them."

(By the way, Hertz knew both Arabic and Sanskrit.)

Polynomials functions did not escape the formalism which became part
and parcel of mathematics in the twentieth century. This formal approach
to polynomials is the basis of the book of Lausch and Nobauer, (H. LAUSCH
and W. NÖBAUER. Algebra of Polynomials. North Holland, Amsterdam,
1973), 36 years ago. A polynomial over a given algebraic structure is just a
free algebra in which expressions are reduced by the rules of the variety in
which considerations are taking place. As such, polynomials over near-rings
are well-de�ned algebraic entities, but rather akward to deal with; even to
such an extent the very little, if any at all, were published on this topic.

About 25 years ago, a refreshing new look at what should constitute
a matrix near-ring, also led to a model for polynomial near-rings. This
proposed model for polynomial near-rings was suggested by Andries van
der Walt, but it it was Scott Bagley who took up the idea and set the
ball rolling. Apart from his contributions there were a few others, but the
cupboard remains embarrassingly bare.

In my talk today, I will brie�y survey what has been done. Following
that, I will discuss relationships between polynomial near-rings and matrix
near-rings and �nally, I want to say something about substitutions and poly-
nomial functions - the aim, of course, is to characterize those near-rings for
which the polynomial functions are exactly representative of all the self-maps
on the near-ring.

I need to start with two warnings:
Firstly, near-rings of polynomials should not be confused with polyno-

mial near-rings. Typically, a near-ring of polynomials is a set of polynomials
over a (commutative) ring (with identity) which is a near-ring with respect
to the usual addition and composition of ring polynomials. These near-
rings have been studied extensively and their theory and applications can
be found in the books by Pilz and Clay. A polynomial near-ring, on the
other hand, is a near-ring of polynomials in the universal algebraic sense,
see for example Lausch and Nöbauer. I will discuss polynomial near-rings
in this latter sense, following the model proposed by van der Walt.
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Secondly, the theory of polynomial near-rings is still in its infancy; many
of the concepts and tools are certainly not yet well-established. Much of
what has been done and what I will talk about today may well not stand
the test of time. Moreover, the words of Thomas Huxley (1825 - 1895), the
well-known English biologist and supporter of Darwin�s theory of evolution,
often rings true here:

"The great tradegy of science - the slaying of beautiful hypothesis
by ugly fact."

What then are polynomial near-rings?
Let N be a 0-symmetric near-ring with identity and let Nk be the direct

sum of k copies of (N;+) where k 2 N; N is the set of positive integers, or
k = !; the �rst limit ordinal. With respect to the usual left and right scalar
multiplication, Nk is a unital two-sided faithful N � N -bigroup. What
is meant by this, is that there are mappings N � Nk ! Nk and Nk �
N ! Nk, given by n� = n(�1; �2; �3; :::) = (n�1; n�2; n�3; :::) and �n =
(�1; �2; �3; :::)n = (�1n; �2n; �3n; :::) respectively such that (n + m)� =
n� + m�; (� + �)n = �n + �n; (nm)� = n(m�); �(nm) = (�n)m and
(n�)m = n(�m) for all �; � 2 Nk and n;m 2 N: All actions are unital and
Nk is two-sided faithful, i.e. nNk = 0 implies n = 0 and Nkn = 0 implies
n = 0:

As is well-known, MN (N
k) := ff 2 M0(N

k) j f(�n) = f(�)n for all
� 2 Nk; n 2 Ng is a subnear-ring of M0(N

k): By the left-faithfulness, N
can be embedded in MN (N

k) via � : N ! MN (N
k) de�ned by �(a) :=

�a; �a(�) := a� for all � 2 Nk: We identify a 2 N with �a in MN (N
k) and

note that the identity map on Nk is then the identity of N:
Any u 2 MN (N

k) � N will be called an indeterminate. A commuting
indeterminate is an indeterminate which is an N � N -homomorphism; i.e.
u(n�) = nu(�); u(�n) = u(�)n and u(�+�) = u(�)+u(�) for all �; � 2 Nk

and n 2 N: For an indeterminate u; let [N;Nk; u] be the subnear-ring of
MN (N

k) generated by N [ fug:

