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Introduction I

Suppose first that (A,+) is an abelian group

Then Map(A) := {f : A→ A} is a commutative nearring
under pointwise addition and composition of functions

Let M0(A) := {f : A→ A|f (0) = 0}, the nearring of zero
preserving functions on A,

and End(A) := {f : A→ A|f (x + y) = f (x) + f (y)}
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Introduction II

Question ??

When will End(A) be maximal as a ring in M0(A)?

“E -locally cyclic abelian groups and maximal nearrings of
mappings”- Kreuzer and Maxson, Forum Mathematica (2006)

Definition

We say the abelian group A = (A,+) is E -locally cyclic if for
each a, b ∈ A there exists a c ∈ A and α, β ∈ End(A) such
that α(c) = a and β(c) = b.
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Introduction III

Theorem

If A is an E-locally cyclic abelian group, then End(A) is a
maximal subring of M0(A).

Proof.

Let End(A) ⊆ R, where R is a subring in M0(A)

Now let σ ∈ R and a, b ∈ A

Since A is E -locally cyclic, there exists some c ∈ A and
α, β ∈ End(A) such that α(c) = a and β(c) = b

Since α, β are also in R and since R is a ring, we have
σ(α + β) = σα + σβ

Thus σ(a + b) = σ(α(c) + β(c)) = σ((α + β)(c)) =
(σα + σβ)(c) = σα(c) + σβ(c),
so σ ∈ End(A) giving R = End(A).
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Introduction IV

Definition

We say the abelian group A = (A,+) is torsion (periodic) if for
each a ∈ A there exists a positive integer n such that na = 0.

Kreuzer and Maxson (2006) showed that every torsion
group is E -locally cyclic

Every finite group is torsion

E -locally cyclic implies that End(A) is a maximal subring
of M0(A)

Thus torsion ⇒ E -locally cyclic ⇒ maximality.
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Monoids I

Let (M,+, 0) be an abelian monoid

We call Map(M) a near-semiring since, in general,
composition is one-sided distributive over +

Since M is abelian, the sum of two endomorphisms is an
endomorphism, so End(M), under pointwise addition and
function composition, is a semiring contained in Map(M)

Here we can have that End0(M) ⊂ End(M).
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Monoids II

Example

Let Nn := {0, 1, 2, . . . , n}, n a positive integer, and let +
be defined by x + y = max{x , y}
Then (Nn,+, 0) is a commutative monoid

And for any m ∈ Nn\{0}, the function km : Nn → Nn

given by km(x) = m, x ∈ Nn is in End(Nn)\End0(Nn).

Question ??

When End0(M) is maximal as a semiring in Map(M)?
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Monoids III

Proposition

For an abelian monoid M = (M,+, 0), End0(M) = End(M) if
and only if 0 is the only idempotent in M.

Proof.

We always have that End0(M) ⊆ End(M)

Suppose there is another idempotent in M, then as in the
previous example we can construct a map in End(M), but
not in End0(M)

This contradicts the assumption that End0(M) = End(M)

On the other hand, if 0 is the only idempotent and
f ∈ End(M), then f (0) = f (0 + 0) = f (0) + f (0) so
f (0) = 0.
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Monoids IV

Definition

If a and b are elements of a semigroup S , we say that
a divides b, if there exists an x ∈ S such that ax = b.

Definition

A commutative semigroup S is said to be archimedean if, for
any two elements of S , each divides a power of the other.

Definition

A commutative idempotent semigroup is called a semilattice.
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Monoids V

Theorem

Every commutative semigroup S is uniquely expressible as a
semilattice Y of archimedian semigroups Sα (α ∈ Y ).

Let M = ∪Aα, α ∈ Y be the decomposition of M into its
Archimedian components

Suppose M is periodic

Then for each aα ∈ Aα, the semigroup generated by aα

contains an idempotent

Hence if End0(M) = End(M) then M is an Archimedean
semigroup with an idempotent

Then we have that each element of M has an additive
inverse (Theorem),

so we find that M is an abelian group.
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Monoids VI

Theorem

Let M be a periodic commutative monoid. Then End0(M) is a
maximal semiring in Map(M) if and only if M is an abelian
group.
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Semigroups I

We will now look at situations where End(S) is a maximal
semiring in Map(S), where S is an abelian semigroup.

Definition

We say the semigroup S = (S ,+) is E-locally cyclic if for each
a, b ∈ S there exists a c ∈ S and α, β ∈ End(S) such that
α(c) = a and β(c) = b.

As with abelian groups, we have that

Proposition

If S is an E -locally cyclic commutative semigroup, then End(S)
is a maximal semiring in Map(S).
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Semigroups II

Corollary

If S is a semilattice, that is, a commutative idempotent
semigroup, then S is E -locally cyclic.

Proof.

Consider the mapping ks(x) : S → S defined by ks(x) = s
for all x ∈ S

It is easy to verify that ks ∈ End(S)

Now let a, b ∈ S

We have that ka(c) = a and kb(c) = b, hence S is
E -locally cyclic.
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Semigroups III

Example

Let R := (R,+, ·) be a semiring

For each n ∈ R, the map λn : R → R, λn(x) = nx is an
endomorphism of the commutative semigroup (R,+)

If, in addition, R has a multiplicative identity, 1, then
λn(1) = n · 1 = n, so (R,+) is E -locally cyclic

Generalising, we have

Proposition

Let S = (S ,+) be a commutative semigroup. If S has a left
distributive multiplication, · , and a right distributive identity,
1, then S is E -locally cyclic.
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In closing

More can be done for certain specialised semigroups

In our paper we look specifically at commutative Clifford
Semigroups

Definition

A Clifford semigroup is a strong semilattice of groups. Thus

S = ∪α∈Y Gα, where the Gα are disjoint abelian groups
And Y is a semilattice
Then for each pair {α, β} ∈ Y , with α ≥ β there exists a
group homomorphism φα,β : Gα → Gβ such that

φα,α = id on Gα;
φβ,ψφα,β = φα,ψ for α, β, ψ ∈ Y , α ≥ β ≥ ψ

Then the operation + on S is given by
aα + bβ = φα,αβ(aα) + φβ,αβ(bβ), aα ∈ Gα, bβ ∈ Gβ .
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