Algorithmic Nearring Theory Current Developments

Franz Binder

Department of Algebra Johannes Kepler University Linz, Austria

> Conference on Nearrings, Nearfields, and related topics

> > Vorau 2009

Outline

General Ideas

- Why Algorithmic?
- Chain Conditiions
- Computing Orbits

2 Finite Nearrings

- Finite Transformations Nearrings
- Compute Additive Generators
- Use Nearring Generators Directly

Why Algorithmic? Chain Conditiions Computing Orbits

Why Algorithmic?

- Because its modern.
- Some computations may have to get ideas for conjectures.
- Modern technology provides us with the necessary computing power. We should use it.
- Essentially all applications of mathematics use computation.
- Algorithmic theories are a useful refinement of classical ones.

Why Algorithmic? Chain Conditiions Computing Orbits

Chain Conditions

Definition

An ordered set has ACC iff

• for each ascending chain $a_1 \leq a_2 \leq a_3 \leq \ldots$, there is $n \in \mathbb{N}$ such that

 $a_n = a_{n+1} = a_{n+2} = \ldots$

- for each ascending chain $a_1 \leq a_2 \leq a_3 \leq \ldots$, there is $n \in \mathbb{N}$ such that $a_n = a_{n+1}$.
- if there is a proper ascending chains

 $a_1 < a_2 < a_3 < \ldots$, then we get a contradiction.

Example

 $\begin{array}{l} \mbox{Consider the 2-element lattice,}\\ 0<1, \mbox{ and the chain starting }\\ \mbox{with} \end{array}$

- $0 \le 0 \le 0 \le 0 \le 0 \le 0 \le \ldots$
 - It is undecidable whether it will move up to 1 eventually.
 - We can easily construct two equal elements in this chain.
 - Negative statements contain no construction.

Why Algorithmic? Chain Conditiions Computing Orbits

Use ACC for Algorithms

Proposition

Let

- *C* be a class of subgroups with ACC;
- $T: \mathscr{C} \to \mathscr{C}$, monotone;

•
$$\mathscr{D} = \{ H \in \mathscr{C} \mid T(H) = H \};$$

• $H_0 \in \mathscr{C}$.

Then we can compute the smallest element of \mathcal{D} containing H_0 .

Proof.

We define: $H_{n+1} = T(H_n).$ Then $H_n \subseteq H_{n+1}$, By ACC, there is some *n* such that $H_n = H_{n+1}$, which is the solution.

Remark

In situations like this, we need the first place of equality in the ascending chain.

Why Algorithmic? Chain Conditiions Computing Orbits

Computing Orbits in Nearring Modules

Example

Let R be a nearring acting on a group G such that

- *R* is generated by a finite set *E*;
- ⟨H ∪ H^e⟩ is f.g., for each f.g. subgroup H of G, and for each e ∈ E;
- *G* has ACC for f.g. subgroups.

Then we can compute the orbit g^N , for each $g \in G$.

Proof.

We start with $H_0 = \langle g^E \rangle = \langle g^{e_1}, \dots, g^{e_n} \rangle.$ Using $T(H) = \langle H \cup H^E \rangle =$ $\langle H \cup H^{e_1} \rangle \cup \dots \cup \langle H \cup H^{e_n} \rangle$ we note that g^N is the smallest *T*-invariant subgroup containing H_0 . Thus it can be computed using ACC for f.g. subgroups.

Finite Transformations Nearrings Compute Additive Generators Use Nearring Generators Directly

Finite Transformation Nearrings.

Problem

Let

- *G* be a small group;
- *E* be a small set of transformations on *G*;
- *R* be the nearring generated by *E*.

Compute information about *R* without looping over a big set.

Convention

small: Your age big: Any (your age)-digit number

Remark

M(G) is big.

Membership Problem

Given $f \in M(G)$, decide whether $f \in R$ or $f \notin R$.

Finite Transformations Nearrings Compute Additive Generators Use Nearring Generators Directly

Compute Additive Generators.

Remark

- Algorithmic group theory ist well established and implemented (e.g. in GAP).
- If we have generators of the additive group of the nearring *R*, we can solve the membership problem, determine its size, etc.

Proposition

lf

- e is an endomorphism of G;
- *H* ≤ *G*;
- H is generated by F;

Then $\langle H \cup H^e \rangle = \langle F \cup F^e \rangle.$

Corollary

It is easy to compute additive generators of d.g. transformation nearrings.

Finite Transformations Nearrings Compute Additive Generators Use Nearring Generators Directly

Nearly D.g. Nearrings.

Proposition

If each generator e of the nearring R has the property $e(g_1 + g_2 + g_3) \in$ $\langle e(g_1+g_2), e(g_1+g_3), e(g_2+g_3), e(g_1), e(g_2), e(g_3), e_0 \rangle$, then it is also rather easy to compute additive generators.

Remark

All quadratic polynomials over rings have this property.

Remark

- This approach is not always applicable.
- Even if it is, it will never help us to deal with nearrings that are too for being mastered by general group methods.
- A method to find better generators (of "lower degree") would be helpful.
- We do not have even a method to compute distributive generators of a d.g. nearring given by non-distributive generators.

Finite Transformations Nearrings Compute Additive Generators Use Nearring Generators Directly

Use Nearring Generators Directly.

Remark

Let G be a finite group, and $N \le M(G)$ generated by E.

- *G* is an *R*-module, in the natural way;
- The same for $G \times G$, G^3 ,....
- We can compute efficiently g^R (orbits), $(g, h)^R$ (interpolation),....
- These *R*-modules are in fact just small groups with operators.

Theorem

The knowledge of these R-modules can be transformed back to solve some problems about R:

- 2-interpolation property?
- is R tame on G?
- Is R distributive?
- Is R a ring?
- Is R = M(G) ?
- Is R 2-primitive on G?
- Do these apply to the zero-symmetric part of R?

Finite Transformations Nearrings Compute Additive Generators Use Nearring Generators Directly

Generators for the Pierce Decomposition.

Theorem

Let *R* be a nearring generated by *E*, and *i* an idempotent. Then $R^+ = Z \ltimes_R K$ where $K = \{ ir \mid r \in R \}$, $Z = \{ r \mid ir = 0 \}$, and $K \leq_R R^+$, $Z \leq_R R^+$. In addition,

- K is generated by { ie | e ∈ E } as an R-subgroup;
- Z is generated by
 { e − ie | e ∈ E } as a right
 ideal.

Remark

We can compute orbits like g^K or g^Z using just these generators.

Remark

We can repeat this step.

Summary

- Studying algorithms provides a usefule refinement of classical theories.
- A lot of non so obvious algorithms for nearrings have been developed and implemented in SONATA.
- Finding algorithms does not necessarily mean to deal with machine models and possible deficiencies of present computers.
- Outlook
 - Algorithms for infinite nearrings have not yet been studied systematically.
 - Some important problems (like membership) still open.
 - Help welcome!

Already Published I

 F. Binder, P. Mayr: Algorithms for finite near-rings and their N-gorups.
Journal of Symbolic Computation.
2000.

Sonata-Team:

Algorithms for Near-rings of Non-linear Transformation. *ISSAC 2000*, ACM, 2000.

Sonata-Team: SONATA, System Of Nearrings And Their Applications.

www.algebra.uni-linz.ac.at/sonata