Let k = ! and de�ne x : N! ! N! by x(�1; �2; �3; :::) = (0; �1; �2; �3; :::)
- the so called right shift function. Then x 2MN (N

!)�N is a commuting
indeterminate and the near-ring [N;N!; x] is called the polynomial near-ring
over N: As is to be expected, this near-ring will be denoted by N [x]:
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2 Overview of existing results

As mentioned above, Scott Bagley was the �rst to study polynomial near-
rings as de�ned above:

} S. BAGLEY. Polynomial near-rings, distributor ideals and J2 ideals of
generalized centralizer near-rings. Doctoral dissertation, Texas A&M Uni-
versity, 1993.

} S. BAGLEY. Polynomial near-rings: Polynomials with coe¢ cients
from a near-ring. Nearrings, Near�elds and Loops (Editors Saad, Thomsen),
Kluwer Academic Publishers, Netherlands, 1997,179-190.

The major thrust here was to establish the tools to work with polynomial
near-rings and to investigate the structure and transfer of ideals between N
and N [x]: For example, if I is a left ideal of N; I� := ff 2 N [x] j f(N!) � Ig
is an ideal of N [x] and when I is an ideal of N; then N [x]=I� �= (N=I)[x]:

The next contributions came from Mark Farag:
} M. FARAG. On the structure of polynomial near-rings. Doctoral dis-

sertation, Texas A&M University, 1999.
} M. FARAG. A new generalization of the center of a near-ring with

applications to polynomial near-rings. Comm. Algebra 29 (2001), 2377-
2387.

Again much emphasis were on investigations of the ideal structure of
N [x]: In addition, he showed that polynomial near-rings do not satisfy the
dcc on ideals and that it has no minimal ideals. It is signi�cant to mention
that there is no Euclidean algorithm to assist in these proofs. He also gave
some generalizations of polynomial near-rings, including twisted polynomial
near-rings.

Both Bagley and Farag, as well as Lee
} Enoch K.S. LEE. Theory of polynomial near-rings. Comm. Algebra

32 (2004), 1619-1635);
develop many properties of polynomial near-rings modulo an ideal called

sym0; this is the ideal of N [x] generated by fa(b0 + b1x + ::: + bnx
n) �

ab�(n)x
�(n)�:::�ab�(0)x�(0) j a; bi 2 N and � is a permutation on f1; 2; 3; :::; ng

for n = 0; 1; 2; :::g: Any f 2 N [x] then satis�es f � f0 + f1x + ::: +
fnx

nmod sym0 for some n � 0; fi 2 N: Moreover, modulo this ideal of
symbolically zero polynomials, the product and sum of near-ring polynomi-
als are the same as for the polynomials over a ring. This, to me at least,
removes much of the fun and signi�cance of working with near-ring poly-
nomials. Ons should rather establish tools to work with proper near-ring
polynomials.

4



The degree of a near-ring polynomial seems to be problematic. Bagley
de�nes it as follows:

For 0 6= f 2 N [x]; deg(f) := maxfjf(�)j � j�j j � 2 N! has �nite
support} where for any � 2 N! with �nite support, j�j := minfm 2 N j
�i = 0 for all i > mg: When f = 0; it has degree 0 by de�nition. It is
shown that every polynomial has some degree and that a number of the
familiar properties of the degree of ring polynomials also hold for the near-
ring polynomials. In general, it is not always obvious what the degree of a
polynomial is, and often it is not just straightforward to calculate it. For
example, provided a does not distribute over b+ c, we have f := a(b+ cx)�
acx� ab is a polynomial of degree 0

There is one more paper dealing with polynomial near-rings:
} Enoch K.S. LEE and Nico J: GROENEWALD. Polynomial near-rings

in k indeterminates. Bull. Austral. Math. Soc. 70 (2004), 441-449;
show that one may iterate the near-ring polynomial construction and

that the order in which it is done is not important: (N [x])[y] �= (N [y])[x]:

At the last near-ring conference in Linz (2007), I described certain ho-
momorphic images of polynomial near-rings. For example, if N [x] is the
polynomial near-ring over a near-�eldN and the ideal generated by the poly-
nomial x2+1 in N [x] is denoted by



x2 + 1

�
; then N=



x2 + 1

� �= [N;N2; y]
where y 2 MN (N

2) � N is a commuting indeterminate with y2 + 1 = 0:
These results appeared in :

} S. VELDSMAN. Homomorphic images of polynomial near-rings, Contr.
Algebra and Geometry 50 (2009), 119-142.

