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Why Algorithmic?

Because its modern.
Some computations may have to get ideas for conjectures.
Modern technology provides us with the necessary computing
power. We shoud use it.
Essentially all applications of mathematics use computation.
Algorithmic theories are a useful refinement of classical ones.
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Chain Conditions

Definition
An ordered set has ACC iff

for each ascending chain
a1 ≤ a2 ≤ a3 ≤ . . .,
there is n ∈ N such that
an = an+1 = an+2 = . . ..
for each ascending chain
a1 ≤ a2 ≤ a3 ≤ . . .,
there is n ∈ N such that
an = an+1.
if there is a proper ascending
chains
a1 < a2 < a3 < . . .,
then we get a contradiction.

Example
Consider the 2-element lattice,
0 < 1, and the chain starting
with
0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ . . .

It is undecidable whether it
will move up to 1 eventually.
We can easily construct two
equal elements in this chain.
Negative statements contain
no construction.
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Use ACC for Algorithms

Proposition
Let

C be a class of subgroups
with ACC;
T : C → C , monotone;
D = {H ∈ C | T (H) = H };
H0 ∈ C .

Then we can compute the
smallest element of D
containing H0.

Proof.
We define:
Hn+1 = T (Hn).
Then Hn ⊆ Hn+1,
By ACC, there is some n
such that Hn = Hn+1,
which is the solution.

Remark
In situations like this, we need
the first place of equality in the
ascending chain.
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Computing Orbits in Nearring Modules

Example
Let R be a nearring acting on a
group G such that

R is generated by a finite
set E ;
〈H ∪ He〉 is f.g.,for each f.g.
subgroup H of G , and for
each e ∈ E ;
G has ACC for f.g.
subgroups.

Then we can compute the
orbit gN , for each g ∈ G .

Proof.
We start with
H0 = 〈gE 〉 = 〈ge1 , . . . , gen〉.
Using T (H) = 〈H ∪ HE 〉 =
〈H ∪ He1〉 ∪ . . . ∪ 〈H ∪ Hen〉
we note that gN is the smallest
T -invariant subgroup
containing H0.
Thus it can be computed using
ACC for f.g. subgroups.
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Finite Transformation Nearrings.

Problem
Let

G be a small group;
E be a small set of
transformations on G ;
R be the nearring generated
by E .

Compute information about R
without looping over a big
set.

Membership Problem
Given f ∈ M(G), decide whether
f ∈ R or f /∈ R.

Convention
small: Your age
big: Any

(your age)-digit
number

Remark
M(G) is big.
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Compute Additive Generators.

Remark
Algorithmic group theory ist
well established and
implemented (e.g. in GAP).
If we have generators of the
additive group of the
nearring R, we can solve the
membership problem,
determine its size, etc.

Proposition
If

e is an endomorphism of G;
H ≤ G;
H is generated by F ;

Then 〈H ∪ He〉 = 〈F ∪ F e〉.

Corollary
It is easy to compute additive
generators of d.g. transformation
nearrings.
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Nearly D.g. Nearrings.

Proposition
If each generator e of the
nearring R has the property
e(g1 + g2 + g3) ∈
〈e(g1+g2), e(g1+g3), e(g2+
g3), e(g1), e(g2), e(g3), e0〉,
then it is also rather easy to
compute additive
generators.

Remark
All quadratic polynomials
over rings have this
property.

Remark
This approach is not always
applicable.
Even if it is, it will never help us
to deal with nearrings that are
too for being mastered by general
group methods.
A method to find better
generators (of “lower degree”)
would be helpful.
We do not have even a method to
compute distributive generators of
a d.g. nearring given by
non-distributive generators.
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Use Nearring Generators Directly.

Remark
Let G be a finite group, and
N ≤ M(G) generated by E .

G is an R-module, in the
natural way;
The same for G ×G , G3,. . . .
We can compute efficiently
gR (orbits), (g , h)R

(interpolation),. . . .
These R-modules are in fact
just small groups with
operators.

Theorem
The knowledge of these
R-modules can be transformed
back to solve some problems
about R:

2-interpolation property?
is R tame on G?
Is R distributive?
Is R a ring?
Is R = M(G) ?
Is R 2-primitive on G?
Do these apply to the
zero-symmetric part of R?
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Generators for the Pierce Decomposition.

Theorem
Let R be a nearring generated by
E, and i an idempotent. Then
R+ = Z nR K
where K = { ir | r ∈ R },
Z = { r | ir = 0 }, and
K ≤R R+, Z ER R+.
In addition,

K is generated by
{ ie | e ∈ E } as an
R-subgroup;
Z is generated by
{ e − ie | e ∈ E } as a right
ideal.

Remark
We can compute orbits like gK

or gZ using just these generators.

Remark
We can repeat this step.
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Summary

Studying algorithms provides a usefule refinement of classical
theories.
A lot of non so obvious algorithms for nearrings have been
developed and implemented in SONATA.
Finding algorithms does not necessarily mean to deal with
machine models and possible deficiencies of present
computers.

Outlook
Algorithms for infinite nearrings have not yet been studied
systematically.
Some important problems (like membership) still open.
Help welcome!
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Appendix For Further Reading

Already Published I

F. Binder, P. Mayr: Algorithms for finite near-rings and their
N-gorups.
Journal of Symbolic Computation.
2000.
Sonata-Team:
Algorithms for Near-rings of Non-linear Transformation.
ISSAC 2000, ACM, 2000.
Sonata-Team:
SONATA, System Of Nearrings And Their Applications.
www.algebra.uni-linz.ac.at/sonata
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