Near-rings of polynomial functions on expanded groups

Peter Mayr

Johannes Kepler University Linz, Austria peter.mayr@jku.at

Vorau, July 2009

Near-ring modules

Definition

Let $\langle N, +, \cdot \rangle$ be a 0-symmetric near-ring with 1.

 $\langle A, +, -, 0 \rangle$ is a compatible *N-group* if $\forall m, n \in N \ \forall a \in A$:

- 0 m*a + n*a = (m+n)*a
- (mn) * a = m * (n * a)
- **3** 1 * a = a
- **③** $\exists o \in N \ \forall b \in A : n * (a + b) n * a = o * b$

Theorem (cf. Jacobson, Betsch, ..)

Assume A is finite simple compatible faithful N-group. Either

- **1** $N \cong \langle F^{n \times n}, +, \cdot \rangle$, $A \cong F^n$ for some $n \in \mathbb{N}$, some field F, or
- **2** $N \cong \langle \{ f \in A^A \mid f(0) = 0 \}, +, \circ \rangle.$

N-groups of height 2

Question (E. Aichinger)

Assume A is a compatible, faithful N-group with exactly 1 non-trivial, proper N-subgroup B. Determine N and A.

Example

 $\langle \mathbb{Z}_{p^2}, +, \cdot \rangle$ is compatible, faithful on \mathbb{Z}_{p^2} with *N*-subgroup $p\mathbb{Z}_{p^2}$.

TFAE for a faithful N-group A:

- $lue{0}$ N is compatible on A.
- ② *N* is the 0-symmetric part of $\operatorname{Pol}_1(\langle A, +, \{A \to A, x \mapsto n * x \mid n \in N\} \rangle).$

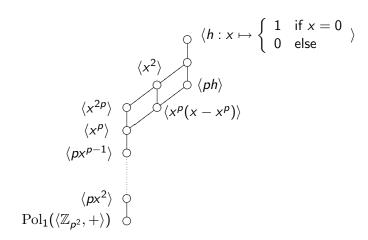
Theorem (cf. Bulatov, '02)

For p an odd prime there are exactly p+6 subnear-rings of $\langle \mathbb{Z}_{p^2}^{\mathbb{Z}_{p^2}}, +, \circ \rangle$ that contain $\operatorname{Pol}_1(\langle \mathbb{Z}_{p^2}, + \rangle) = \{x \mapsto \mathsf{a} x + b \mid \mathsf{a}, b \in \mathbb{Z}_{p^2}\}.$

Corollary

For p an odd prime there are exactly p+5 non-isomorphic, 0-symmetric near-rings N with 1 that have \mathbb{Z}_{p^2} as faithful, compatible N-group with N-subgroup $p\mathbb{Z}_{p^2}$.

p+6 near-rings containing $\operatorname{Pol}_1(\langle \mathbb{Z}_{p^2}, + \rangle)$



Structure of expanded groups

 $\langle A, +, -, 0 \rangle \dots$ group

 $F \dots$ finitary operations on A

 $\mathbf{A} := \langle A, +, -, 0, F \rangle \dots$ expanded group

Definition

 $I \triangleleft \langle A, + \rangle$ is an *ideal* of **A** if

 $\forall f \in F_n \ \forall a, b \in A^n : a \equiv_I b \Rightarrow f(a) \equiv_I f(b).$

Definition (Scott, cf. Freese, McKenzie, 1987)

The *commutator* [I, J] of ideals I, J of **A** is the ideal generated by $\{p(i, j) \mid i \in I, j \in J, p \in Pol_2(\mathbf{A}),$

$$p(x,0) = p(0,x) = 0 \ \forall x \in A$$
.

Reduction using commutators

Lemma

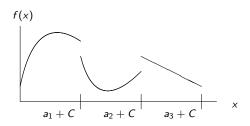
Let **A** be a finite expanded group with ideals I, J such that [I, J] = 0, let $f \in \operatorname{Pol}_1(\mathbf{A})$. Then

$$f(a-b+c) = f(a) - f(b) + f(c) \quad \forall a \equiv_I b, b \equiv_J c.$$

Lemma (PM, unpublished '08)

Let **A** be a finite expanded group, let I be a minimal ideal of **A** with centralizer C.

Then $f \in \operatorname{Pol}_1(\mathbf{A})$ iff $f_I \in \operatorname{Pol}_1(\mathbf{A}/I)$ and $\forall a \in A \ \exists p \in \operatorname{Pol}_1(\mathbf{A})$: $f|_{a+C} = p|_{a+C}$.



Expansions of \mathbb{Z}_{p^2}

Let **A** be an expansion of $\langle \mathbb{Z}_{p^2}, + \rangle$ with ideal $B := p\mathbb{Z}_{p^2}$. Commutators may take the following values:

[B,B]	[A, B]	[A, A]	
В	В	Α	non-abelian-by-non-abelian
В	В	В	non-abelian-by-abelian
0	В	Α	abelian-by-non-abelian, trivial center
0	В	В	abelian-by-abelian, trivial center
0	0	Α	central-by-non-abelian
0	0	В	nilpotent, non-abelian
0	0	0	abelian

Nilpotent case

Lemma

Let p be an odd prime, $B:=p\mathbb{Z}_{p^2}$, let $N\leq \mathbb{Z}_{p^2}^{\mathbb{Z}_{p^2}}$. TFAE:

- $(\mathbb{Z}_{p^2}, +, \mathbb{N})$ is nilpotent with center B.
- ② $N \subseteq \operatorname{Pol}_1(\langle \mathbb{Z}_{p^2}, +, \cdot \rangle)$, every $f \in N$ is affine modulo B and satisfies

$$f(x+pz)=f(x)-f(0)+f(pz) \ \forall x,z\in \mathbb{Z}_{p^2}.$$

3 Every $f \in N$ is of the form

$$f(x) = ax^p + bx + c + pg(x)$$

for some $a, b, c \in \mathbb{Z}_{p^2}$ and $g \in \text{Pol}_1(\langle \mathbb{Z}_{p^2}, +, \cdot \rangle)$ with deg g < p.

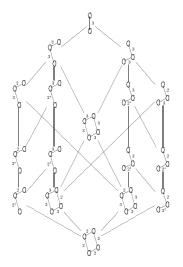
Theorem (Aichinger, PM, '07)

For distinct, odd primes p,q there are exactly 17 subnear-rings of $\langle \mathbb{Z}_{pq}^{\mathbb{Z}_{pq}},+,\circ \rangle$ that contain $\mathrm{Pol}_1(\langle \mathbb{Z}_{pq},+\rangle)$.

Corollary

For distinct, odd primes p,q there are exactly 6 non-isomorphic, 0-symmetric near-rings N with 1 that have \mathbb{Z}_{pq} as faithful, compatible N-group with $p\mathbb{Z}_{pq}$ as unique non-trivial, proper N-subgroup.

17 near-rings containing $\operatorname{Pol}_1(\langle \mathbb{Z}_{pq}, + \rangle)$



Bibliography

- E. Aichinger and PM. Polynomial clones on groups of order pq. Acta Math. Hungar., 114(3):267–285, 2007.
- A. A. Bulatov. Polynomial clones containing the Mal'tsev operation of the groups \mathbb{Z}_{p^2} and $\mathbb{Z}_p \times \mathbb{Z}_p$. Mult.-Valued Log., 8(2):193–221, 2002.
- R. Freese and R. N. McKenzie. Commutator Theory for Congruence Modular Varieties, volume 125 of London Math. Soc. Lecture Note Ser. Cambridge University Press, 1987.