We will return to these results again at a later stage. First we look at
the relationship between polynomial near-rings and matrix near-rings.

3 Polynomial near-rings and matrix near-rings

From our early training in linear algebra, we know that there are many fruit-
ful connections between matrices and polynomials and the one can hardly
be studied without the other. I next want to show that some of these rela-
tionships extend to the near-ring case. In fact, since in the near-ring case
both matrices and polynomials are functions, these relationships are actually
more natural.
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For a ring R; let M!(R) denote the ring of !�! row �nite matrices over
the ring R. Then the polynomial ring R[x] can be embedded in M!(R) by
 : R[x] ,!M!(R) de�ned by

 (f0+ f1x+ f2x
2+ :::+ fnx

n) =

2664
f0 f1 f2 ::: fn 0 0 :::
0 f0 f1 f2 ::: fn 0 :::
0 0 f0 f1 f2 ::: fn :::
: : : : : : : : ::

3775 :
Then R[x] �=  (R[x]) and the latter is a subring of M!(R): This is a

very special subring; for example, if R is a commutative ring then  (R[x])
is a commutative subring of the very non-commutative ring M!(R):Within
M!(R) it is possible to identify this subring. Let F be the matrix

F =

2664
0 1 0 0 0 0 0 :::
0 0 1 0 0 0 0 :::
0 0 0 1 0 0 0 :::
: : : : : : : : ::

3775 :
Then it can be shown that  (R[x]) = C(F ) where C(F ) is the centralizer

of F in M!(R); i.e. C(F ) = fA 2 M!(R) j FA = AFg: In fact, it can be
shown that R[x] �=  (R[x]) = C(F ) = R[F ] where the latter denotes the
subring R[F ] = ff(F ) j f(x) 2 R[x]g:

How much of this is true for near-rings? Well, we �rst need a near-
ring analogue of the row �nite matrices. This has already been provided by
Johan Meyer in his PhD thesis:

} J.H. MEYER. Matrix near-rings, Ph.D. thesis, University of Stellen-
bosch, 1986;

For the near-ring N; let M!(N) be the subnear-ring of MN (N
!) gener-

ated by ffaj j a = (a1; a2; a3; :::) 2 N!; j = (j1; j2; j3; :::) 2 N!g where faj :
N! ! N! is the function de�ned by faj (�1; �2; �3; :::) = (a1�j1 ; a2�j2 ; a3�j3 ; :::)
for all (�1; �2; �3; :::) 2 N!: If you want, you may think of faj as the ! � !
matrix with 0 everywhere except in the i-th row and ji -th column there
is an ai: Clearly N ,! M!(N) via a 7! faj where a = (a; a; a; :::) and
j = (1; 2; 3; :::):

Another preliminary, is: Recall that for the polynomial near-ring N [x]
we have used the right shift function x(�1; �2; �3; :::) = (0; �1; �2; �3; :::)
as the commuting indeterminate. One could equally well have used the
left shift function x(�1; �2; �3; :::) = (�2; �3; :::) for it can be shown that
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N [x] �= N [x]: If we insist on writing function arguments on the right then,
especially when we work with matrices as functions, it is more natural to
use the left shift function. And this is what we will do from now one: N [x]
will be the polynomial near-ring with x the left shift function.

