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Introduction

The study of prime ideals for rings or semi-groups is facilitated by the
equivalence of the two conditions on an ideal I of a ring (semigroup) R :

1 If A and B are ideals of R such that AB � I , then A � I or B � I ;
2 If x , y 2 R are such that xRy � I , then x 2 I or y 2 I .

These conditions are not equivalent in the class of near-rings. For
near-rings there are many non equivalent de�nitions of prime near-rings. In
this talk we discuss the impact on research in near-rings of these di¤erent
prime near-rings.
All near-rings are right near-rings. We will use R,N and N0 denote the
variety of all rings, near-rings and zero-symmetric near-rings
respectively.
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Example

From Birkenmeier et al [2] we have the following :

Example

Let R be a zero-symmetric near-ring such that condition (1) above is
satis�ed for the ideal (0) i.e. if AB = (0), then A = (0) or B = (0).
Suppose there is 0 6= r 2 R such that Rr = (0).
In [2] many examples of near-rings satisfying these conditions are given.
Now, since R is a zero symmetric near-ring we have rRr = (0) with 0 6= r
and R does not satisfy condition (2)
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NOTATION

For K � R, < K jR , j K >R , < K >R , < K ]R and [K >R denote the left
ideal, right ideal, two-sided ideal, left R-subgroup and right
R-subgroup generated by K in R respectively. If it is clear in which
near-ring we are working, the subscript R will be omitted.

Also K Cl R, K Cr R, K C R and K CR R symbolize that K is a left
ideal, right ideal, two-sided ideal or a left R-subgroup of R.
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Candidates for a prime ideal in a near-ring

As we saw above in the study of near-rings one is quickly confronted by
the fact that many conditions which are equivalent for rings are not
necessarily equivalent for near-rings.

The following are possible candidates for a prime ideal in a near-ring.

De�nition
Let R be a near-ring (not necessarily zero-symmetric) and P and ideal of
R.

1 P is a 0-prime ideal if for every A,B C R, AB � P implies A � P or
B � P (this is the same as the usual de�nition for a prime ideal in a
ring).

2 P is a 1-prime (r1-prime) ideal if for every A,B Cl R (A,B Cr R),
AB � P implies A � P or B � P

3 P is a 2-prime (r2-prime) ideal if for every A and B left R-subgroups
(right R�subgroups) of R, AB � P implies A � P or B � P

4 P is a 3-prime ideal if for a, b 2 R, aRb � P implies a 2 P or b 2 P.
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Relationship between di¤erent prime near-rings

R is called a i-prime near ring (i = 0, 1, r1, 2, r2, 3) if the zero ideal is a
i-prime ideal.
Denote the class of i-prime near-rings by Pi .
Observe that the various prime conditions have the following relations:
3-prime ) 2-prime
2-prime) 1-prime if R is zero-symmetric and
1-prime) 0-prime.
We also have 3-prime ) r2-prime ) r1-prime ) 0-prime.
The notations for types 0 through 2 is due to Holcombe [14], while
type 3 is due to the author [12], and
types r1 and r2 are due to Birkenmeier [1].
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Examples

Examples showing that types 0, 1, 2 and 3 are distinct are provided in
Fererro [10].

Near-ring number 12 de�ned on Z4 Pilz [18] shows that r1�prime
near-rings need not be 1�prime and
near-ring number 7 de�ned on S3 Pilz [18] is an example of a 1�prime
near-ring which is not r1�prime.
Near-ring number 10 de�ned on S3 Pilz [18] is an example of a 2�prime
near-ring which is not r2�prime and
near-ring number 6 de�ned on Z6 Pilz [18] is an example of an r2�prime
near-ring which is not 2�prime.
Near-ring number 17 de�ned on S3 Pilz [18] is an example of an r1�prime
near-ring which is not r2�prime and
near-ring number 20 on S3 Pilz [18] is an example of an r2�prime
near-ring which is not 3�prime.
This is in sharp contrast to the ring case where 0�prime and 3�prime are
equivalent.
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Di¤erent prime radicals

The di¤erent de�nitions of prime ideals give rise to di¤erent prime radicals.

De�nition
Let R 2 N . Then Pv (R) = \ fP / R : P is v -primegis the v -prime
radical of R for v 2 f0, 1, r1, 2, r2, 3g.
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Hoehnke Radical

Let ρ be a mapping which assigns to each near-ring R an ideal ρ (R) of R.
Such mappings will be called ideal -mappings

De�nition
An ideal mapping ρ is a Hoehnke radical (H-radical also called a radical
map) if it satis�es the following conditions:

(H1) (ρ (R) + I ) /I � ρ (R/I ) for all I / R;
(H2) ρ (R/ρ (R)) = 0 for all R.

