ALGEBRA IN AGRICULTURE

THE PROBLEM: We have 7 ingredients for a fertilizer: a, b, c, ... , g

Which combination of these ingredients should be taken in order to get a maximal yield?

SILLY SOLUTION:

We test on small fields (not in the algebraic sense!!):

- 1 field without any ingredient
- 7 fields with precisely 1 ingredient

21 fields with 2 ingredients

1 field with all 7 ingredients

Pretty silly: We need $1+7+21+ \ldots +1 = 128$ experimental fields. Much too costly !!!

MUCH BETTER SOLUTION:

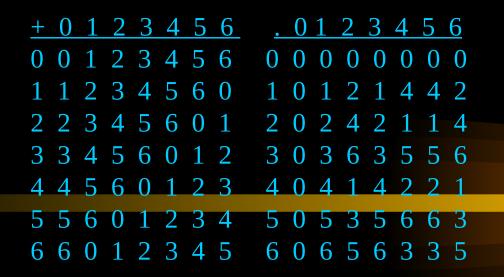
We only test a few selected combinations of the ingredients, observing two rules of fairness:

* Each ingredient should get the same chance to "show its power"

* Each experimental field should get the same number of ingredients

Sounds good, but how can we get that ??? We need a BIB-design!

We compute in a strange way ...



"Blocks" arise:

block 1: 1,2,4 block 2: 2,3,5 block 3: 3,4,6 block 4: 4,5,0

block 7: 0,1,3

block 8: 3,5,6 block 9: 4,6,0 block 10: 5,0,1 block 11: 6,1,2

block 14: 2,4,5

These blocks lead to the incidence matrix:

block 1: 1,2,4 block 2: 2,3,5 block 3: 3,4,6 block 4: 4,5,0 block 7: 0,1,3								b b b		x 9: x 10 x 11:	4,6 : 5,0 : 6,1	5,0 ,1 ,2		
/0		۲: ۱	U, I,	0	1	1	0	1	lock	0	1	ر.	0)	
1	0	0	0	1	0	1	0	0	1	1	0	1	0	
1	1	0	0	.0	1	0	0	0	0	1	1	0	1	
0	1	1	0	0	0	1	1	0	0	0	1	1	0	
1	0	1	1	0	0	0	0	1	0	0	0	1	1	
0	1	0	1	1	0	0	1	0	1	0	0	0	1	
0)	0	1	0	1	1	0	1	1	0	1	0	0	0/	

We get a balanced incomplete block design (BIB-Design):

- We have a set P of v "points" (here, v=7)
- We have a collection B of b "blocks" (subsets of P) (here, b = 14)

Such that

- Each set in B has the same cardinality k (here, k=3)
- Each point is in the same number r of blocks (here, r=6)
- Each pair of different points is in the same number of blocks (here, =2)

This connection between planar near-rings and BIB-Designs is due to

James R. CLAY Giovanni FERRERO Wenfong KE Gerhard WENDT

Back to the "roots": the design of the experiment:

/0	0	0	1	0	1	1	0	1	1	0	1	0	0)
1													
1	1	0	0	.0	1	0	0	0	0	1	1	0	1
0	1	1	0	0	0	1	1	0	0	0	1	1	0
1	0	1	1	0	0	0	0	1	0	0	0	1	1
0	1	0	1	1	0	0	1	0	1	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	0	0	0/

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a				X		X	X		X	X		X		
b	X				X		X			X	X		X	
С	X	X				X					X	X		X
d		Х	X				X	X				X	X	
e	X		X	X					X				X	X
f		X		X	X			X		X				X
g			X		X	X		X	X		X			

Experimental design with yields:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a				X		X	X		X	X		X		
b	X				X		X			X	X		X	
С	X	X				X					X	X		X
d		X	X				X	X				X	X	
е	X		X	X					X				X	X
f		X		X	X			X		X				X
g			X		X	X		X	X		X			
	12.3	14.1	12.1	14.9	11.1	13.6	12.5	11.2	13.9	13.5	11.3	13.9	12.2	15.1

Record: **15.1** Reference field: yield = 10.5

This gives the contributions of the ingredients (95%-level):

PValue = 0.000862841; { Estimate, CI} =

- {1, 10.50, {9.32,11.68}},
- {a, 1.93, {1.25,2.61}},
- {b, -0.42, {-1.10,0.26}},
- {c, 1.43, $\{0.75, 2.11\}$ },
- {d, 0.36, $\{-0.32, 1.04\}$ },
- {e, 1.48, {0.80,2.16}},
- {f, 1.33, {0.65,2.01}},
- {g, -0.34, $\{-1.02, 0.34\}$ }

Taking only a, c, e, and f gives the yield = 16.67

Are the ingredients independent? NO! c and f have a significant synergy effect: PValue = 2.74503×10-7 { Estimate, CI} = • $\{1, 10.56, \{10.20, 10.92\}\},\$ • {a, 2.24, {1.92, 2.57}}, • {c, 0.77, {0.36, 1.18}}, • $\{e, 1.31, \{0.98, 1.63\}\},\$ • {f, 0.67, {0.21, 1.08}}, • {c*f, 1.95, {1.26, 2.65}} Taking a, c, e, and f gives the true yield = 17.50

Parameters of some designs:

Let N be planar of size v, and, for a in N, *a* be the map from N to N, sending n to na.

