
          Generation of M0(V) from a Group Theory Perspective

     What is the biggest problem (solved or unsolved) that algebra has presented us 
with?  It seems somewhat reasonable to suggest that it  is the classification of all 
finite simple groups.  Having, in some sense, given an answer to this question we 
come to another.  What is the biggest problem (unsolved) that algebra has presented 
us with?  It is within possibility that it is solving the n-gen problem (ie. when is the 
nearring M0(V) generated by a unit of order n?).  In this talk we shall see that the 
first problem has a great deal of bearing on the second.
     In this talk I shall cover something of what is known about the n-gen problem and 
indicate  how  Tim  Burness  and  I  have  solved  a  very  meaningful  group  theory 
problem it  has tossed up.   The  solution to  the group theory problem rests  quite 
strongly on finite simple group classification.
     How is M0(V) generated?  Can it be generated by a single element?  This was 
shown to be the case generally, in my 1979 paper [2], in the Proc. Edin. Math. Soc. 
The element α involved was a very simple one.  It satisfied α2 =1.  Ηοwever, much 
much more to do with M0(V) generation was possible.   The subnearring N(α) of 
M0(V)  generated by a single element α of M0(V) is countable and cannot generate 
M0(V) when V is infinite as card(M0(V)) is uncountable.  What [2] says is that for 
finite V things are radically different.  Here a very special unit generates M0(V).  In 
this  regard it  should also be noted that  when  α is  not  a unit  then in no way is 
N(α)=M0(V).  This is because the set of all  β in M0(V) such that aβ=bβ (a and b 
distinct  elements  of  V)  is  a  proper  subnearring  of  M0(V).  So  straight  away  the 
generation problem (when does N(α)=M0(V)) imposes on us the finiteness of V and 
that α is a unit. 
     Since we are dealing with the symmetric group on the finite set V* (explain) there 
is not much that can be said about units generally except that they have an order n 
say.  So a very real problem that presents itself  is given an integer n>1 when is 
M0(V) (V a finite group) n-gen (generated by a unit of order n).  This problem is 
‘completely solved’ in the case of n a prime and is starting to give up its secrets in 
the case of composite n.  In fact the p-gen problem almost seems more complex than 
the n-gen one (although the solution of the n-gen one is expected to be much much 
more substantial).  What is meant by the word ‘completely’ used above?  It is this:- 
given a group V and prime p there is now theory that quickly allows us to decide if 
M0(V)  is  p-gen.  A  large  section  of  this  theory  is  essentially  nearring  material 
(although  quite  meaningful  group  theory  is  involved).   However  the  nearring 
solution is supplied within a group theory framework and this quite deep secondary 
matter is what most of this talk is about.  
     The introduction to the group theory problem requires we now briefly cover what 
nearring considerations yield.  This nearring aspect is what my 2007 conference talk 
was concerned with.  If V is a group then the number of minimal subgroups of V (ie. 



number of subgroups of prime order) will be denoted by δ(V).  One would expect 
that in general δ(V) is considerably less than |V|.  Apart from elementary two groups 
this is indeed the case.  In fact apart from such groups  δ(V)<3|V|/4-1/2.  We now 
define some classes of groups in terms of  δ(V).  Given a prime p we let D(n,p), 
n=1,2,…, be all groups V (not elementary two) of order  <np where  δ(V)>(n-1)p. 
From above D(n,p)  is  empty  when n>4.   However,  D(n,p)  is  frequently  enough 
empty  when n=3 and generally  contains many groups when n=2.  For  n=1 it  is 
simply all groups (non-zero and not elementary two) of order <p.  With In(p) as all 
elementary two groups of order incongruent to 1 mod p, we can state the theorem 
following.  This is the main theorem of my 318 page unpublished paper ‘Generators 
of Finite Tranformation Nearrings’.  Much of the talk I gave at the 2007 conference 
was about it.

Theorem A  If p is a given prime >5 (2 and 3 are dealt with in the literature) then 
M0(V) is p-gen if and only if V does not belong to one of the following mutually 
exclusive classes

In(p), D#(1,p), D(2,p) and D(3,p).

     The classes D#(1,p),  D(2,p) and D(3,p)  are finite,  D#(1,p)  is  all  groups (not 
elementary two) of order <p, D(2,p) is all groups (not elementary two) of order <2p 
with  δ(V)>p  and  D(3,p)  is  all  groups  (not  elementary  two)  of  order  <3p  with 
δ(V)>2p.  This means our theorem (together with results from classification of 2-gen 
and 3-gen M0(V)) yield the following corollary:-

Corollary If p is a prime then, apart from a finite number of exceptions M0(V) is p-
gen if and only if V is not an elementary 2-group of order incongruent to 1 mod p.