The Hoehnke radicals are very general:
LetM be a class of near-rings and let ρ be the mapping which assigns to
each near-ring R the ideal ρ (R) = \ fI / R : R/I 2 Mg .
The mapping ρ is an H-radical.
It is clear that such a radical only gives information on the relationships
between the radical ρ (R) of R and the radical of a homomorphic image of
R.
Clearly all the v -prime radical maps Pv are Hoehnke radicals.
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Kurosh Amitsur Radical

If I / R then a Hoehnke radical gives no information on the relationships
between ρ (R) and ρ (I ) .

But this is, amongst others, what the general theory of radicals is all about:
Given a near-ring R, then it should provide some information on the
relationship between ρ (R) and the radicals of near-rings related to R e.g.,
homomorphic images, ideals, extensions, etc.
The following relationships between the radicals of a near-ring and its
ideals play an important role in the general theory of radicals:

De�nition
An H-radical ρ is:

(H3) complete if ρ (I ) = I / R implies I � ρ (R) ;

(H4) idempotent if ρ (ρ (R)) = ρ (R) ;

(H5) ideal-hereditary if ρ (I ) = I \ ρ (R) .
If ρ is an H-radical which is idempotent and complete, then it is
called a Kurosh-Amitsur (KA) radical map.
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Which of the prime radicals are KA-radicals

Since all the prime radicals are Hoehnke radicals, a natural question to ask
is:

Which of the prime radicals are KA�radicals?
In [3] Birkenmeier et al proved that if S is a subnear-ring of R then
S \P0 (R) � P0 (S) and from Miltz and Veldsman [17] it now follows
that P0 is idempotent.
In [16] an example was given by Kaarli to show that P0 is not complete.
Hence P0 is not a KA-radical.
There are examples to show that P1 (P1 (R)) 6= P1 (R) and therefore P1
is not idempotent. Thus P1 is not a KA-radical.
There are examples of �nite near-rings in N for which P2 is not complete
and P3 is not idempotent.
What the situation is for P2 and P3 in N0 is not known.
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K A Prime radical

For a long time it was believed that it is not possible to get a KA-prime
radical for near-rings.
Initiated by Booth and then in conjunction with Veldsman and the present
author, we could show that there is a KA-prime radical.
In [8] we introduced a di¤erent generalization to near-rings of a prime ring.
This generalization, it turns out, has some very satisfactory consequences
and not only from a radical viewpoint.

De�nition
A near-ring R is equiprime if for any 0 6= a 2 R and x , y 2 R, anx = any
for all n 2 R implies x = y .

It is easy to check that an equiprime near-ring is zero-symmetric and
3-prime.
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Ideal Hereditary KA prime radical

Let Pe denote the equiprime radical map:

Pe (R) = \ fI / R : R/I equiprimeg

then Pe is an ideal-hereditary KA-radical in the variety of all near-rings
i.e., Pe (R) \ I = Pe (I ) for every I / R 2 N .
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Equiprime near-rings

Equiprime near-rings are not too restrictive.

For any group G , the simple near-ring with identityM0 (G ) is
equiprime.

Any simple near-ring with identity which satis�es the descending
chain condition on R�subgroups is equiprime.
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It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

We have the following result:

Theorem
If R is a near-ring then the following are equivalent:

1 R is equiprime;
2 For every nonzero right invariant subgroup A of R we have if x , y 2 R
and ax = ay for all a 2 A, then x = y ;

3 For every invariant subgroup A of R we have if x , y 2 R and ax = ay
for all a 2 A, then x = y .

If we could replace invariant subgroup by two-sided ideal in the theorem
above we would have a positive answer to the above question
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Unfortunately, this is not possible as is clear from the following:

Example
Let R be any non-zero-symmetric simple near-ring with identity.
Suppose that for every 0 6= A / R ax = ay for x , y 2 R and for every
a 2 A.
Since R is a simple near-ring with identity, we have 1 2 A = R
Hence x = y and condition (3) of the theorem above is satis�ed for
two-sided ideals.
R is not equiprime since it is not 0-symmetric.

We have the following:
If R is a near-ring with identity which has no non-trivial invariant
subgroups, then it must be equiprime.
Indeed, let 0 6= a 2 R and suppose arx = ary for all r 2 R(x , y 2 R),
then A = fb 2 R : brx = bry for all r 2 Rg is a non-zero invariant
subgroup of R.
Hence 1 2 R = A from which x = y follows and R is equiprime
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Holcombe [14] de�ned an R� group G to be of type 3 if RG 6= 0, G has
no nontrivial R�subgroups, and for g1, g2 2 G , rg1 = rg2 for all r 2 R,
implies g1 = g2.

A near-ring R is said to be 3�primitive if it has a faithfull R -group of
type 3.
From [8] we have that a 3-primitive near-ring is always equiprime but not
conversely.
If the near-ring has the descending chain condition on R�subgroups then
the converse holds.
As is well-known for rings, any primitive ring is prime.
For near-rings, equiprimeness is not comparable with 2-primitivity.
Because the 2-primitive near-rings are not comparable with equiprime we
have the following:
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QUESTION: Is it possible to de�ne a form of primeness for
near-rings which leads to a KA-prime radical such that all simple
and all 2-primitive near-rings are prime of this type?