Now both N [x] andM!(N) are subnear-rings ofMN (N
!) which contains

N; so the inclusion N [x] will follow if we can show that N [ fxg �M!(N);
i.e. we need x 2 M!(N): But this is clear since x = f1j where 1 = (1; 1; 1; :::)
and j = (2; 3; 4; :::): Moreover, as is the case for rings, it can be shown that
N [x] = C(x) where C(x) = fg 2M!(R) j gx = xgg:

As motivation for the next corresponcence, we again return to the civ-
ilized world of rings. Let R be a comutative ring with identity and let
h(x) = xk � hk�1x

k�1 � ::: � h1x � h0 be a monic polynomial of degree k
over R: Then

R[x]
hh(x)i

�= fa1 + a2y + a3y2 + :::+ akyk�1 j ai 2 R; yk =
k�1P
i=0

hiy
ig

�=Mk(R; h)

where a matrix in Mk(R; h) is of the form [aij ]k�k with a1j = aj for
j = 1; 2; 3; :::; k and aij = ai�1;j�1 + hj�1ai�1;k for i = 2; 3; :::; k and j =
1; 2; 3; :::; kg: Here we take ai0 = 0:

I suspect this latter representation of the polynomial quotient ring as
a matrix ring is well-know, but apart from one or two concrete examples
in abstract algebra text books (usually the one that leads to the circulant
matrices), I have not seen it or even a reference to a general result anywhere.

For illustrative purposes, a simple example will do: Let
h(x) = x3 � 2x2 + x� 3 2 Z[x]:

Then h2 = 2; h1 = �1 and h0 = 3:
Moreover,
Z[x]
hh(x)i

�= fa + by + cy2 j a; b; c 2 R; y3 = 2y2 � y + 3g �= M3(Z; h) and a
typical element of this matrix ring is24 a b c

3c a� c b+ 2c
3(b+ 2c) �b+ c a+ b+ 4c

35 :
Working with the matrices rather than the polynomials have the ad-

vantage that products of elements can be directly calculated; there are no
reductions necessary as is the case when dealing with the polynomials.
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Again Mk(R; h) is a very special subring of the ring of all k� k matrices
over A - it is, for example, a commutative ring of matrices. Again the
question arises which subrings S of Mk(R) will be such a quotient of a
polynomial near-ring. The answer is given by:

A subring S of Mk(R) is of the form Mk(R; h) for some polynomial
h(x) = xk � hk�1xk�1� :::� h1x� h0 2 R[x] if and only if S = C(E) where
C(E) denotes the centralizer of the matrix E in

Mk(R) and E =

26666664

0 1 0 0 : : : 0
0 0 1 0 : : : 0
0 0 0 1 0 : : 0
: : : : : : : : ::
0 0 0 0 : : : 1
h0 h1 : : : : : hk�1

37777775 for some hi 2
R: The matrix E is, of course, just the companion matrix of the polynomial
h(x):

Again we ask how much of this is true for near-rings? To start with, a nice
canonical description of the quotient of a polynomial near-ring determined
by the ideal generated by a polynomial is not always available. At the
previous near-ring conference, I showed that in some cases it is possible to
give a nice description of such quotients.

In order to do this, and also for later use, we need to �x a canonical
representation of near-ring polynomials. Contrary to the ring case, we do
not have a normal form for near-ring polynomials. So we will just have to
do the best we can.

It can be shown that N [x] =
1S
n=1

An where

A1 = fa1xn1 + a2xn2 + :::+ atxnt j ai 2 N;ni � 0; t � 1g:

If An has been de�ned for n � 1; then

An+1 = f
finiteP
i=1

aiwi j ai 2 N;wi 2 Ang:

We will write polynomials in the form given by the elements of the classes
An above. Moreover, we always write x as far to the right as possible (but
not as a common factor on the right) and the constants as far to the left as
possible. For example

ax(b+ x2c)dx = a(bd+ cdx2)x2 = a(bdx2 + cdx4)
but the last is the canonical representation.
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The level of a polynomial is the smallest n � 1 for which it is in An
and its height is the biggest exponent of x. But note that for a given
polynomial, these notions are not uniquly determined! Both these depend
on the particular representation chosen for the poynomial. It could well
happen that f(x) = x2 � bx = d(b� x) - both are canonical representations
of f(x) but with di¤erent levels as well as di¤erent heights. So, the level
and the height of a polynomial is always associated with the particular
representation chosen for it.