     This corollary goes a long way but we want precise information.  We want to 
know what the exceptions are and to do this we must classify the groups of D(2,p) 
and  D(3,p).   This  will  be  achieved  if  we  classify  groups  V  where  δ(V)>|V|/2. 
However, in keeping with a paper of C.T.C Wall (explain what the main theorem of 
this paper achieves) leading somewhat in this direction, we seek a classification of 
finite groups V with  δ(V)>|V|/2-1.  This is the problem Tim Burness and I have 
solved.   The  key  theorem  here  demonstrates  such  a  group  has  a  rather 
straightforward structure.  It is interesting to note that G=A5 is the only non-soluble 
group with  δ(G)>|G|/2-1 while  δ(G)=|G|/2 (C2 exempt) if and only if G=S3+D4+E 
(explain).  We are now almost in a position of being able to state the group theory 
theorem which gives us full understanding of the nearring one (ie. full understanding 
of the groups in D(2,p) and D(3,p)).  To do this we list ten families of groups
(I) G=D(A) the generalised dihedral group on the abelian group A (explain this),
(II) G=D4+D4+E (explain),



(III) G=H(r)+E,  where  H(r)  is  the  direct  sum  of  r  copies  of  D4 which  are 
completely amalgamated on their centres (explain),

(IV) G=S(r)+E, where S(r) is the direct sum of r copies of C2+C2  extended by a C2 

acting as the wreath product on each C2+C2 (explain this and also that (I) to 
(IV) are precisely the groups with i2(G)>|G|/2-1),

(V) G=T(r), where T(r) is the direct sum of r copies of C2+C2 extended by a C3 

where the C3  acts on each C2+C2  as an A4 (explain this),
(VI) G is a group of exponent three (explain),
(VII) G is a S3+D4+E,
(VIII) G is a S3+S3 ,
(IX) G is a S4 , and
(X) G is a A5 .

     With the class of groups which belong to any of (I) to (X) called L we have the 
following theorem

Theorem B  A non-trivial finite group G has δ(G)>|G|/2-1 if and only if G is in L.

     The precise value of δ(G) for each G in L can be listed according to whether it 
belongs to (I), (II)… or (X), and allows us to determine exactly what groups are in 
D(2,p) or D(3,p) (given p --- see theorem A).
    The  proof  of  theorem  B  involves  us  in  a  relatively  deep  group  theory 
investigation.  It will be outlined how this goes.  One of the first things to note is that 
the proof can in some sense be handled inductively.  We have:-

Lemma B1  If G is a finite group with proper normal subgroup H where δ(G/H)<|
G/H|/2-1 then δ(G)<|G|/2-1.

     The second thing to note is that, in a sense, quite often we do 
not need to look further  than elements of  order two and three. 
Here we have another fairly easily proved lemma.

Lemma B2   If 3+3i2(G)+ i3(G)<|G|, then δ(G)<|G|/2-1 (explain).

     This last lemma is very relevant to the non-soluble situation but for the moment it 
is the first lemma we will talk about.  If G is a finite group with a maximal normal 
subgroup H, then G/H is a finite simple group.  This means it is a Cp (p a prime) or a 
finite non-abelian simple group.  The case of p>5 certainly has δ(G/H)=1<|G/H|/
2-1 so B1 gives the result.  Thus G/H is a C2 or a C3  or a finite non-
abelian  simple  group.   It  is  the  last  case  that  is  of  immediate 
interest.   According to B we should have for all finite non-abelian 
simple groups either δ(G)<|G|/2-1 or G=A5.  This can be proved.  In the 



case of the alternating groups An n>5, we make use of B2.  Combinatorial arguments 
can be used to give precise expressions for i2(An) and i3(An) and then show 3+3i2(An)
+ i3(An)<|An|.  The argument here although quite clever is not that difficult.  But non-
abelian finite simple groups are divided into three categories.  The alternatings, the 
sporadics and those of Lie type, so we are a third of the way through this initial 
problem.   For  the  sporadics   the  character  table  of  G  is  available  in  the  GAP 
character library and it is easy enough to calculate δ(G) precisely.  In all cases 
δ(G)<|G|/2-1.   Groups  of  Lie  type  remain.   Certain  exceptional 
cases are here dealt with by easy enough calculation or using GAP. 
The remaining cases can be handled without too much difficulty by 
using results that give bounds for i2(G) and i3(G) heavily based on what has 
been handed down to us by those who have worked on these groups.  Using these 
bounds we show B2 holds.
     Our problem has been reduced to the situation where G/H is a C2, C3 or A5.  The 
nice thing about this is that when G/H is a C2 all elements of order three are in H and 
when G/H is a C3 all elements of order two are in H.  This means there is some 
chance of applying B2 in both cases.  This is accomplished for non-soluble G.  In the 
C2 situation we have a result of Potter [1] telling us that i2(G)<4|G|/15-1.  However, 
the elements of order three in a non-soluble group K are bounded by 7|K|/20-1 (this 
is quite a big result with proof depending on investigation into the three classes of 
finite simple non-abelian groups and taking it further to the non-soluble case).    So 
now in the C2 situation i3(G)=i3(H)<7|G|/40-1 and it follows that 3+3i2(G)+ i3(G)<|
G|.  C2 is dealt with for non-soluble G.  For the C3 case i2(G)=i2(H)<4|G|/45-1 (see 
above) and i3(G)<7|G|/20-1 (above again) so that 3+3i2(G)+i3(G)<|G|.   For the A5 