One possible approach to this question is to de�ne R to be i -equiprime if
for every ideal I of R we have if x , y 2 R and ax = ay for all a 2 I then
x = y .
In this case we have that every simple near-ring with identity is
i-equiprime. This follows from the remark after the previous theorem.
Unfortunately, this is still not the de�nition of prime we need in the above
question.

Example
Let R be the near-ring built on any cyclic group of uneven prime order

with multiplication given by ab =
�
a if b 6= 0
0 if b = 0

This near-ring is 3-prime, 2-primitive, satisfy the descending chain
condition on R�subgroups and zero-symmetric but it is not i-equiprime.
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2-Primal Near-rings

An ideal I of a near-ring R is called a completely prime deal of R if
whenever ab 2 I , then a 2 I or b 2 I .

The study of completely prime ideals in near-rings goes back at least to
1979 [19], where Ramakotaiah and G. Koteswara Rao called such an ideal
a �type 2 prime ideal�.
The terminology �completely prime� is now standard in ring theory and is
becoming dominant for near-rings. If the zero ideal of R is a completely
prime ideal then we say R is a completely prime near-ring.
The intersection of all of the completely prime ideals of R, denoted herein
by Pc (R), is the completely prime radical of R.
Birkenmeier et al investigated conditions under which a 0-prime ideal is
completely prime and conditions for which every 0-prime ideal in a
near-ring is completely prime. They introduced the concepts of 2- primal
near-rings and 2-primal ideals.
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2-Primal Near-rings

De�nition
An ideal I of R is a 2-primal ideal of R if P0(R/I ) = N(R/I ). (N(R)
denotes the set of nilpotent elements of the near-ring R). If the zero
ideal of R is a 2-primal ideal, then R is a 2-primal near-ring. (This is
equivalent to P0(R) = N(R)).

Some examples of 2-primal near-rings which immediately come to mind
are those which are commutative, anti-commutative (ab = �ba for all
a, b 2 R), nilpotent, or reduced. (We say a subset of a near-ring is
reduced if it contains no nonzero nilpotent elements).
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Theorem
(Birkenmeier et al) If R is a zero-symmetric near ring, then the following
are equivalent:

1 R is 2-primal.

2 Every minimal 0-prime ideal of R is a completely prime ideal.
3 P0(R) = Pc (R).

Theorem
(Birkenmeier et al) Every ideal of the near-ring R is 2�primal if and only if
every 0-prime ideal of R is a completely prime ideal.

Near-rings in which every prime factor is integral have been studied by
Birkenmeier et.al in [4].
These are near-rings R such that every 0�prime ideal is a completely
prime ideal.
The class of all these near-rings will be denoted by R2 and
R20 = R

2 \N0.From this it is clear that if R 2 N0, Then R 2 R20 if and
only for every ideal I of R, R/I is 2-primal.
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Radical Classes

LetM be a class of near-rings and ρ an ideal map.

The subclass ofM given by Rρ = fR 2 M : ρ(R) = Rg is called the
radical class of ρ, whilst
the subclass ofM given by Sρ = fR 2 M : ρ(R) = 0g is called the
semisimple class of ρ.
We call ρ the Hoehnke radical associated withM if
ρ(R) = \fI C R : R/I 2 Mg.
Remark: Let W be a universal class of Ω� groups (i.e. W is
homomorphically closed and hereditary on ideals).
A KA radical class R in W is a subclass R of W which is

homomorphically closed,
closed under extensions (i.e. if I C R 2 W and both I and R/I are
in R, then R 2 R) and
∑ -closed ( i.e. if fIαgA is a family of ideals of a near-ring R such
that fIαgA � R, then ∑

α2A
Iα 2 R)
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In [4] Birkenmeier et al gave example of a near-ring R with an ideal I such
that I ,R/I 2 R20 but R /2 R20. This shows that the class R20 is not an
KA radical class in general.

QUESTION : Can we a de�ne a notion of 2-primal for
near-rings for which the corresponding class R20 will be a KA
radical class .
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Class pairs

The study of class pairs of associative rings was �rst considered in the
context of lattices of radicals by R. L. Snider in [20].

In this paper Snider constructed the class (ρ1 : ρ2) of rings from hereditary
KA-radicals ρ1 and ρ2 by letting
(ρ1 : ρ2) = fR : ρ2(R/I ) � ρ1(R/I ) for all I C Rg.
He showed that (ρ1 : ρ2) is the largest KA-radical γ such that
ρ2(R) \ γ(R) � ρ1(R) for every ring R.
Later Divinsky and Sulinski [7] continued the study of the class
(ρ1 : ρ2) and referred to it as a radical pair.
Recently, Birkenmeier, Groenewald and Olivier made a detailed study of
radical pairs of associative rings.
In addition, they constructed and studied, for arbitrary classes of ringsM1

andM2, the class pair (M1 : M2) = fR : for I C R,
R/I 2 M2 ) R/I 2 M1g.
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Class pairs in near-rings

Our aim was to extend some of the results on class pairs to
zero-symmetric near-rings.