Let h(x) = xk � p(x) where k � 2 and p(x) is a polynomial with a
representation of height k�1: Subject to some conditions on the polynomial
p(x); which is not important here, it has been shown that N [x]

hh(x)i
�= [N;Nk; y]

where y : Nk ! Nk is a commuting indeterminate with yk = p(y) in
[N;Nk; y]: Our interest is now on the near-ring [N;Nk; y]: Recall that it
is the subnear-ring of MN (N

k) generated by N [ fyg: But we know that
Mk(N); the k�k matrix near-ring over N; is also a subnear-ring ofMN (N

k);
namely the subnear-ring generated by ffaij j a 2 N; 1 � i; j � ng where faij :
Nk ! Nk is the function de�ned by faij(�1; �2; :::; �k) = (0; 0; :::; a�j ; 0; :::; 0)
with a�j in the i-position. Again, like for the ring case, it can be shown
that

N [x]
hh(x)i

�= [N;Nk; y] � Mk(N); in fact,
N [x]
hh(x)i

�= [N;Nk; y] = C(y) = ff 2
Mk(N) j fy = yfg; the centralizer subnear-ring of y in Mk(N):

This then brings us to our last topic:

4 Substitution and polynomial functions

As we well know, whenever one leaves a comforting commutative environ-
ment, substitutions in polynomials are problematic. And near-ring polyno-
mials are no exception.

For substitution in near-ring polynomials, we should always have the
polynomial in the canonical form before we do any substitution. For rings,
this would mean right substitution. Just to remind you of the problems we
can expect with substitution, let f(x) = (x � a)(x � b) 2 N [x]; take N to
be a near-�eld. If one is required to �nd the t 2 N for which f(t) = 0
and due care is not taken, one�s �rst reaction will be to argue that f(t) =
0 , (t � a)(t � b) = 0 from which t = a or t = b follows since N is a
near-�eld. This is of course not the case - for substitution the polynomial
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f(x) must be in canonical form. This means f(x) = (x � a)(x � b) =
x(x� b)� a(x� b) = x2 � bx� a(x� b) and the last form is the canonical
form. Then f(a) = a2 � ba � a(a � b) which need not be 0; even if N is a
ring.

A more serious challenge will be what to make of the following: Let
f(x) = d(x�a)�d(b�a)+d(b�x) 2 N [x]: Here we take arbitrary distinct
elements a; b; d from N ; just ensure that d does not distributive over b� a.
Then f(x) is a near-ring polynomial of degree 1 in the sense of Bagley, or
of height 1 in my terminology, but it has two arbitrary distinct zeros a and
b: And we may even take N to be a �nite near-�eld!

Or, let f(x) = a(b+x)�ax�ab 2 N [x]: Then f(x) has height 1, degree
0 and two zeros x = 0 and x = �b: Even a simple linear equation like
a(b+ x) = c+ dx may not have a solution when N is a �nite near-�eld; i.e.
a polynomial like g(x) = a(b + x) + c + dx may not have a solution over a
near-�eld.

In other words, in stark contrast to the ring case, the only rule that tells
us how many zeros to expect for a near-ring polynomial over a near-�eld,
says that it may have no zeros or it may have some zeros.

Let me remind you of some of the well-known results when dealing with
commutative rings:

(1) For a ring polynomial f(x); we have: f(a) = 0 if and only if x� a is
a factor of f(x):

(2) If R is an integral domain, then any polynomial of degree n over R
can have at most n roots in R:

(3) If we discard commutativity, and let D be a division ring, it has been
shown that any polynomial of degree n over D; can have either one zero
from each of at most n conjugacy classes in D or it will have an in�nite
number of zeros.

So, as we return to near-rings, the above should serve as a warning that
we are about to enter highly insecure territory. With our agreement on
a cannonical form for a near-ring polynomial, substitution is well-de�ned
operation.

Or is it really?

As mentioned, a near-ring polynomial f(x) may have many di¤erent
representations, for example f(x) = x2 � bx = d(b� x). For a substitution
f(a); which representation should we choose? Fortunately it can be shown
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that it does not matter - they will all give the same element in N which
means that f(a) is indeed well-de�ned.