with H non-soluble we again use the 7|G|/20-1 bound, the fact that i2(H)<3|H|/4-1 
(explain) and information about A5 to obtain the result.  The situation where H (non-
zero) is soluble is easily enough dealt with (it depends on δ(A5) being close to |A5|/2 
--- explain).  The above process means showing theorem B holds can be reduced to 
the case of soluble G. 
     The fact that theorem B holds for soluble G is, in some ways, the hard part of the 
proof.   However,  something like this was known to me at  the time of  the 2007 
conference.   I  had  in  place  nearly  all  characterisation  of  G (soluble)  for  which 
δ(G)>|G|/2.  This material indicated that the |G|/2-1 bound might be 
more natural.   So this is what Tim and I have done (classify all 
such G --- soluble or non-soluble).  Tim’s knowledge of finite simple 
groups (even finite non-soluble groups) was invaluable.  Previously 
Erhard Aichinger and I had worked on the non-soluble group case. 
Our computer investigations indicated B held for these, but it was 
only experimental evidence.  I am very grateful to everyone who 
has contributed to this effort, but particularly to Tim Burness for 
filling the non-soluble gap so successfully.



     The problem has reduced to showing if G is a group (soluble) 
with a minimal normal subgroup (necessarily elementary abelian) 
H  with G/H an L-group, then G is an L-group or δ(G)<|G|/2-1.  Thus 
we must look at the possibility of G/H being as in (I) to (IX).  Three 
of these categories are not so hard to cover.   First there is the 
situation (IX) where G/H is an S4.  Here δ(G)<|G|/2-1.  Next comes 
the situation where G/H is an S3+S3.  Here again δ(G)<|G|/2-1.  Next 
we look at (VII) where G/H is a  S3+D4+E.  This is only slightly different. 
Here G is a S3+D4+E1 (explain) or δ(G)<|G|/2-1.
     Next in the proof for G soluble it is needful to look at certain G/K 
(K normal in G) of more elementary nature.  The first is  with K 
minimal normal and G/K an S3.  Here we have either G is a D(A) (A 
abelian of exp>3) or G a S4  or G has δ(G)<|G|/2-1.  The second is 
with K elementary two and G/K a C3.  Here it follows that G is a T(r)
+E or a C3+K.  The only situation in this where δ(G) is not <|G|/2-1 
is G a T(r) for some r>1.  The third situation we look at is where K 
is an abelian 2-group of index nine.  Here δ(G)<|G|/2-1 (*).
     At  this  stage  things  begin  to  become  very  much  more 
complicated.  It is not my intension to go into too much explanation 
but  to  outline  what  is  reasonably  accessible.   A  major  result 
allowing  more  to  be  said  about  soluble  G  with  G/H  (H  minimal 
normal) an L-group is the following.  For soluble G with non-trivial 
normal subgroup K of odd order and G/K a 2-group we have either 
G is a D(A) (exp(A)>3) or G is a  S3+S3 or G is a  S3+D4+E or  δ(G)<|
G|/2-1 (**).  This allows the case of G/H of type (I) to be handled. 
Again this is a major result.  Here we have either G is a 2-group or 
a D(B) (B abelian of exp>3) or G is a S3+D4+E or G is a S3+S3 or G is a S4 

or  δ(G)<|G|/2-1.   The first  case of  G a 2-group introduces us to 
Wall’s result [3] because here  δ(G) is just i2(G) (explain).  Thus in 
the case of G/H a D(A) we have either G is an L-group or  δ(G)<|
G|/2-1.  But (**) allows us to handle more.  It is easy enough to see 
that it allows us to handle G/H being as in (II), (III) or (IV) because 
when  H  is  elementary  two  G  is  a  2-group  and  Wall’s  theorem 
applies.  So we have shown so far that when G/H is as in (I), (II), 
(III), (IV), (VII), (VIII) or (IX), then G is an L-group or δ(G)<|G|/2-1.
     All that remains is G/H being as in (V) or (VI).  Here we assume 
G is minimal for not being an L-group or having  δ(G)<|G|/2-1.  In 
both cases G has a maximal normal subgroup K of index three.  If 
δ(K)<|K|/2-1, then it is relatively easy to show δ(G)<|G|/2-1.  Thus 
the minimality of G allows the conclusion that K is an L-group.  If K 
is  of  type (I),  (VII),  (VIII)  or  (IX),  K  has a maximal characteristic 



