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Introduction

The study of prime ideals for rings or semi-groups is facilitated by the
equivalence of the two conditions on an ideal / of a ring (semigroup) R :

@ If Aand B are ideals of R such that ABC [/, then AC [ or BC [;
Q If x,y € Raresuch that xRy C I, then x € lory € |.

These conditions are not equivalent in the class of near-rings. For
near-rings there are many non equivalent definitions of prime near-rings. In
this talk we discuss the impact on research in near-rings of these different
prime near-rings.

All near-rings are right near-rings. We will use R, N and A denote the
variety of all rings, near-rings and zero-symmetric near-rings
respectively.
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Example

From Birkenmeier et al [2] we have the following :

Example

Let R be a zero-symmetric near-ring such that condition (1) above is
satisfied for the ideal (0) i.e. if AB = (0), then A= (0) or B = (0).
Suppose there is 0 # r € R such that Rr = (0).

In [2] many examples of near-rings satisfying these conditions are given.
Now, since R is a zero symmetric near-ring we have rRr = (0) with 0 # r
and R does not satisfy condition (2)
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NOTATION

For K C R, < K |r,| K>r, < K >gr, < K]g and [K >g denote the left
ideal, right ideal, two-sided ideal, left R-subgroup and right
R-subgroup generated by K in R respectively. If it is clear in which
near-ring we are working, the subscript R will be omitted.
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For K C R, < K |r,| K>r, < K >gr, < K]g and [K >g denote the left
ideal, right ideal, two-sided ideal, left R-subgroup and right
R-subgroup generated by K in R respectively. If it is clear in which
near-ring we are working, the subscript R will be omitted.

Also K <y R, K <1, R, K << R and K <lg R symbolize that K is a left
ideal, right ideal, two-sided ideal or a left R-subgroup of R.
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Candidates for a prime ideal in a near-ring

As we saw above in the study of near-rings one is quickly confronted by
the fact that many conditions which are equivalent for rings are not
necessarily equivalent for near-rings.
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As we saw above in the study of near-rings one is quickly confronted by
the fact that many conditions which are equivalent for rings are not
necessarily equivalent for near-rings.

The following are possible candidates for a prime ideal in a near-ring.

Definition

Let R be a near-ring (not necessarily zero-symmetric) and P and ideal of
R.

Q@ P is a 0-prime ideal if for every A, B << R, AB C P implies AC P or
B C P (this is the same as the usual definition for a prime ideal in a
ring).

@ P is a 1-prime (rl-prime) ideal if for every A, B <; R (A, B <, R),
AB C P implies AC Por BC P

© P is a 2-prime (r2-prime) ideal if for every A and B left R-subgroups
(right R—subgroups) of R, AB C P implies AC Por BC P

@ P is a 3-prime ideal if for a,b € R, aRb C P impliesa € Por b € P.
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Relationship between different prime near-rings

R is called a i-prime near ring (i = 0,1, r1,2, r2, 3) if the zero ideal is a
i-prime ideal.

Denote the class of i-prime near-rings by P;.

Observe that the various prime conditions have the following relations:
3-prime = 2-prime

2-prime=> 1-prime if R is zero-symmetric and

1-prime=- O-prime.

We also have 3-prime = r2-prime = rl-prime = 0-prime.

The notations for types 0 through 2 is due to Holcombe [14], while
type 3 is due to the author [12], and

types rl and r2 are due to Birkenmeier [1].
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Examples showing that types 0, 1,2 and 3 are distinct are provided in
Fererro [10].
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Examples showing that types 0, 1,2 and 3 are distinct are provided in
Fererro [10].

Near-ring number 12 defined on Z, Pilz [18] shows that r1—prime
near-rings need not be 1—prime and

near-ring number 7 defined on S3 Pilz [18] is an example of a 1—prime
near-ring which is not rl1—prime.

Near-ring number 10 defined on S3 Pilz [18] is an example of a 2—prime
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near-ring number 6 defined on Zg Pilz [18] is an example of an r2—prime
near-ring which is not 2—prime.

Near-ring number 17 defined on S3 Pilz [18] is an example of an r1—prime
near-ring which is not r2—prime and

Nico Groenewald (NMMU)



Examples showing that types 0, 1,2 and 3 are distinct are provided in
Fererro [10].

Near-ring number 12 defined on Z, Pilz [18] shows that r1—prime
near-rings need not be 1—prime and

near-ring number 7 defined on S3 Pilz [18] is an example of a 1—prime
near-ring which is not rl1—prime.

Near-ring number 10 defined on S3 Pilz [18] is an example of a 2—prime
near-ring which is not r2—prime and

near-ring number 6 defined on Zg Pilz [18] is an example of an r2—prime
near-ring which is not 2—prime.

Near-ring number 17 defined on S3 Pilz [18] is an example of an r1—prime
near-ring which is not r2—prime and

near-ring number 20 on S3 Pilz [18] is an example of an r2—prime
near-ring which is not 3—prime.
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Examples showing that types 0, 1,2 and 3 are distinct are provided in
Fererro [10].

Near-ring number 12 defined on Z, Pilz [18] shows that r1—prime
near-rings need not be 1—prime and

near-ring number 7 defined on S3 Pilz [18] is an example of a 1—prime
near-ring which is not rl1—prime.

Near-ring number 10 defined on S3 Pilz [18] is an example of a 2—prime
near-ring which is not r2—prime and

near-ring number 6 defined on Zg Pilz [18] is an example of an r2—prime
near-ring which is not 2—prime.

Near-ring number 17 defined on S3 Pilz [18] is an example of an r1—prime
near-ring which is not r2—prime and

near-ring number 20 on S3 Pilz [18] is an example of an r2—prime
near-ring which is not 3—prime.

This is in sharp contrast to the ring case where 0—prime and 3—prime are
equivalent.
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Different prime radicals

The different definitions of prime ideals give rise to different prime radicals.
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Different prime radicals

The different definitions of prime ideals give rise to different prime radicals.

