1 PRIMENESS IN THE GENERALISED GROUP NEAR-RING

Let R be a right near-ring with identity 1, G be a (multiplicatively written) group with identity e, and let R^G denote the cartesian direct sum of |G| copies of (R, +) indexed by the elements of G. Then $M(R^G)$ is the right near-ring of all mappings of the group R^G into itself. Now, for $r \in R$ and $g \in G$, let [r, g]denote the function in $M(R^G)$ defined by:

 $([r,g](\mu))(h) = r\mu(hg)$ for all $\mu \in \mathbb{R}^G, h \in G$.

Definition 1 (Group Near-ring)

The subnear-ring of $M(\mathbb{R}^G)$, generated by the set $\{[r,g] : r \in \mathbb{R}, g \in G\}$, will be called the group near-ring constructed from \mathbb{R} and G and will be denoted by $\mathbb{R}[G]$.

Now let M be a left R-module. Then it is also well known that the set of all mappings from the group M^G into itself is a right near-ring with addition defined pointwise and multiplication defined by composition of functions. Now, for $r \in R$, $g \in G$ and $\mu \in M^G$, let the function $[r,g]: M^G \to M^G$ be defined by $([r,g]\mu)(h) = r\mu(hg)$ where $h \in G$. (Note that, since M is an R-module, $r\mu(hg) \in M$).

Definition 2 The generalised group near-ring, denoted by R[G:M], is defined to be the subnear-ring of all mappings from M^G to M^G generated by the set $\{[r,g]: r \in R, g \in G\}.$

Remark 3 We note that:

- (a) If we let M be the special case, $M = {}_{R}R$, then R[G:M] is simply the group near-ring, R[G], as defined by Le Riche, Meldrum and Van der Walt.
- (b) If $A : M^G \longrightarrow M^G$, $B : M^G \longrightarrow M^G$ are elements of R[G : M] and $\mu \in M^G$, then under the natural operations:

$$(A+B)\mu = A\mu + B\mu$$
$$(AB)\mu = A(B\mu)$$

 M^G is an R[G:M]-module

Definition 4 Let P be a subset of the R-module M. Then we define the subset, P^* of R[G:M] by:

$$P^* = \{ A \in R[G:M] : A\mu \in P^G \text{ for all } \mu \in M^G \}.$$

Proposition 5 If P is an R-ideal of M, then P^* is an ideal of R[G:M].

Another way of constructing an ideal in R[G : M] lies in the following definition:

Definition 6 Let P be an R-ideal of the R-module M. Then we define P^+ to be the ideal in R[G:M] generated by the set: $\{[a,e]: a \in (P:M)_R\}$.

2 PRIME NEAR-RING MODULES

Definition 7 Let $P \triangleleft_R M$ such that $RM \not\subseteq P$. Then P is called:

- (a) 0-prime if AB ⊆ P implies AM ⊆ P or B ⊆ P for all ideals, A of R, and all R-ideals, B of M.
- (b) 1-prime if AB ⊆ P implies AM ⊆ P or B ⊆ P for all left ideals, A of R, and all R-ideals, B of M.
- (c) 2-prime if AB ⊆ P implies AM ⊆ P or B ⊆ P for all left R-subgroups, A of R, and all R-submodules, B of M.
- (d) 3-prime if $rRm \subseteq P$ implies that $rM \subseteq P$ or $m \in P$ for all $r \in R$ and $m \in M$.
- (e) completely prime (c-prime) if $rm \in P$ implies that $rM \subseteq P$ or $m \in P$ for all $r \in R$ and $m \in M$.

Definition 8 *M* is said to be a ν -prime ($\nu = 0, 1, 2, 3, c$) *R*-module if $RM \neq 0$ and 0 is a ν -prime *R*-ideal of *M*.

If $P \triangleleft_R M$, then we recall that $\stackrel{\sim}{P} = (P : M)$ is an ideal of R. Now, if P is a ν -prime ($\nu = 2, 3, c$) R-ideal then does this imply that $\stackrel{\sim}{P}$ is also ν -prime? We investigate this in the propositions that follow. The case $\nu = 0$ is treated separately.

Proposition 9 Let P be an R-ideal of M. Then:

- (a) P is a 2-prime R-ideal of M implies that P is a 2-prime ideal of R.
- (b) P is a 3-prime R-ideal of M implies that P is a 3-prime ideal of R.
- (c) P is a completely prime R-ideal of M implies that P is a completely prime ideal of R.

Proposition 10 Let P be a 0-prime R-ideal of a monogenic (tame) R-module M. Then $\stackrel{\sim}{P}$ is a 0-prime ideal of R.

3 PRIME RELATIONS BETWEEN R, M **AND** R(G:M)

Proposition 11 If P is an R-ideal of a 2-multiplication module M such that P^* is a 3-prime ideal of R[G:M], then P is a 3-prime R-ideal of M.

Corollary 12 If P is an R-ideal of a 2-multiplication module M such that P^* is a 3-prime ideal of R[G:M], then \widetilde{P} is a 3-prime ideal of the near-ring R.

Proposition 13 Let \mathbb{P} be an ideal of R[G:M]. Then \mathbb{P} is 2-prime if and only if \mathbb{P} is 3-prime.

Corollary 14 If P is an R-ideal of a 2-multiplication module M such that P^* is a 2-prime ideal of R[G:M], then P is a 2-prime R-ideal of M.

Corollary 15 If P is an R-ideal of a 2-multiplication module M such that P^* is a 2-prime ideal of R[G:M], then \widetilde{P} is a 2-prime ideal of the near-ring R.

Proposition 16 Let P be an R-ideal of M and assume that P^* is a 0-prime ideal of R[G; M]. Then P is a 0-prime R-ideal of M.

Corollary 17 Let P be an R-ideal of a monogenic (or tame) R-module M and assume that P^* is a 0-prime ideal of R[G; M]. Then $\stackrel{\sim}{P}$ is a 0-prime ideal of R.

Thus far we have shown that if P is an R-ideal of M (a 2-multiplication module in some cases) such that P^* is a ν -prime ideal in R[G:M], then P is a ν -prime R-ideal of M, where $\nu = 0, 2, 3$. In the next part of this section, we investigate the reverse situation of some of these implications by considering the primeness of R[G:M] under certain conditions imposed on R and/ or M.

Proposition 18 Let R be any near-ring, M a nonzero R-module and G be a cyclic group of order n. Then R[G:M] is not completely prime.

Proposition 19 Let M be an R-module with $|M| \ge 2$. Suppose that R contains a nonzero element c with the property that $cm_1 + cm_2 = cm_2 + cm_1$ for all $m_1, m_2 \in M$. If G is finite with $|G| \ge 2$, then R[G:M] is not 3-prime.

Corollary 20 If M is an abelian R-module and G is a finite group, then R[G : M] is not 3-prime.

Corollary 21 If M is an abelian R-module and G is a finite group, then R[G : M] is not completely prime

Corollary 22 If M is an abelian R-module and G is a finite group, then R[G : M] is not 2-prime.

In the preceding theorems, we demonstrated many negative results. However, we now present a positive result which could have a great impact on future research on group near-rings.

Theorem 23 Let R be a near-field, $M = {}_{R}R$ and G be an ordered group. Then R[G:M] is 2-prime.

Corollary 24 If R is a near-field, $M = {}_{R}R$ and G is an ordered group, then R[G:M] is ν -prime for $\nu = 0, 2, 3$.