By using properties of class pairs in near-rings we were able to give
answers to some open problems in near-rings
We will get back to these open problems later
We usually require ρ1 and ρ2 to be preradical maps only (An ideal
mapping is ρ : W !W is said to be a preradical map on W if for every
R 2 W and every homomorphism f on R, f (ρ(R)) � ρ(f (R)))
As in [6] we de�ne class pairs and radical pairs as follows.

De�nition
SupposeM1 andM2 are classes of near-rings and ρ1 and ρ2 ideal maps.
Then

1 (M1 : M2) = fR : for I C R, R/I 2 M2 ) R/I 2 M1g,
2 (ρ1 : ρ2) = fR : ρ2(R/I ) � ρ1(R/I ) for every I C Rg.
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Theorem
Let ρ1 and ρ2 be H-radical maps associated withM1 andM2

respectively. ThenM1 \ Sρ2
�M2 implies (M2 : M1) = (ρ1 : ρ2).

Theorem
Let Pi denote the class of i�prime near-rings and Pi the associated
H-radical, i = 0, 2, 3 and c . Then (Pi : P0) = (P0 : Pi ), i = 2, 3 and c .

Remark: From this we have R20 = (Pc : P0) = (P0 : Pc ).
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Theorem
A LetM2 be any class of near-rings andM1 a class which is extension
closed. If any of the following conditions holds, then (M1 : M2) is
extension closed:

1 M1 andM2 are hereditary and essentially closed, or
2 M2 is hereditary and closed under homomorphic images.

A near-ring R is said to be irreducible if every nonzero ideal of R is an
essential ideal of R. Let D denote the class of all irreducible near-rings.

Theorem
B LetM1 be an essentially closed class andM2 an hereditary subclass of
D. If (M1 : M2) is extention closed, then (M1 : M2) is Σ�closed.
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Example

Consider the class pair (Pc : P3).

Then (P3 : Pc ) = (Pc : P3) = (P sc : P3) where P sc is the class of all
completely semiprime near-rings and P sc\ P3 � Pc .
By [12, Lemma 4.3 ], P3 is essentially closed and it follows from [5] that
P3 is an hereditary class.
We also have from [11] that P sc is extention closed, essentialy closed and
one can quickly verify that P sc is hereditary.
By Theoerm A and Theorem B (Pc : P3) is both extension closed and
Σ�closed.
This shows (P3 : Pc ) = (Pc : P3) forms a KA-radical class since
(Pc : P3) is clearly also homomorphically closed.

For rings (P3 : Pc ) = (Pc : P3) = (P0 : Pc ) = (Pc : P0) = R2
In [4] it was shown that the class R20, which is equal to (P0 : Pc ), is
not a KA-radical in general.
From this, it follows that the near-rings R for which P3(R) = Pc (R)
is a more appropriate generalization of the notion of 2-primal from
rings to near rings.
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Open question

In [4] Birkenmeier et al introduce the following preradical:

De�nition

For each R 2 N0, let }c (R) = ∑
α2A
fI C R : I 2 R20g

They proved that }c is an idempotent preradical. Since R 2 R20 implies
}c (R) = R and we have R20 � R}c .

It was left as an open question whether or not R}c is equal to
R20.

If we take R20 to be class of all zero-symmetric near rings where for every
ideal I of R, R/I is 2-primal
(where R is 2-primal if P3(R) = Pc (R) in stead of P0(R) = Pc (R))
By using class pairs we can prove that R}c = R20
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Open question of Gordon Mason

We have another application of class pairs of near-rings:

It is well known for rings that an ideal is semi-prime if and only if it is the
intersection of prime ideals. For near-rings we have:

Theorem
If R 2 N0 then the ideal P is a 0-semiprime ideal if and only if it is the
intersection of 0-prime ideals.

If every 3 semiprime ideal is the intersection of 3 prime ideals, then By
using the same example of [4] which they used to show that (P0 : Pc ), is
not a KA-radical we can show that (P3 : Pc ) is not extension closed an
hence not a KA radical class.
This contradicts the fact that (P3 : Pc ) = (Pc : P3) forms a KA-radical
class and we conclude P s3 6= SP3 .
Hence there are near-rings with 3-semi prime ideals which can not be
written as the intersection of 3-prime ideals.
This gives an answer in the negative to a long standing open question
posed by Gordon Mason.
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Strong prime near-rings

In [22] van der Walt de�ned the notion of a s-prime near-ring ( strong
prime near-ring) and showed that the s-prime radical determined by the
class of all s-prime near-rings is the same as the upper nil radical.

Hence if R is a near-ring then N(R) i.e., the sum of all nil ideals of R is
equal to s(R) the intersection of all the s-prime ideals of R (all ideals I
such that R/I is an s-prime near-ring).