Definition

Let R € N. Then B, (R) =N{P<R: P is v-prime}is the v-prime
radical of R for v € {0,1,r1,2,r2,3}.
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Let p be a mapping which assigns to each near-ring R an ideal p (R) of R.
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Definition

An ideal mapping p is a Hoehnke radical (H-radical also called a radical
map) if it satisfies the following conditions:

(H1) (p(R)+1)/1 Cp(R/1) for all [aR;
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It is clear that such a radical only gives information on the relationships

between the radical p (R) of R and the radical of a homomorphic image of
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Hoehnke Radical

Let p be a mapping which assigns to each near-ring R an ideal p (R) of R.
Such mappings will be called ideal -mappings

Definition

An ideal mapping p is a Hoehnke radical (H-radical also called a radical
map) if it satisfies the following conditions:

(H1) (p(R)+1)/1 Cp(R/1) for all [aR;
(H2) p(R/p(R)) =0 for all R.

The Hoehnke radicals are very general:

Let M be a class of near-rings and let p be the mapping which assigns to
each near-ring R the ideal p (R) =N{/<R: R/l € M} .

The mapping p is an H-radical.

It is clear that such a radical only gives information on the relationships
between the radical p (R) of R and the radical of a homomorphic image of
R.

Clearly all the v-prime radical maps P, are Hoehnke radicals.
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Kurosh Amitsur Radical

If I <R then a Hoehnke radical gives no information on the relationships
between p (R) and p (/).
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Kurosh Amitsur Radical

If I <R then a Hoehnke radical gives no information on the relationships
between p (R) and p (/).

But this is, amongst others, what the general theory of radicals is all about:
Given a near-ring R, then it should provide some information on the
relationship between p (R) and the radicals of near-rings related to R e.g.,
homomorphic images, ideals, extensions, etc.

The following relationships between the radicals of a near-ring and its
ideals play an important role in the general theory of radicals:

Definition

An H-radical p is:

(H3) complete if p (/) = I <R implies | C p (R);
(H4) idempotent if p (o (R)) = o (R);

(H5) ideal-hereditary if p (/) =1Np(R).
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Given a near-ring R, then it should provide some information on the
relationship between p (R) and the radicals of near-rings related to R e.g.,
homomorphic images, ideals, extensions, etc.

The following relationships between the radicals of a near-ring and its
ideals play an important role in the general theory of radicals:

Definition

An H-radical p is:

(H3) complete if p (/) = I <R implies | C p (R);

(H4) idempotent if p (o (R)) = o (R);

(H5) ideal-hereditary if p (/) =1Np(R).
If o is an H-radical which is idempotent and complete, then it is
called a Kurosh-Amitsur (KA) radical map.
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There are examples to show that ;1 (P1 (R)) # P1 (R) and therefore P4
is not idempotent. Thus 31 is not a KA-radical.

There are examples of finite near-rings in N for which 3, is not complete
and ‘B3 is not idempotent.

What the situation is for 3, and B3 in Ny is not known.
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Initiated by Booth and then in conjunction with Veldsman and the present
author, we could show that there is a KA-prime radical.

In [8] we introduced a different generalization to near-rings of a prime ring.
This generalization, it turns out, has some very satisfactory consequences

and not only from a radical viewpoint.

Definition

A near-ring R is equiprime if for any 0 # a € R and x,y € R, anx = any
for all n € R implies x = y.

It is easy to check that an equiprime near-ring is zero-symmetric and
3-prime.
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Let B, denote the equiprime radical map:

Pe (R) =N{I<R: R/l equiprime}
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Let B, denote the equiprime radical map:
PBe (R) =N{I<R: R/l equiprime}

then P, is an ideal-hereditary KA-radical in the variety of all near-rings
i.e., Be (R) N1 =Pe (1) for every AR € N.
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Equiprime near-rings

Equiprime near-rings are not too restrictive.
e For any group G, the simple near-ring with identity Mg (G) is
equiprime.
@ Any simple near-ring with identity which satisfies the descending
chain condition on R—subgroups is equiprime.

Nico Groenewald (NMMU) 14 / 58



Nico Groenewald (NMMU)



o It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

Nico Groenewald (NMMU)



@ It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

Nico Groenewald (NMMU) 15 / 58



@ It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

We have the following result:

Nico Groenewald (NMMU) 15 / 58



@ It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

We have the following result:

If R is a near-ring then the following are equivalent:

Nico Groenewald (NMMU) 15 / 58



@ It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

We have the following result:

If R is a near-ring then the following are equivalent:

© R is equiprime;

Nico Groenewald (NMMU) 15 / 58



@ It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

We have the following result:

If R is a near-ring then the following are equivalent:

© R is equiprime;
@ For every nonzero right invariant subgroup A of R we have if x,y € R
and ax = ay for all a € A, then x = y;

Nico Groenewald (NMMU) 15 / 58



@ It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

We have the following result:

Theorem
If R is a near-ring then the following are equivalent:
© R is equiprime;
@ For every nonzero right invariant subgroup A of R we have if x,y € R
and ax = ay for all a € A, then x = y;

© For every invariant subgroup A of R we have if x,y € R and ax = ay
for all a € A, then x = y.

Nico Groenewald (NMMU) 15 / 58



@ It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

We have the following result:

Theorem
If R is a near-ring then the following are equivalent:
© R is equiprime;
@ For every nonzero right invariant subgroup A of R we have if x,y € R
and ax = ay for all a € A, then x = y;

© For every invariant subgroup A of R we have if x,y € R and ax = ay
for all a € A, then x = y.

