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Polynomials obtained from squaring

Which polynomials in Z[x ] can be obtained from 1, x , x 2

using +, −, ◦?

Examples

1. x8 = x2 ◦ x2 ◦ x2.

2. 2x5 = (x + x4)2 − x2 − x8.

3. 4x 19 = 2x4 + 2x8 − 2(x2 + x4)2 +
(

x 16 + (x + x2)2 − x4 − x2
)2

− x 32.
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The problem in near-ring language

The membership problem for 〈1, x , x2〉

Given A polynomial f ∈ Z[x ].

Asked Does f lie in the subnear-ring of 〈Z[x ],+, ◦〉
that is generated by {1, x , x2}?

Here, ◦ denotes functional composition. Example:
(x3 + x) ◦ (2x2 + 1) = (2x2 + 1)3 + (2x2 + 1) =
8 x6 + 12 x4 + 8 x2 + 2.
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Let S be the subnear-ring of 〈Z[x ],+, ◦〉 generated by
1, x , x2.
Mathematica: The group 〈{f ∈ S ||| deg f ≤ 32},+〉 is
generated by

1,

x ,

x2
,

2x3
, x4

,

2x5
, 2x6

, 4x7
, x8

,

2x9
, 2x 10

, 4x 11
, 2x 12

, 4x 13
, 4x 14

, 8x 15
, x 16

,

2x 17
, 2x 18

, 4x 19
, 2x 20

, 4x 21
, 4x 22

, 8x 23
, 2x 24

,

4x 25
, 4x 26

, 8x 27
, 4x 28

, 8x 29
, 8x 30

, 16x 31
, x 32
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Polynomials that can be obtained from 1, x , x2

Conjecture
A polynomial p =

∑n
i=0 cix i ∈ Z[x ] lies in the subnear-ring

of 〈Z[x ],+, ◦〉 that is generated by {1, x , x2} if and only if
for all i ∈ N, ci is a multiple of 2s2(i)−1. (s2(i). . . binary digit
sum of i).

Proof of the conjecture

M := {
n

∑

i=0

cix
i ||| n ∈ N, c0 ∈ N, and 2s2(i)−1 | ci for all i ∈ {1, . . . , n}}.

We have to prove:

1. Every m ∈ M can be obtained from 1, x , x2.

2. M is closed under ◦.
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Generating a function from 1, x , x2

F := {1, x , x2}

We show

For all j ∈ N : 2s2(j)−1x j ∈ 〈F 〉 .

If j is not a power of 2, choose k ∈ N such that
2k < j < 2k+1. By the induction hypothesis, we have

2s2(j)−2x j−2k
∈ 〈F 〉 .

Hence
x2 ◦

(

x 2k
+ 2s2(j)−2x j−2k

)

∈ 〈F 〉 .

Thus

x 2k+1
+ 2s2(j)−1x j + 22·(s2(j)−2)x 2(j−2k) ∈ 〈F 〉 .
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Theorem
A polynomial p =

∑n
i=0 cix i ∈ Z[x ] lies in the

subnear-ring of 〈Z[x ],+, ◦〉 that is generated by {1, x , x 3}

if and only if for all i ∈ N, ci is a multiple of 3⌊
s3(i)

2 ⌋.

As a consequence, 3x2 and 3x4 both lie in the near-ring
generated by {1, x , x3}.

Theorem
A polynomial p =

∑n
i=0 cix i ∈ Z[x ] lies in the

subnear-ring of 〈Z[x ],+, ◦〉 that is generated by {x , x2} if
and only if c0 = 0, and for all i ∈ N, ci is a multiple of
2s2(i)−1.

We note that neither 3x2 nor 3x4 lie in the near-ring
generated by {x , x3} because all polynomials in this
near-ring satisfy p ◦ (−x) = −(p ◦ x).
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The subnear-ring membership problem for integer
polynomials

Given A finite subset F of Z[x ], and a polynomial
f ∈ Z[x ].

Asked Does f lie in the subnear-ring of 〈Z[x ],+, ◦〉
that is generated by F?

At this moment, we do not know whether there exists an
algorithm that would solve this problem.
A special case:

The completetness problem for integer polynomials

Given A finite subset F of Z[x ].

Asked Is the subnear-ring of 〈Z[x ],+, ◦〉 that is
generated by F equal to Z[x ]?
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Given a set A and a collection F of finitary functions on A,
one may ask which functions can be obtained as
compositions of the functions in F . Using the terminology
of universal algebra [McKenzie et al., 1987], one can
state this problem as follows:

The clone membership problem

Given A set A, a subset F of
⋃

{AAn
|||n ∈ N}, a

natural number m ∈ N, and a function
f : Am → A.

Asked Is f a term operation of the algebra
A = 〈A, F 〉?

If both A and F are finite, then there is an obvious way to
enumerate all m-ary term operations of A = 〈A, F 〉. Thus
there is an algorithm that solves the problem above.
[Bergman et al., 1999] and [Kozik, 2008] discuss the
computational complexity of the clone membership
problem.
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