With any near-ring polynomial f(x) we thus associate a uniquly deter-
mined function f : N ! N de�ned by f(a) = f(a) where the latter means
we replace all occurences of x with a: This substitution is well-behaved
with respect to addition, in the sense that if h(x) = f(x) + g(x); then
h(a) = f(a) + g(a): But this is not the case with products and composi-
tion: If h(x) = f(x)g(x); then we need not have h(a) = f(a)g(a) and if
h(x) = f(g(x)); also h(a) need not coincide with f(g(a)): There are some
tools that do facilitate the process of substitutions in products and compo-
sitions. I will mention some of them for you:

(1) For a 2 N and f(x) 2 N [x]; f(a) = 0 if and only if f(x) 2 hx� a]
(and this is as good as it gets).

(2) Let f(x) 2 N [x] and let hf(x)] be the left ideal of N [x] generated by
f(x): If f(a) = 0 for some a 2 N and g(x) 2 hf(x)] ; then g(a) = 0:

A number of related tools are:

(3) We do have some division algorithm: If h(x) = xk�p(x) 2 N [x] where
p(x) has height � k�1; then for any f(x) 2 N [x]; f(x) = h1(x)+r(x) where
h1(x) 2 hh(x)] and r(x) has height � k� 1: But, as we have seen above, the
fact that r(x) has height � k� 1 says nothing about the number of zeros it
may have; even if N is a �nite near-�eld.

(4) Let L be a left ideal of N and let f(x) 2 N [x]: If c 2 L; then
f(c)�f(0) 2 L: If L is an ideal of N; then b� c 2 L implies f(b)�f(c) 2 L:

(5) Let a 2 N: Then ha] = fp(a) j p(x) 2 N [x]; p(0) = 0g:

(6) A non-zero element b of N is called a generalized unit in N if there
is a polynomial p(x) 2 N [x] with p(0) = 0 and p(b) = 1:

In a ring R with an identity, 0 6= b 2 R is a generalized unit if and only
if b has a left inverse. For near-rings one can show:

(7) Let N be a 0-symmetric near-ring with identity. Then every non-zero
element of N is a generalized unit if and only if N has no non-trivial left
ideals.
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We use P(N) and M(N) to denote the set of all near-ring polynomial
functions and the set of all self-maps of N respectively. A rather pleasing
result is the following:

(8) Let N be a 0-symmetric near-ring with identity. If P(N) =M(N);
then N is a �nite near-�eld.

For a commutative ring R with identity, we know P(R) =M(R) if and
only if R is a �nite �eld. For arbitrary rings (not necessarily commutative
and not necessarily with identity), we know: For the ring R; P(R) =M(R)
if and only if R is either the trivial ring of order 1 or 2; or for some n and
some �nite �eld F; R =Mn(F ): I should mention, in this result polynomial
means generalized polynomial in the sense that the indeterminate is not
commuting and one has to cater for di¤erent terms like ax and xa (J.V.
Brawley and L. Carlitz, A characterization of the n � n matrices over a
�nite �eld, American Mathematical Monthly 80 (1973), 670 - 672).

What the situation is concerning the converse of (8) above is not clear.
The di¢ culty is that in the near-ring case, even for �nite near-�elds, one
do not have the interpolation results of Lagrange or Newton available. In
particular, the problem is constructing near-ring polynomials with prescibed
zeros. Well, this is not entirely true. I will show you that one can construct
near-ring polynomials with any desired zeros. The problem is that in general
one cannot be sure that these are the only zeros.

Let N be a near-�eld and let a0; a1; a2; :::; ak be distinct elements from
the near-�eld N: Inductively we will de�ne polynomials with zero a0; with
zeros a0; a1; with zeros a0; a1; a2; etc.