Nico Groenewald (NMMU) 15 / 58



@ It is not known whether every simple zero-symmetric near-ring
with identity is equiprime or not

We have the following result:

Theorem

If R is a near-ring then the following are equivalent:
© R is equiprime;

@ For every nonzero right invariant subgroup A of R we have if x,y € R
and ax = ay for all a € A, then x = y;

© For every invariant subgroup A of R we have if x,y € R and ax = ay
for all a € A, then x = y.

If we could replace invariant subgroup by two-sided ideal in the theorem
above we would have a positive answer to the above question
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Hence x = y and condition (3) of the theorem above is satisfied for
two-sided ideals.

R is not equiprime since it is not 0-symmetric.

We have the following;:

If R is a near-ring with identity which has no non-trivial invariant
subgroups, then it must be equiprime.

Indeed, let 0 # a € R and suppose arx = ary for all r € R(x,y € R),
then A= {b € R: brx = bry for all r € R} is a non-zero invariant
subgroup of R.

Hence 1 € R = A from which x = y follows and R is equiprime
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Holcombe [14] defined an R— group G to be of type 3 if RG # 0, G has
no nontrivial R—subgroups, and for g1, € G, rgy = rgy for all r € R,
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QUESTION: Is it possible to define a form of primeness for
near-rings which leads to a KA-prime radical such that all simple
and all 2-primitive near-rings are prime of this type?
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for every ideal | of R we have if x,y € R and ax = ay for all a € | then
X =y.

In this case we have that every simple near-ring with identity is
i-equiprime. This follows from the remark after the previous theorem.
Unfortunately, this is still not the definition of prime we need in the above
question.

Let R be the near-ring built on any cyclic group of uneven prime order
a ifb#0

0 ifb=0

This near-ring is 3-prime, 2-primitive, satisfy the descending chain
condition on R—subgroups and zero-symmetric but it is not i-equiprime.

with multiplication given by ab = {
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whenever ab & |, thenaec /or bel.

The study of completely prime ideals in near-rings goes back at least to
1979 [19], where Ramakotaiah and G. Koteswara Rao called such an ideal
a “type 2 prime ideal”.

The terminology “completely prime” is now standard in ring theory and is
becoming dominant for near-rings. If the zero ideal of R is a completely
prime ideal then we say R is a completely prime near-ring.

The intersection of all of the completely prime ideals of R, denoted herein
by B (R), is the completely prime radical of R.

Birkenmeier et al investigated conditions under which a O-prime ideal is
completely prime and conditions for which every 0-prime ideal in a
near-ring is completely prime. They introduced the concepts of 2- primal
near-rings and 2-primal ideals.
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2-Primal Near-rings

Definition

An ideal | of R is a 2-primal ideal of R if Po(R/I) = N(R/I). (N(R)
denotes the set of nilpotent elements of the near-ring R). If the zero

ideal of R is a 2-primal ideal, then R is a 2-primal near-ring. (This is

equivalent to Po(R) = N(R)).
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An ideal | of R is a 2-primal ideal of R if Po(R/I) = N(R/I). (N(R)
denotes the set of nilpotent elements of the near-ring R). If the zero

ideal of R is a 2-primal ideal, then R is a 2-primal near-ring. (This is

equivalent to Po(R) = N(R)).

Some examples of 2-primal near-rings which immediately come to mind
are those which are commutative, anti-commutative (ab = —ba for all
a,be R), nilpotent, or reduced. (We say a subset of a near-ring is
reduced if it contains no nonzero nilpotent elements).
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are equivalent:

Q R is 2-primal.

@ Every minimal 0-prime ideal of R is a completely prime ideal.

o (*BO(R) = mc<R)'

| A

Theorem

(Birkenmeier et al) Every ideal of the near-ring R is 2—primal if and only if
every 0-prime ideal of R is a completely prime ideal.

v

Near-rings in which every prime factor is integral have been studied by
Birkenmeier et.al in [4].

These are near-rings R such that every O—prime ideal is a completely
prime ideal.

The class of all these near-rings will be denoted by 8% and

ER(Q) = M2 N Ny.From this it is clear that if R € Ny, Then R € 9‘{3 if and
only for every ideal / of R, R/ is 2-primal.
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@ homomorphically closed,

o closed under extensions (i.e. if / < R € W and both / and R/ are
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In [4] Birkenmeier et al gave example of a near-ring R with an ideal / such
that /, R/1 € R3 but R ¢ R3. This shows that the class 3 is not an
KA radical class in general.
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In [4] Birkenmeier et al gave example of a near-ring R with an ideal / such
that I, R/I € 9‘{% but R ¢ i)‘{%. This shows that the class 9%% is not an
KA radical class in general.

o QUESTION : Can we a define a notion of 2-primal for
near-rings for which the corresponding class ER% will be a KA
radical class .
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Class pairs in near-rings

Our aim was to extend some of the results on class pairs to
zero-symmetric near-rings.

By using properties of class pairs in near-rings we were able to give
answers to some open problems in near-rings

We will get back to these open problems later

We usually require p; and p, to be preradical maps only (An ideal
mapping is p : W — W is said to be a preradical map on W if for every
R € W and every homomorphism f on R, f(p(R)) C p(f(R)))

As in [6] we define class pairs and radical pairs as follows.

Definition

Suppose M and M are classes of near-rings and p; and p, ideal maps.
Then

Q@ (My: Mp)={R:for I<R, R/l € My =R/l € My},
Q (0, :p0,) ={R:py(R/I) Cpy(R/I) for every | < R}.
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Let p; and p, be H-radical maps associated with M1 and M>
respectively. Then M1NS,, C My implies (Ma : M1) = (p; : p,).
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Theorem

Let P; denote the class of i—prime near-rings and *J3; the associated
H-radical, i = 0,2,3 and c. Then (P;: Po) = (Bo :Pi), i = 2,3 and c.
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Let p; and p, be H-radical maps associated with M1 and M>
respectively. Then M1NS,, C My implies (Ma : M1) = (p; : p,).