In [15] Kaarli observed that the nil radical N(R) of the near-ring R is
equal to the intersection of all the 0-prime ideals P of R such that R/P
has no nonzero nil ideals.
He mentioned that the proof of this result is essentially that given for rings
by Divinsky, see [9, page 147].
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Nilprime near-rings

In [5] Birkenmeier et al called an ideal I of the near-ring R nilprime if I is
a 0-prime ideal and N(R/I ) = 0 i.e., R/I has no nonzero nil ideals. They
then gave a self-contained proof within near-ring theory of the result "that
the nil radical N(R) of the near-ring R is equal to the intersection of all
the 0-prime ideals P of R such that R/P has no nonzero nil
ideals".mentioned by Kaarli.

In [5] it was proved that every s�prime near-ring is a nilprime near-ring
and left it as an open question whether every nilprime near-ring is an
s�prime near-ring.

In this talk we introduce another notion of an s-prime near-ring which
coincides with the notion of nilprime.
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s-systems

De�nition
The subset M of the near-ring R is called an m�system if for every
a, b 2 M there exists c 2< a >< b > such that c 2 M.

De�nition
The subset N of the near-ring R is called an sp�system if for every a 2 N
there exists c 2< a >< a > such that c 2 N.

De�nition
The subset S of the near-ring R is called an s�system if for every
a, b 2 S there exists c 2< a >< b > such that cn 2 S for all n 2 N .

De�nition
The subset U of the near-ring R is called an ss�system if for every a 2 U
there exists c 2< a >< a > such that cn 2 U for all n 2 N

Clearly an s�system is an m�system and also an ss�system.
Furthermore an ss� system is an sp�system.
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s-prime ideals and the s-prime radical

Let CR (Q) denote the complement of Q in R.
An ideal Q of the near-ring R is an s�prime, prime (0-prime),
s�semiprime or semiprime (0-semiprime) ideal if CR (Q) is an
s�system, m�system, ss�system or a sp�system respectively.

De�nition
The s�radical (0-prime radical) of R, denoted by s(R) (}0(R)), consists
of all those elements r 2 R such that every s�system (m�system) which
contains r also contains 0.

From [22] it follows that }0(R) is equal to the intersection of all the
0-prime ideals of R.Hence }0(R) = P0(R).
We now have:

Theorem
The s�radical s(R) of the near ring R is equal to the intersection of all the
s�prime ideals of R and coincides with the upper nil radical N(R) of R
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Answer to question

We now have for our de�nition of an s�prime ideal that the notions of
s�prime near-ring and nilprime near-ring coincide.

Theorem
If Q C R, then Q is an s- prime ideal if and only if Q is nilprime.

De�nition
An s-prime ideal P is a minimal s�prime ideal containing an ideal I if
I � P and there does not exist an s�prime ideal P 0 in R such that
I � P 0 $ P.

Theorem
If s 0(R) is the intersection of all the minimal s�prime ideals of R then
N(R) = s 0(R) = s(R).
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Di¤erent nilprime near-rings

We have that there are a number of non-equivalent notions of prime
near-rings which coincide in the case of associative rings.

We also have that the upper nil radical of the near-ring R is equal to the
intersection of all the nil 0-prime ideals.
Because of this we can now introduce the following:

De�nition
A near-ring is i-nilprime if R is i-prime and R contains no nonzero
nilideals for i 2 f0, 1, r1, 2, r2, 3, equig.

If R is an associative ring, this coincides with the notion prime
nil-semisimple rings and the upper radical determined by this class of rings
coincides with the nilradical N(R).
We now show that in the case of near-rings this give rise to a number of
nonequivalent nilradicals.
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Examples
0-nilprime but not 1-nilprime

Example
Let G be a �nite group and let 0 6= H be a proper subgroup of G .

Let R = fa 2 M0(G ) : a(H) � Hg .
Then R is a zero-symmetric near-ring and its only ideals are R,
A = (0 : H) = fa 2 R : a(H) = 0g and 0.
Let a 2 R be de�ned by:
a(x) =

�
g if x = g
0 if x 6= g for g 2 GnH.

Now a 2 A and an(g) = an�1(g) = � � � = a(g) = g .
Hence an 6= 0 for all n 2 N.
Thus the only nil ideal of R is 0.
R is 0�prime since A2 6= 0 and it follows that R is 0�nilprime.
This near-ring is not 1�nilprime since R is not 1�prime because if
I = (0 : GnH) then I is a left ideal of R and AI = (0 : H)(0 : G/H) = 0.
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1-nilprime but not 2-nilprime

Example
Let G be a nonabelian simple group and let 0 6= H be a proper subgroup
of G .

If g 2 G , de�ne multiplication by:
g � x =

�
0 if x 2 H
g if x 2 GnH .