Clearly f0(x) = x� a0 is a near-ring polynomial with unique zero a0:

We next de�ne a sequence of elements in N as follows:

v(b1; b0) =

�
(b1 � b0)b1(b1 � b0)�1 if b1 6= b0
b1 otherwise

and if v(bn; bn�1; :::; b1; b0) has been de�ned for any bn; bn�1; :::; b1; b0 2
N;n � 1; let

v(bn+1; bn; :::; b1; b0) = v(v(bn+1; bn�1; :::; b1; b0); v(bn; bn�1; :::; b1; b0)):

Then f1(x) = (x�v(a1; a0))f0(x) is a near-ring polynomial with both a0
and a1 as zeros. To verify this, we must �rst write f1(x) in canonical form
before we do the substitution. Thus:
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f1(x) = (x� v(a1; a0))f0(x)
= (x� v(a1; a0))(x� a0)
= x(x� a0)� v(a1; a0)(x� a0)
= x2 � a0x� v(a1; a0)(x� a0):

Clearly f1(a0) = 0 and

f1(a1) = a21 � a0a1 � v(a1; a0)(a1 � a0) = (a1 � a0)a1 � (a1 � a0)a1(a1 �
a0)

�1(a1 � a0) = 0:

By abuse of notation, for the obvious advantage of direct substitution,
we note that f1(x) can be written as:

f1(x) = x2 � a0x� v(a1; a0)(x� a0)
= (x� a0)x� v(a1; a0)(x� a0)
= ((x� a0)x(x� a0)�1 � v(a1; a0))(x� a0)
= (v(x; a0)� v(a1; a0))(x� a0)

where v(x; a) = (x � a)x(x � a)�1: This should not be thought of as a
"polynomial" in x; it is just a covenient notation and when x is replaced by
b 2 N; say, then that is exactly what we do.

The bene�t of this representation of f1(x) is that direct substitution is
valid without �rst writing the polynomial in canonical form, i.e., for any
b 2 N; we have f1(b) = (v(b; a0)� v(a1; a0))(b� a0): Then

f1(b) = 0 , (v(b; a0) � v(a1; a0))(b � a0) = 0 , b = a0 or v(b; a0) =
v(a1; a0): This last equality holds if b = a1; but not necessarily only if for
there may well be other b0s with v(b; a0) = v(a1; a0): We note that such b0s
must be conjugates of a1 (but not just any conjugate).

It is worth empasizing this point with an example: Let N be the near-
�eld on GF (32) = fa + bt j a; b = 0; 1; 2g: Then f(x) = (v(x; t) � v(2 +
t; t))(x� t) has zeros 2+ t; t and 1+2t since v(1+2t; t) = v(2+ t; t): On the
other hand, g(x) = (v(x; 2 + t))(x � (2 + t)) has zeros 2 + t; t and 2t since
v(2t; 2+t) = v(t; 2+t):Moreover, h(x) = t(x�(2+t))�t(t�(2+t))+t(t�x)
has zeros 2 + t; t and 1 + t:

Let us return to our construction and let f2(x) = (x�v(a2; a1; a0))f1(x):

which can be written as
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f2(x) = (v(x; a1; a0)� v(a2; a1; a0))(v(x; a0)� v(a1; a0))(x� a0):

As in the previous case, we have direct substitution since for any b 2 N;

f2(b) = (v(b; a1; a0)� v(a2; a1; a0))(v(b; a0)� v(a1; a0))(b� a0)

Then f2(x) has zeros a0; a1 and a2: Continuing in this way, we can get
a near-ring polynomial with zeros a0; a1; a2; :::; ak but we cannot be as-
sured that these are the only zeros. For example, for f(x) = (v(x; a0) �
v(a1; a0))(x � a0) we know a0 and a1 are zeros, but there well could be an
b 2 N; b not equal to either a0 nor a1 with v(b; a0) = v(a1; a0): When we
have commutativity available, then v(a; b) = (a � b)a(a � b)�1 = a and
we are on a well-trodden path. But we do not have this in general, so we
conclude with:

Let N be a �nite near-�eld with v(a; c) 6= v(b; c) for all distinct elements
a; b; c in N: Then P(N) =M(N):

I suspect that this assumption will actually force N to be a �nite �eld,
i.e. we will get the result: Let N be a 0-symmetric near-ring with identity.
Then P(N) = M(N) if and only if N is a �nite �eld. But we have to
remember the words of Stephen Hawkins (1942 - ), the well-known British
theoretical physicist:

"One is always a long way from solving a problem until one actually
has the answer."
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