Theorem
Let P; denote the class of i—prime near-rings and *J3; the associated

H-radical, i = 0,2,3 and c. Then (P;: Po) = (Bo :Pi), i = 2,3 and c.

v

Remark: From this we have RZ = (P : Py) = (Bo : Be).
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Theorem

A Let My be any class of near-rings and M a class which is extension

closed. If any of the following conditions holds, then (My : M3) is
extension closed:

Nico Groenewald (NMMU) 27 / 58



Theorem

A Let My be any class of near-rings and M a class which is extension

closed. If any of the following conditions holds, then (My : M3) is
extension closed:

Q@ M, and M5 are hereditary and essentially closed, or

Nico Groenewald (NMMU) 27 / 58



Theorem

A Let My be any class of near-rings and M a class which is extension

closed. If any of the following conditions holds, then (My : M3) is
extension closed:

Q@ M, and M5 are hereditary and essentially closed, or

@ M, is hereditary and closed under homomorphic images.

Nico Groenewald (NMMU) 27 / 58



Theorem

A Let My be any class of near-rings and M a class which is extension

closed. If any of the following conditions holds, then (My : M3) is
extension closed:

Q@ M, and M5 are hereditary and essentially closed, or

@ M, is hereditary and closed under homomorphic images.

Nico Groenewald (NMMU) 27 / 58



Theorem

A Let My be any class of near-rings and M a class which is extension
closed. If any of the following conditions holds, then (My : M3) is
extension closed:

Q@ M, and M5 are hereditary and essentially closed, or

@ M, is hereditary and closed under homomorphic images.

A near-ring R is said to be irreducible if every nonzero ideal of R is an
essential ideal of R. Let D denote the class of all irreducible near-rings.

Nico Groenewald (NMMU) 27 / 58



Theorem

A Let My be any class of near-rings and My a class which is extension
closed. If any of the following conditions holds, then (M;y : M>) is
extension closed:

Q@ M, and M5 are hereditary and essentially closed, or

@ M, is hereditary and closed under homomorphic images.

A near-ring R is said to be irreducible if every nonzero ideal of R is an
essential ideal of R. Let D denote the class of all irreducible near-rings.

B Let M be an essentially closed class and M an hereditary subclass of
D. If (My : M3) is extention closed, then (M; : My) is £—closed.
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Consider the class pair (P : P3).
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Example

Consider the class pair (P : P3).
Then (P3 : Pc) = (Pc : P3) = (PZ : P3) where P¢ is the class of all
completely semiprime near-rings and P2N P3 C P..
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By [12, Lemma 4.3 ], P; is essentially closed and it follows from [5] that
P53 is an hereditary class.

We also have from [11] that P? is extention closed, essentialy closed and
one can quickly verify that P? is hereditary.

By Theoerm A and Theorem B (P, : P3) is both extension closed and
>.—closed.

This shows (B3 : P.) = (Pc : P3) forms a KA-radical class since

(Pc : P3) is clearly also homomorphically closed.

o For rings (B3 : Pe) = (Pc: P3) = (Po : Pe) = (Pc : Po) = R

e In [4] it was shown that the class SR, which is equal to (o : B.), is
not a KA-radical in general.

@ From this, it follows that the near-rings R for which PB3(R) = PB.(R)
is a more appropriate generalization of the notion of 2-primal from

rinis to near rinis.
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Definition
Foreach R € N, let pc(R) = ) _{I < R: 1 e R3}

nEA

They proved that @, is an idempotent preradical. Since R € 9‘{% implies
9c(R) = R and we have R3 C Rop..

o It was left as an open question whether or not Ry, is equal to
RZ.
0

If we take 9‘{(2) to be class of all zero-symmetric near rings where for every
ideal / of R, R/l is 2-primal
(where R is 2-primal if P3(R) = P.(R) in stead of Po(R) = P(R))
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In [4] Birkenmeier et al introduce the following preradical:

Definition

Foreach R € N, let pc(R) = ) _{I < R: 1 e R3}

nEA

They proved that @, is an idempotent preradical. Since R € 9‘{% implies
9c(R) = R and we have R3 C Rop..

o It was left as an open question whether or not Ry, is equal to
2.
If we take 9‘{(2) to be class of all zero-symmetric near rings where for every
ideal / of R, R/l is 2-primal
(where R is 2-primal if P3(R) = P.(R) in stead of Po(R) = P(R))
By using class pairs we can prove that Ry, = iR%
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Open question of Gordon Mason

We have another application of class pairs of near-rings:
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Open question of Gordon Mason

We have another application of class pairs of near-rings:
It is well known for rings that an ideal is semi-prime if and only if it is the
intersection of prime ideals. For near-rings we have:

If R € Ny then the ideal P is a 0-semiprime ideal if and only if it is the
intersection of 0-prime ideals.

If every 3 semiprime ideal is the intersection of 3 prime ideals, then By
using the same example of [4] which they used to show that (B : B.), is
not a KA-radical we can show that (33 : P.) is not extension closed an
hence not a KA radical class.

This contradicts the fact that (3 : Pe) = (Pc : P3) forms a KA-radical
class and we conclude P35 # Sg,.

Hence there are near-rings with 3-semi prime ideals which can not be
written as the intersection of 3-prime ideals.

This gives an answer in the negative to a long standing open question

Qsed D 01\
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Strong prime near-rings

In [22] van der Walt defined the notion of a s-prime near-ring ( strong
prime near-ring) and showed that the s-prime radical determined by the
class of all s-prime near-rings is the same as the upper nil radical.
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such that R// is an s-prime near-ring).
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Strong prime near-rings

In [22] van der Walt defined the notion of a s-prime near-ring ( strong
prime near-ring) and showed that the s-prime radical determined by the
class of all s-prime near-rings is the same as the upper nil radical.

Hence if R is a near-ring then IN(R) i.e., the sum of all nil ideals of R is
equal to s(R) the intersection of all the s-prime ideals of R (all ideals /
such that R// is an s-prime near-ring).