(G ,+, �) is a near-ring and 0 is a 1�prime ideal i.e.(G ,+, �) is a 1�prime
near-ring.
Since H is a proper left G�subgroup and H2 = 0, we have (G ,+, �) is not
a 2�prime near-ring.
Furthermore, for every 0 6= x 2 GnH we have
xn = xn�2 � (x � x) = xn�1 = � � � = x 6= 0.
Hence N((G ,+, �)) = 0
Thus (G ,+, �) is a 1�nilprime near-ring but not a 2�nilprime near-ring.
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2-nilprime but not 3-nilprime

Example

Let R be the near-ring on Z3 = f0, 1, 2g multiplication de�ned by:
a � b =

�
a if b = 2
0 if b 6= 2 .

The only R�subgroups of R are 0 and R.
We also have R2 6= 0.
Hence R is 2�prime.
R is not 3�prime since 1R1 = 0.
Furthermore we have 2n = 2 for every n 2 N.
Thus R is a 2�nilprime near-ring but not a 3�nilprime near-ring.

Nico Groenewald (NMMU) 39 / 58



2-nilprime but not 3-nilprime

Example

Let R be the near-ring on Z3 = f0, 1, 2g multiplication de�ned by:
a � b =

�
a if b = 2
0 if b 6= 2 .

The only R�subgroups of R are 0 and R.

We also have R2 6= 0.
Hence R is 2�prime.
R is not 3�prime since 1R1 = 0.
Furthermore we have 2n = 2 for every n 2 N.
Thus R is a 2�nilprime near-ring but not a 3�nilprime near-ring.

Nico Groenewald (NMMU) 39 / 58



2-nilprime but not 3-nilprime

Example

Let R be the near-ring on Z3 = f0, 1, 2g multiplication de�ned by:
a � b =

�
a if b = 2
0 if b 6= 2 .

The only R�subgroups of R are 0 and R.
We also have R2 6= 0.

Hence R is 2�prime.
R is not 3�prime since 1R1 = 0.
Furthermore we have 2n = 2 for every n 2 N.
Thus R is a 2�nilprime near-ring but not a 3�nilprime near-ring.

Nico Groenewald (NMMU) 39 / 58



2-nilprime but not 3-nilprime

Example

Let R be the near-ring on Z3 = f0, 1, 2g multiplication de�ned by:
a � b =

�
a if b = 2
0 if b 6= 2 .

The only R�subgroups of R are 0 and R.
We also have R2 6= 0.
Hence R is 2�prime.

R is not 3�prime since 1R1 = 0.
Furthermore we have 2n = 2 for every n 2 N.
Thus R is a 2�nilprime near-ring but not a 3�nilprime near-ring.

Nico Groenewald (NMMU) 39 / 58



2-nilprime but not 3-nilprime

Example

Let R be the near-ring on Z3 = f0, 1, 2g multiplication de�ned by:
a � b =

�
a if b = 2
0 if b 6= 2 .

The only R�subgroups of R are 0 and R.
We also have R2 6= 0.
Hence R is 2�prime.
R is not 3�prime since 1R1 = 0.

Furthermore we have 2n = 2 for every n 2 N.
Thus R is a 2�nilprime near-ring but not a 3�nilprime near-ring.

Nico Groenewald (NMMU) 39 / 58



2-nilprime but not 3-nilprime

Example

Let R be the near-ring on Z3 = f0, 1, 2g multiplication de�ned by:
a � b =

�
a if b = 2
0 if b 6= 2 .

The only R�subgroups of R are 0 and R.
We also have R2 6= 0.
Hence R is 2�prime.
R is not 3�prime since 1R1 = 0.
Furthermore we have 2n = 2 for every n 2 N.
Thus R is a 2�nilprime near-ring but not a 3�nilprime near-ring.

Nico Groenewald (NMMU) 39 / 58



3-nilprime but not equi-nilprime

Example

If (R,+) is any cyclic group of prime order p (p > 2), de�ne a near-ring
multiplication on R by:

ab =
�
a if b 6= 0
0 if b = 0

Then R is a near-ring which is 3�nilprime but not equi-nilprime.
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Relation between radicals

Example
Near-ring number 17 de�ned on S3 [18] is an example of an r1�nilprime
near-ring which is not r2�nilprime and near-ring number 20 on S3 [18] is
an example of an r2�nilprime near-ring which is not r3�nilprime.

If R is any near-ring and ρni (R) denotes the H�radical determined by the
class of i�nilprime near-rings, then

N(R) = ρn0(R) $ ρn1(R) $ ρn2(R) $ ρn3(R) $ ρne (R) and

N(R) = ρn0(R) $ ρnr1(R) $ ρnr2(R) $ ρn3(R) $ ρne (R).
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Notation

NOTATION:If a, b 2 R we will use the following notation:

[a]i [b]i =

8>>>>>><>>>>>>:

< a >< b > for i = 0
< a j< b j for i = 1
j a >j b > for i = r1
[a >R [b >R for i = r2
< a]R < b]R for i = 2

aRb for i = 3
NOTE:
An ideal Q of R is i-prime, i 2 f0, 1, r1, 2, r2, 3g, if for a, b 2 R,
[a]i [b]i � Q implies a 2 Q or b 2 Q.