Then the set of all non-zero maps *a* forms a fixed-point-free group of size k (say) w.r.t. composition. We get a Frobenius group and hence a "Ferrero pair".

From that we obtain various BIB-designs, e.g., one with parameters (v, v(v-1)/k, v-1, k, k-1).

Special case:

Let F be a finite field of size q, and let q-1 = s*t

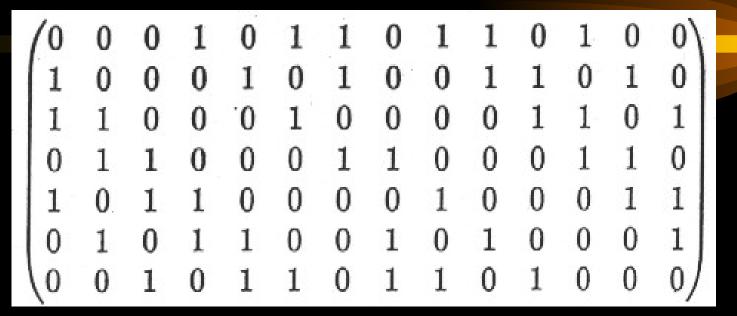
By changing the multiplication in F suitably, we obtain various BIB-designs with parameters (q, qs/(t+1), s, t+1, 1) or (q, qs, q+s-1, t+1, t+1) or (q, qs, q-1, t, t-1) or

"Finite Fields"

Another "Ferrero Pair"

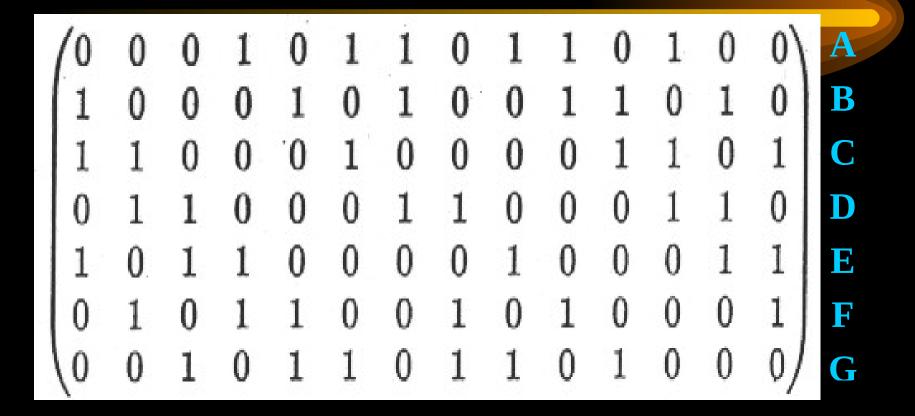
Farmers go Algebra

We look again at the incidence matrix:



A B C D E F G H I J K L M N ALG = 0110100 1011000 1101000

Also: "column codes" instead of "row codes":

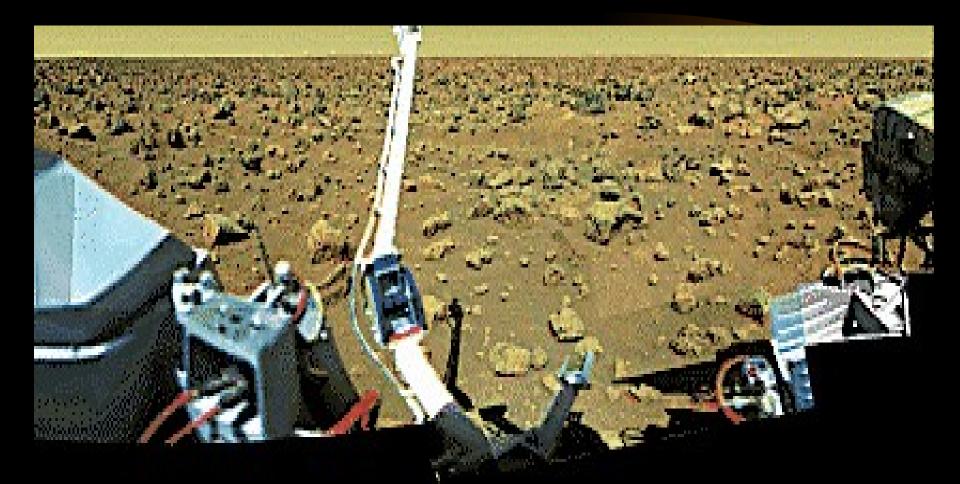


Maximal codes:

A code of length n, minimal distance d, and constant weight w is *maximal*, if it has A(n,d,w) codewords.

<u>Result:</u> All row codes from incidence matrices of BIB-designs are maximal. The same is true for all column codes from BIB-designs with λ =1.

So, e.g., A(qs, 2(q+s-t-2), q+s-1) = q This gives "optimal" error-correcting codes, useful in many situations, e.g., image transmission from Mars:



In all the years, only one error could not be corrected.

A dreadful error ...