In [15] Kaarli observed that the nil radical N(R) of the near-ring R is
equal to the intersection of all the 0-prime ideals P of R such that R/P
has no nonzero nil ideals.

He mentioned that the proof of this result is essentially that given for rings
by Divinsky, see [9, page 147].

Nico Groenewald (NMMU) 31/ 58



Nilprime near-rings

Nico Groenewald (NMMU) 32 /58



Nilprime near-rings

In [5] Birkenmeier et al called an ideal / of the near-ring R nilprime if / is
a O-prime ideal and IN(R//) = 0 i.e., R// has no nonzero nil ideals. They
then gave a self-contained proof within near-ring theory of the result "that
the nil radical N(R) of the near-ring R is equal to the intersection of all
the O-prime ideals P of R such that R/ P has no nonzero nil
ideals".mentioned by Kaarli.
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Nilprime near-rings

In [5] Birkenmeier et al called an ideal / of the near-ring R nilprime if / is
a O-prime ideal and IN(R//) = 0 i.e., R// has no nonzero nil ideals. They
then gave a self-contained proof within near-ring theory of the result "that
the nil radical N(R) of the near-ring R is equal to the intersection of all
the O-prime ideals P of R such that R/ P has no nonzero nil
ideals".mentioned by Kaarli.

In [5] it was proved that every s—prime near-ring is a nilprime near-ring
and left it as an open question whether every nilprime near-ring is an
s—prime near-ring.

In this talk we introduce another notion of an s-prime near-ring which

coincides with the notion of nilprime.
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s-systems

Definition

The subset M of the near-ring R is called an m—system if for every
a, b € M there exists ¢ €< a >< b > such that c € M.
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The subset N of the near-ring R is called an sp—system if for every a € N
there exists ¢ €< a >< a > such that c € N.
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s-systems

The subset M of the near-ring R is called an m—system if for every
a, b € M there exists ¢ €< a >< b > such that c € M.

The subset N of the near-ring R is called an sp—system if for every a € N
there exists ¢ €< a >< a > such that c € N.

v

Definition
The subset S of the near-ring R is called an s—system if for every
a,b € S there exists c €< a >< b > such that ¢” € S forall n € IN .
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The subset M of the near-ring R is called an m—system if for every
a, b € M there exists c €< a >< b > such that c € M.

v

The subset N of the near-ring R is called an sp—system if for every a € N
there exists ¢ €< a >< a > such that c € N.

v

The subset S of the near-ring R is called an s—system if for every
a,b € S there exists c €< a >< b > such that ¢" € S forall n € IN .

v

The subset U of the near-ring R is called an ss—system if for every a € U
there exists ¢ €< a >< a > such that ¢” € U for all n € N
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s-systems

Definition
The subset M of the near-ring R is called an m—system if for every
a, b € M there exists c €< a >< b > such that c € M.

Definition
The subset N of the near-ring R is called an sp—system if for every a € N
there exists ¢ €< a >< a > such that c € N.

| A\

Definition
The subset S of the near-ring R is called an s—system if for every
a,b € S there exists c €< a >< b > such that ¢" € S forall n € IN .

Definition
The subset U of the near-ring R is called an ss—system if for every a € U
there exists ¢ €< a >< a > such that ¢” € U for all n € N

.

Clearly an s—system is an m—system and also an.ss—system.
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The s—radical (0-prime radical) of R, denoted by s(R) (po(R)), consists
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s-prime ideals and the s-prime radical

Let Cr(Q) denote the complement of Q in R.

An ideal Q of the near-ring R is an s—prime, prime (0-prime),
s—semiprime or semiprime (0-semiprime) ideal if Cg(Q) is an
s—system, m—system, ss—system or a sp—system respectively.

Definition

The s—radical (0-prime radical) of R, denoted by s(R) (po(R)), consists
of all those elements r € R such that every s—system (m—system) which
contains r also contains 0.

From [22] it follows that g (R) is equal to the intersection of all the
0-prime ideals of R.Hence po(R) = PBo(R).
We now have:

The s—radical s(R) of the near ring R is equal to the intersection of all the
s—prime ideals of R and coincides with the upper nil radical N(R) of R
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Answer to question

We now have for our definition of an s—prime ideal that the notions of
s—prime near-ring and nilprime near-ring coincide.
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Answer to question

We now have for our definition of an s—prime ideal that the notions of
s—prime near-ring and nilprime near-ring coincide.

If Q < R, then Q is an s- prime ideal if and only if Q is nilprime.

Definition

An s-prime ideal P is a minimal s—prime ideal containing an ideal / if
| C P and there does not exist an s—prime ideal P’ in R such that
I C P ; P.
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Answer to question

We now have for our definition of an s—prime ideal that the notions of
s—prime near-ring and nilprime near-ring coincide.

If Q < R, then Q is an s- prime ideal if and only if Q is nilprime.

An s-prime ideal P is a minimal s—prime ideal containing an ideal / if

| C P and there does not exist an s—prime ideal P’ in R such that
| C P ; P.

Theorem
If s'(R) is the intersection of all the minimal s—prime ideals of R then
N(R) =5s'(R) = s(R).
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Different nilprime near-rings

We have that there are a number of non-equivalent notions of prime
near-rings which coincide in the case of associative rings.
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intersection of all the nil O-prime ideals.
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Definition
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nt nilprime near-rings

We have that there are a number of non-equivalent notions of prime
near-rings which coincide in the case of associative rings.

We also have that the upper nil radical of the near-ring R is equal to the
intersection of all the nil O-prime ideals.

Because of this we can now introduce the following:

Definition

A near-ring is i-nilprime if R is j-prime and R contains no nonzero
nilideals for i € {0,1,r1,2,r2,3, equi}.

If R is an associative ring, this coincides with the notion prime
nil-semisimple rings and the upper radical determined by this class of rings
coincides with the nilradical IN(R).