Nico Groenewald (NMMU) 42 / 58



Notation

NOTATION:If a, b 2 R we will use the following notation:

[a]i [b]i =

8>>>>>><>>>>>>:

< a >< b > for i = 0
< a j< b j for i = 1
j a >j b > for i = r1
[a >R [b >R for i = r2
< a]R < b]R for i = 2

aRb for i = 3

NOTE:
An ideal Q of R is i-prime, i 2 f0, 1, r1, 2, r2, 3g, if for a, b 2 R,
[a]i [b]i � Q implies a 2 Q or b 2 Q.

Nico Groenewald (NMMU) 42 / 58



Notation

NOTATION:If a, b 2 R we will use the following notation:

[a]i [b]i =

8>>>>>><>>>>>>:

< a >< b > for i = 0
< a j< b j for i = 1
j a >j b > for i = r1
[a >R [b >R for i = r2
< a]R < b]R for i = 2

aRb for i = 3
NOTE:
An ideal Q of R is i-prime, i 2 f0, 1, r1, 2, r2, 3g, if for a, b 2 R,
[a]i [b]i � Q implies a 2 Q or b 2 Q.

Nico Groenewald (NMMU) 42 / 58



i-nilprime ideals and systems

De�nition
A subset T of the near-ring R is called a complete system if an 2 T for
every a 2 T and every n 2 N.

De�nition
A subset Z � R is called an ni�system, i 2 f0, 1, r1, 2, r2, 3g, if Z
contains a complete system U such that for every t1, t2 2 Z , it follows
that < [t1]i [t2]i > \U 6= ?.

De�nition
An ideal Q is called i � s�prime, i 2 f0, 1, r1, 2, r2, 3g, if for a, b 2 R
and for all x 2< [a]i [b]i >, xm 2 Q for some m implies a 2 Q or b 2 Q.

Theorem
An ideal Q of R is i � s�prime, i 2 f0, 1, r1, 2, r2, 3g, if and only if Q is
i-nilprime if and only if CR (Q) is an ni -system.
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s-equiprime near-rings

In [21] Veldsman introduced the notion of s�equiprime near-rings and
proved that in the variety of rings it coincides with the s�prime rings of
Van der Walt [22]

Veldsman proved that the class of s�equiprime near-rings determines an
ideal-hereditary generalization of the nil radical.

De�nition
[21, page 258] A near-ring R is s-equiprime if it contains a nonempty
multiplicative closed set S with 0 /2 S such that 0 6= a 2 R and
TR (a, x , y) \ S = ? implies x = y (x , y 2 R) where TR (a, x , y) = fall
�nite sums ∑i ri (asix � asiy)ki with ri , si , ki 2 Rg. In such a case S is
called the kernel of R.

Theorem
Every s�equiprime near-ring is equi-nilprime.
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Question

We know that equiprime radical map:
Pe (R) = \ fI / R : R/I equiprimeg is an ideal-hereditary KA-radical
map in the variety of all near-rings i.e., Pe (N) \ I = Pe (I ) for every
I /N 2 N

We have the following:
QUESTION:

If Mne is the class of equi-nilprime near-rings, is the
equi-nilprime radical map ρne (R) = \ fI / R : R/I equi-nilprimeg
a KA-radical map?
If R is a near-ring we know that
ρne (R) � se (R) = \ fI / R : R/I s-equiprimeg . When will
ρne (R) = se (R)?
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Near-ring modules

Let R be a near-ring and let M, be any left R-module and P a subset of
R.If P is an R�ideal (R�submodule) of M we denote it by P CR M
(P �R M ).

We attempt to generalize the various notions of primeness that were
de�ned in R to the module M.
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Prime near-ring modules

De�nition
Let P CR M such that RM * P. Then P is called:

0-prime if AB � P implies AM � P or B � P for all ideals, A of R,
and all R-ideals, B of M.

1-prime if AB � P implies AM � P or B � P for all left ideals, A of
R, and all R-ideals, B of M.

2-prime if AB � P implies AM � P or B � P for all R-subgroups, A
of R, and all R-submodules, B of M.

3-prime if rRm � P implies that rM � P or m 2 P for all r 2 R and
m 2 M.
completely prime (c-prime) if rm 2 P implies that rM � P or
m 2 P for all r 2 R and m 2 M.
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De�nition
M is said to be a ν-prime (ν = 0, 1, 2, 3, c) R-module if RM 6= 0 and 0 is
a ν-prime R-ideal of M.

In general, we cannot distinguish between 0-prime and 1-prime near-ring
modules. Thus 1-prime modules were omitted from further investigations.
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Elementwise de�nitions

Theorem
Let P CR M. Then the following are equivalent:

1 P is a 2-prime R-ideal.

2 For all a 2 R and submodules B of M such that aB � P, it follows
that aM � P or B � P.

3 For all a 2 R and b 2 M such that a[b]R � P, it follows that
aM � P or b 2 P. (Here [b]R is the submodule of M generated by
b).