subgroup K1 of index two and G/K1 is easily seen to be a C6.  So 
here δ(G)<|G|/2-1 (explain).  For K as in (VI) things are easy enough 
(explain --- either G is of type (VI) or δ(G)<|G|/2-1).  For K of type 
(V) (*) applies.  Thus we only have K of type (II), (III) or (IV).  Type 
(II) can be eliminated because D4+D4 has no automorphism of order 
three (explain).  Type (III) and (IV) are a little harder to deal with. 
Essentially  these  can  be  eliminated  because  both  H(r)  and  S(r) 
have order two to an odd power.   In this way the proof of B is 
completed.

     We now make out a list of L-groups in terms of type, giving their 
order and the value of δ(G).  Here E is elementary two of order 2n.

               G=D(A)                                 2|A|                           |
G|/2+δ(A)
               G=D4+D4+E                           2n+6                           9|G|/16-1
               G=H(r)+E                               22r+n+1                                       |G|/2+2r+n-1 
               G=S(r)+E                               22r+n+1                                       |G|/2+2r+n-1 
               G=T(r)                                   3.22r                          2|G|/3-1
               G has exp 3                            3m                                  (|G|-1)/2
               G is a S3+D4+E                       3.2n+4                         |G|/2
               G is a S3+S3                            36                              19
               G is a S4                                 24                               13
               G is a A5                                 60                               31

     Theorem A tells us that the groups V for which M0(V) is not p-gen (p>5 a 
prime) is the union of In(p), D#(1,p), D(2,p) and D(3,p).  The groups 
of In(p) and D#(1,p) create no real difficulties.  They are excluded 
on very natural grounds (explain).  However, the groups of  D(3,p) 
and very much more those of D(2,p), are certainly harder to find. 
But  this  can now be done.   The list  given allows it.   If  we can 
determine when G (not elementary two) having order <3p has δ(G) 
>2|G|/3 then we have the groups of D(3,p).  If we can determine when G 
(not elementary two) having order <2p has δ(G) >|G|/2 then we have the 
groups of D(2,p).  This is just a matter of looking at the above list.



     We still have some further interesting questions about D(2,p) and D(3,p).  These 
are  finite  classes  so  how  many  groups  do  they  contain.   Here  D(3,p)  is  very 
rudimentary.    It is often empty and contains at most two groups (ie. |D(2,p)|<2 --- 
explain what these two groups are).  Things are more complicated for D(2,p).  What 
we have here is  that |D(2,p)|>log2p-3 so that |D(2,p)|  tends to infinity as p does. 
Indeed  it  looks  as  though  this  lower  bound  may  not  be  too  far  from  |D(2,p)| 
generally.  It was calculated in Tim and my paper that |D(2,p)|<576 for all primes 
p<106.  It was also calculated that for p=257 (a Fermat prime --- give explanation 
here) |D(2,p)|=35.
     The p-gen problem is of course part of the very much bigger n-gen problem.  It is 
explained now how a solution of  this  appears  to go.   The literature handles  the 
situation where n=2 or 3.  For n a prime >5 this is handled by theorems A and B. 
For n=pq where p<q are distinct primes and V not elementary two it would seem 
that  the  only  groups  that  must  be  excluded  are  those  where  |V|<p+q  or 
p+q<δ(V)<3p, while for elementary two groups it  appears we need only exclude 
those where |V*| is not positively spanned (explain what this means) by p and q.  For 
n being an integer other than above and not a prime power a result similar to the pq 
case appears to hold apart from the δ(V) requirement (explain).  This would mean all 
n and V can be handled except where n=pm (m>2).  Also here it looks very likely 
things can be tied up.  What is conjectured is that those V not elementary two having 
|V*|<n are excluded and those V elementary two with |V*|<n or |V| incongruent to 1 
mod p are also.   If this were to be true (it is beginning to look that way) the n-gen 
problem would be completely sown up.  However, this is  a huge problem.  The 
number of pages needed in its solution is hard to estimate.  I feel it could easily be 
upward of 600.    

                         

                                                   References

[1]  W.M.Potter,  ‘Non-solvable  groups  with  an  automorphism  inverting  many 
elements’, Arch. Math. (Basel) 30 (1988), 292--299.
[2]   S.D.Scott,  ‘Involution near-rings’,  Proc. Edin. Math. Soc. 22(1979), 241--245
[3]  C.T.C.Wall,  ‘On  groups  consisting  mostly  of  involutions’,  Math.  Proc. 
Cambridge Philos. Soc. 67 (1970). 251--262.
     
     
  