We now show that in the case of near-rings this give rise to a number of
nonequivalent nilradicals.
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Examples

0-nilprime but not 1-nilprime

Let G be a finite group and let 0 % H be a proper subgroup of G.
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Examples

0-nilprime but not 1-nilprime

Let G be a finite group and let 0 % H be a proper subgroup of G.
Let R={a€ My(G):a(H) C H}.

Then R is a zero-symmetric near-ring and its only ideals are R,
A= (0:H)={a€ R:a(H) =0} and 0.
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Examples

0-nilprime but not 1-nilprime

Example

Let G be a finite group and let 0 % H be a proper subgroup of G.
Let R={a€ My(G):a(H) C H}.

Then R is a zero-symmetric near-ring and its only ideals are R,
A=(0:H)={a€eR:a(H)=0}and 0.

Let a € R be defined by:

a(x):{g i x=g for g € G\H.

0 if x#g
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Then R is a zero-symmetric near-ring and its only ideals are R,
A=(0:H)={a€eR:a(H)=0}and 0.

Let a € R be defined by:

a(x):{ ‘g :i i#i for g € G\H.

Now a € Aand a"(g) =a" 1(g) =---=a(g) = g.
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Thus the only nil ideal of R is 0.
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Examples

0-nilprime but not 1-nilprime

Example

Let G be a finite group and let 0 % H be a proper subgroup of G.
Let R={a€ My(G):a(H) C H}.

Then R is a zero-symmetric near-ring and its only ideals are R,
A=(0:H)={a€eR:a(H)=0}and 0.

Let a € R be defined by:

a(x):{ ‘g :i i#i for g € G\H.

Now a € Aand a"(g) =a" 1(g) =---=a(g) = g.

Hence a"” # 0 for all n € IN.

Thus the only nil ideal of R is 0.

R is 0—prime since A% # 0 and it follows that R is O—nilprime.
This near-ring is not 1—nilprime since R is not 1—prime because if
I = (0: G\H) then [ is a left ideal of R and Al = (0: H)(0: G/H) = 0. )
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1-nilprime but not 2-nilprime

Let G be a nonabelian simple group and let 0 # H be a proper subgroup
of G.
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1-nilprime but not 2-nilprime

Example
Let G be a nonabelian simple group and let 0 # H be a proper subgroup

of G.
If g € G, define multiplication by:

T foif xeH
X%\ g if x € G\H
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1-nilprime but not 2-nilprime

Example

Let G be a nonabelian simple group and let 0 # H be a proper subgroup
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1-nilprime but not 2-nilprime

Example

Let G be a nonabelian simple group and let 0 # H be a proper subgroup
of G.
If g € G, define multiplication by:
_J o if xeH
g-x-{ g if xe G\H
(G,+, ) is a near-ring and 0 is a 1—prime ideal i.e.(G, +, ) is a 1—prime
near-ring.
Since H is a proper left G—subgroup and H?> = 0, we have (G, +, -) is not
a 2—prime near-ring.
Furthermore, for every 0 # x € G\ H we have
xX"T=x"2. (x-x)=x"1=...=x#£0.
Hence N((G,+,-)) =0
Thus (G, +, ) is a 1—nilprime near-ring but not a 2—nilprime near-ring.

v
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2-nilprime but not 3-nilprime

Let R be the near-ring on Z3 = {0, 1,2} multiplication defined by:
e { a if b=2

0 if b#£2 "
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2-nilprime but not 3-nilprime

Example
Let R be the near-ring on Z3 = {0, 1,2} multiplication defined by:
L, fa if b=2

=10 if b#£2

The only R—subgroups of R are 0 and R.

We also have R? # 0.

Hence R is 2—prime.

R is not 3—prime since 1R1 = 0.

Furthermore we have 2" = 2 for every n € IN.

Thus R is a 2—nilprime near-ring but not a 3—nilprime near-ring.

Nico Groenewald (NMMU)
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3-nilprime but not equi-nilprime

If (R,+) is any cyclic group of prime order p (p > 2), define a near-ring
multiplication on R by:

[ aif b#0
ab‘{o if b=0
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3-nilprime but not equi-nilprime

If (R,+) is any cyclic group of prime order p (p > 2), define a near-ring
multiplication on R by:
_Jaif b#0
ab= { 0 if b=0
Then R is a near-ring which is 3—nilprime but not equi-nilprime.

Nico Groenewald (NMMU)



Relation between radicals

Near-ring number 17 defined on S3 [18] is an example of an r1—nilprime
near-ring which is not r2—nilprime and near-ring number 20 on S3 [18] is
an example of an r2—nilprime near-ring which is not r3—nilprime.
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NOTATION:If a, b € R we will use the following notation:
( <a><b> fori=0

<al<b| fori=1

la>|b> fori=rl

[a >R [b >p fori=r2

<alg <bJg fori=2
L aRb for i =3

[a]' [b)" =
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NOTATION:If a, b € R we will use the following notation:
( <a><b> fori=0
<al<b| fori=1
Y a>b> fori=rl
[a] [b] - [al >R ‘[b >p fori=r2
<alg <bJg fori=2
L aRb for i =3

NOTE:
An ideal Q of R is i-prime, i € {0,1,r1,2,r2,3}, if for a,b € R,
[a)/[b]" C Q impliesa € Q or b € Q.
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i-nilprime ideals and systems

Definition

A subset T of the near-ring R is called a complete system if a" € T for
every a € T and every n € IN.
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A subset Z C R is called an n;—system, i € {0,1,r1,2,r2,3}, if Z
contains a complete system U such that for every t1, t, € Z, it follows
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A subset T of the near-ring R is called a complete system if a" € T for
every a € T and every n € IN.

A subset Z C R is called an n;—system, i € {0,1,r1,2,r2,3}, if Z

contains a complete system U such that for every t1, t, € Z, it follows
that < [t1]'[t2]' > NU # 2.