4 For all R-submodules N of M such that P � N, we have that
(P : M) = (P : N).
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In a similar way we can construct and prove equivalent de�nitions for
0-prime and 1-prime R-ideals.

Theorem
Let P be an R-ideal of M. Then the following are equivalent:

1 P is a 0-prime (or 1-prime) R-ideal.

2 For all a 2 R and for all R-ideals B of M such that aB � P, we have
that aM � P or B � P.

3 For all a 2 R and b 2 M such that ahbiR � P, we have that
aM � P or b 2 P. (Here hbiR is the R-ideal of M generated by b).

4 For all R-ideals N of M such that P � N, we have that
(P : M) = (P : N).
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Corollary
An R-module M is:

1 0-prime if and only if for all non-zero R-ideals N of M, it follows that
(0 : M) = (0 : N).

2 2-prime if and only if for all non-zero submodules N of M, it follows
that (0 : M) = (0 : N)

Theorem
Let M be an R- module and P CR M. Then the following are equivalent:

1 P is 3- prime and (P : m) C R for every m 2 M r P.
2 RM * P and (P : m) = (P : M) for every m 2 M r P

Theorem
Let P CR M. Then the following are equivalent:

1 P is a 3-prime R-ideal.
2 RM * P and (P : Rm) = (P : M) for every m 2 M r P
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Theorem
Let P CR M. Then the following are equivalent:

1 P is a completely prime R-ideal.

2 RM * P and (P : m) = (P : M) for every m 2 M r P

Theorem
Let P CR M. Then P is completely prime ) P is 3-prime ) P is 2-prime
) P is 0-prime.

In general, a 0-prime R-ideal need not be 2-prime and a 2-prime R-ideal
need not be 3-prime.
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Relation between prime ideals in and prime R-ideals

If P CR M, then we recall that
�
P = (P : M) is an ideal of R.

We have the following Question:

If P is a ν-prime (ν = 0, 1, 2, 3, c) R-ideal does this imply that
�
P is a

ν-prime ideal of R?

Theorem
Let P be an R-ideal of M. Then:

1 P is a 2-prime R-ideal of M implies that
�
P is a 2-prime ideal of R.

2 P is a 3-prime R-ideal of M implies that
�
P is a 3-prime ideal of R.

3 P is a completely prime R-ideal of M implies that
�
P is a completely

prime ideal of R.
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That P is a 0-prime R-ideal implies that
�
P is a 0-prime ideal of R,

unfortunately, does not follow as naturally as for the 2-prime, 3-prime and
completely prime cases.

However, if we restrict M to a tame R�module or a monogenic
R-module, we �nd that the relationship holds.

Theorem

If M is a tame R�module and P be a 0-prime R-ideal of M,then eP is
a 0-prime ideal of R.

Let P be a 0-prime R-ideal of a monogenic R-module M. Then
�
P is a

0-prime ideal of R.
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Now suppose that P is an R-ideal of M such that (P : M) is a
ν-prime ideal of R for ν = 0, 2, 3 and c . Does this imply that P is a
ν-prime R-ideal of M?

For the various types of prime R-ideals (modules) we were easily able to
prove that if an R-ideal P of M satis�ed a certain prime condition, then so

did the corresponding ideal
�
P = (P : M) of R.

However the converse relation turned out to be problematic in many
situations, especially since it is di¢ cult to construct an R-ideal of M by
starting with an ideal of R.
To overcome this problem, we now introduce the notion of a multiplication
near-ring module.
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Multiplication near-ring modules

De�nition
Let M be an R�module. Then:

1 C � M is called a multiplication set if
�
CM = C .

2 m 2 M is called a multiplication element if the singleton set fmg is a
multiplication set.

De�nition
Let M be an R-module. Then:

1 M is called a 0-multiplication module if every R-ideal is multiplication
ideal.

2 M is called a 2-multiplication module if every R-submodule is
multiplication submodule.

3 M is called a c-multiplication module if every m 2 M is a
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Theorem

Let P be an R-ideal of a 0-multiplication R-module M such that
�
P is

a 0-prime ideal of R. Then P is a 0-prime R-ideal of M.

Let P be an R-ideal of a 2-multiplication R-module M such that
�
P is

a 2-prime ideal of R. Then P is a 2-prime R-ideal of M.

Let P be an R-ideal of a c-multiplication R-module M such that
�
P is

a 3-prime (resp. c-prime) ideal of R. Then P is a 3-prime (resp.
c-prime) R-ideal of M.

Corollary

Suppose that M is a ν-multiplication R-module (ν = 0, 2, c). Then M is
ν-prime if and only if R is ν-prime. Furthermore, if M is a c-multiplication
module, then M is 3-prime if and only if R is 3-prime.
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