A\

Definition
An ideal Q is called i — s—prime, i € {0,1,r1,2,r2,3}, if for a,b € R
and for all x €< [a]’[b]’ >, x™ € Q for some m implies a € Q or b € Q.
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i-nilprime ideals and systems

A subset T of the near-ring R is called a complete system if a" € T for
every a € T and every n € IN.

v

A subset Z C R is called an nj—system, i € {0,1,r1,2,r2,3},if Z
contains a complete system U such that for every t1, tp € Z, it follows

that < [t1]'[t2]" > NU # @.

v

An ideal Q is called i — s—prime, i € {0,1,r1,2,r2,3}, if for a,b € R
and for all x €< [a]’[b]’ >, x™ € Q for some m implies a € Q or b € Q.

An ideal Q of R is i —s—prime, i € {0,1,r1,2,r2,3}, if and only if Q is

i-nilprime if and only if Cr(Q) is an nj-system.
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s-equiprime near-rings

In [21] Veldsman introduced the notion of s—equiprime near-rings and
proved that in the variety of rings it coincides with the s—prime rings of
Van der Walt [22]
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In [21] Veldsman introduced the notion of s—equiprime near-rings and
proved that in the variety of rings it coincides with the s—prime rings of
Van der Walt [22]

Veldsman proved that the class of s—equiprime near-rings determines an
ideal-hereditary generalization of the nil radical.

Definition

[21, page 258] A near-ring R is s-equiprime if it contains a nonempty
multiplicative closed set S with 0 ¢ S such that 0 # a € R and
Tr(a,x,y) NS = & implies x =y (x,y € R) where Tg(a, x,y) = {all
finite sums Y_; r;(asix — as;y)k; with r;, s;, ki € R}. In such a case S is
called the kernel of R.
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s-equiprime near-rings

In [21] Veldsman introduced the notion of s—equiprime near-rings and
proved that in the variety of rings it coincides with the s—prime rings of
Van der Walt [22]

Veldsman proved that the class of s—equiprime near-rings determines an
ideal-hereditary generalization of the nil radical.

Definition

[21, page 258] A near-ring R is s-equiprime if it contains a nonempty
multiplicative closed set S with 0 ¢ S such that 0 # a € R and
Tr(a,x,y) NS = & implies x =y (x,y € R) where Tg(a, x,y) = {all
finite sums Y_; r;(asix — as;y)k; with r;, s;, ki € R}. In such a case S is
called the kernel of R.

Every s—equiprime near-ring is equi-nilprime.
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We know that equiprime radical map:
PBe (R) =N{I<R: R/l equiprime} is an ideal-hereditary KA-radical

map in the variety of all near-rings i.e., Pe (N) N[ = P, (/) for every
I<NeN
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QUESTION:

e If M, is the class of equi-nilprime near-rings, is the
equi-nilprime radical map p, (R) = N{/<R: R/l equi-nilprime}
a KA-radical map?
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We know that equiprime radical map:

PBe (R) =N{I<R: R/l equiprime} is an ideal-hereditary KA-radical
map in the variety of all near-rings i.e., Pe (N) N[ = P, (/) for every
I<NeN

We have the following:

QUESTION:

o If M, is the class of equi-nilprime near-rings, is the
equi-nilprime radical map p, (R) =N {/ <R : R/l equi-nilprime}
a KA-radical map?

o If R is a near-ring we know that
P, (R) Cse(R)=n{l<R:R/I s-equiprime}. When will
0n, (R) = se (R)?
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Near-ring modules

Let R be a near-ring and let M, be any left R-module and P a subset of

R.If Pis an R—ideal (R—submodule) of M we denote it by P <ig M
(P<gp M).
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Near-ring modules

Let R be a near-ring and let M, be any left R-module and P a subset of
R.If Pis an R—ideal (R—submodule) of M we denote it by P <ig M
(P <gM).

We attempt to generalize the various notions of primeness that were
defined in R to the module M.
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Prime near-ring modules

Let P <<g M such that RM ¢ P. Then P is called:

@ 0-prime if AB C P implies AM C P or B C P for all ideals, A of R,
and all R-ideals, B of M.
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@ 0-prime if AB C P implies AM C P or B C P for all ideals, A of R,
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Prime near-ring modules

Let P <<g M such that RM ¢ P. Then P is called:

@ 0-prime if AB C P implies AM C P or B C P for all ideals, A of R,
and all R-ideals, B of M.

o 1-prime if AB C P implies AM C P or B C P for all left ideals, A of
R, and all R-ideals, B of M.

@ 2-prime if AB C P implies AM C P or B C P for all R-subgroups, A
of R, and all R-submodules, B of M.

@ 3-prime if rRm C P implies that rM C P or m € P for all r € R and
mée M.

e completely prime (c-prime) if rm € P implies that rM C P or
mée€ Pforallr € Rand me M.
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Definition

M is said to be a v-prime (v =0,1,2,3,¢) R-module if RM # 0 and 0 is
a v-prime R-ideal of M.
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Definition

M is said to be a v-prime (v =0,1,2,3,¢) R-module if RM # 0 and 0 is
a v-prime R-ideal of M.

In general, we cannot distinguish between 0-prime and 1-prime near-ring
modules. Thus 1-prime modules were omitted from further investigations.
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Elementwise definitions

Let P <ig M. Then the following are equivalent:
Q P is a 2-prime R-ideal.
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Elementwise definitions

Let P <ig M. Then the following are equivalent:

Q P is a 2-prime R-ideal.
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© Foralla€ R and b € M such that a[b]g C P, it follows that
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Elementwise definitions

Let P <ig M. Then the following are equivalent:

Q P is a 2-prime R-ideal.

@ For all a € R and submodules B of M such that aB C P, it follows
that aM C P or B C P.

© Foralla€ R and b € M such that a[b]g C P, it follows that
aM C P or b € P. (Here [b]g is the submodule of M generated by
b).

@ For all R-submodules N of M such that P C N, we have that
(P:M)=(P:N).
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In a similar way we can construct and prove equivalent definitions for
0-prime and 1-prime R-ideals.

Theorem
Let P be an R-ideal of M. Then the following are equivalent:

@ P is a O-prime (or 1-prime) R-ideal.
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In a similar way we can construct and prove equivalent definitions for
0-prime and 1-prime R-ideals.

Theorem
Let P be an R-ideal of M. Then the following are equivalent:
@ P is a O-prime (or 1-prime) R-ideal.
@ fFor all a € R and for all R-ideals B of M such that aB C P, we have
that aM C P or B C P.
@ Foralla€ R and b € M such that a(b)gr C P, we have that
aM C P or b € P. (Here (b)g is the R-ideal of M generated by b).
Q For all R-ideals N of M such that P C N, we have that
(P:M)=(P:N).
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Corollary
An R-module M is:

@ O0-prime if and only if for all non-zero R-ideals N of M, it follows that
(0: M) =(0:N).
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Corollary

An R-module M is:

@ O0-prime if and only if for all non-zero R-ideals N of M, it follows that
(0: M) =(0:N).

@ 2-prime if and only if for all non-zero submodules N of M, it follows
that (0: M) = (0: N)

| A\

Theorem
Let M be an R- module and P <ig M. Then the following are equivalent:

@ P is 3- prime and (P : m) < R for every m € M ~\. P.

\
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Corollary

An R-module M is:

@ O0-prime if and only if for all non-zero R-ideals N of M, it follows that
(0: M) =(0:N).

@ 2-prime if and only if for all non-zero submodules N of M, it follows
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Theorem

Let M be an R- module and P <ig M. Then the following are equivalent:
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v
Theorem

Let M be an R- module and P <ig M. Then the following are equivalent:
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Let P <ig M. Then the following are equivalent:

Q P is a completely prime R-ideal.
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Let P <ig M. Then the following are equivalent:

Q P is a completely prime R-ideal.
Q@ RM E P and (P:m) = (P: M) for every me M~ P

Let P <g M. Then P is completely prime = P is 3-prime = P is 2-prime
= P is 0-prime.
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Let P <ig M. Then the following are equivalent:

Q P is a completely prime R-ideal.
Q@ RM E P and (P:m) = (P: M) for every me M~ P

Let P <g M. Then P is completely prime = P is 3-prime = P is 2-prime
= P is 0-prime.

In general, a O-prime R-ideal need not be 2-prime and a 2-prime R-ideal
need not be 3-prime.
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Relation between prime ideals in and prime R-ideals

If P <g M, then we recall that P = (P: M) is an ideal of R.
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Relation between prime ideals in and prime R-ideals
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Relation between prime ideals in and prime R-ideals

If P <g M, then we recall that P = (P: M) is an ideal of R.
We have the following Question:

o If Pisawv-prime (v=0,1,2,3, c) R-ideal does this imply that .B is a
v-prime ideal of R?

Theorem
Let P be an R-ideal of M. Then:

Q P is a 2-prime R-ideal of M implies that ;’ is a 2-prime ideal of R.
@ P is a 3-prime R-ideal of M implies that ,B is a 3-prime ideal of R.

© P is a completely prime R-ideal of M implies that IN:’ is a completely
prime ideal of R.
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That P is a O-prime R-ideal implies that P is a O-prime ideal of R,
unfortunately, does not follow as naturally as for the 2-prime, 3-prime and
completely prime cases.
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However, if we restrict M to a tame R—module or a monogenic
R-module, we find that the relationship holds.

o If M is a tame R—module and P be a 0-prime R-ideal of M,then Pis
a O-prime ideal of R.
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prove that if an R-ideal P of M satisfied a certain prime condition, then so
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v-prime ideal of R for v =0, 2,3 and c. Does this imply that P is a
v-prime R-ideal of M?

For the various types of prime R-ideals (modules) we were easily able to
prove that if an R-ideal P of M satisfied a certain prime condition, then so

did the corresponding ideal P = (P : M) of R.
However the converse relation turned out to be problematic in many
situations, especially since it is difficult to construct an R-ideal of M by

starting with an ideal of R.
To overcome this problem, we now introduce the notion of a multiplication

near-ring module.

Nico Groenewald (NMMU) 55 / 58



Multiplication near-ring modules

Definition
Let M be an R—module. Then:
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Definition
Let M be an R—module. Then:

@ C C M is called a multiplication set if CM = C.

@ m € M is called a multiplication element if the singleton set {m} is a
multiplication set.

Definition
Let M be an R-module. Then:

Q@ M is called a 0-multiplication module if every R-ideal is multiplication
ideal.

@ M is called a 2-multiplication module if every R-submodule is
multiplication submodule.

© M is called a c-multiplication module if every m € M is a
multiplication element.
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@ Let P be an R-ideal of a 0-multiplication R-module M such that :B is
a 0-prime ideal of R. Then P is a 0-prime R-ideal of M.
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Theorem

@ Let P be an R-ideal of a 0-multiplication R-module M such that IS is
a 0-prime ideal of R. Then P is a 0-prime R-ideal of M.

@ Let P be an R-ideal of a 2-multiplication R-module M such that .B is
a 2-prime ideal of R. Then P is a 2-prime R-ideal of M.

@ Let P be an R-ideal of a c-multiplication R-module M such that .B is
a 3-prime (resp. c-prime) ideal of R. Then P is a 3-prime (resp.
c-prime) R-ideal of M.

| \

Corollary
Suppose that M is a v-multiplication R-module (v =10,2,c). Then M is
v-prime if and only if R is v-prime. Furthermore, if M is a c-multiplication
module, then M is 3-prime if and only if R is 3-prime.

v
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