# An instance of the subnear-ring membership problem

**Erhard Aichinger** 

Department of Algebra Johannes Kepler University Linz, Austria

Near-rings 2009, Vorau, Austria

An instance of the subnear-ring membership problem

#### Erhard Aichinger

The problem

Experimental data

The conjecture

sets

problems

### **Outline**

The problem

Experimental data

The conjecture

Other generating sets

More general problems

Multivariate Generalisations

An instance of the subnear-ring membership problem

#### Erhard Aichinger

The problem

Experimental data

ne conjecture

ets

More general problems

## Polynomials obtained from squaring

Which polynomials in  $\mathbb{Z}[x]$  can be obtained from  $1, x, x^2$  using  $+, -, \circ$ ?

#### **Examples**

1. 
$$x^8 = x^2 \circ x^2 \circ x^2$$
.

2. 
$$2x^5 = (x + x^4)^2 - x^2 - x^8$$
.

3. 
$$4x^{19} = 2x^4 + 2x^8 - 2(x^2 + x^4)^2 + (x^{16} + (x + x^2)^2 - x^4 - x^2)^2 - x^{32}$$
.

An instance of the subnear-ring membership problem

Erhard Aichinger

The problem

Experimental

The conjecture

sets

problems

# The problem in near-ring language

The membership problem for  $\langle 1, x, x^2 \rangle$ 

Given A polynomial  $f \in \mathbb{Z}[x]$ .

Asked Does f lie in the subnear-ring of  $\langle \mathbb{Z}[x], +, \circ \rangle$  that is generated by  $\{1, x, x^2\}$ ?

Here,  $\circ$  denotes functional composition. Example:  $(x^3 + x) \circ (2x^2 + 1) = (2x^2 + 1)^3 + (2x^2 + 1) = 8x^6 + 12x^4 + 8x^2 + 2$ .

An instance of the subnear-ring membership problem

Erhard Aichinger

The problem

Experimental of

The conjecture

Other generating sets

problems

Let S be the subnear-ring of  $\langle \mathbb{Z}[x], +, \circ \rangle$  generated by  $1, x, x^2$ .

Mathematica: The group  $\langle \{f \in S \mid \deg f \leq 32\}, + \rangle$  is generated by

```
Χ,
                             2x^3, x^4.
                      2x^5, 2x^6, 4x^7, x^8.
 2x^9, 2x^{10}, 4x^{11}, 2x^{12}, 4x^{13}, 4x^{14}, 8x^{15}, x^{16}
2x^{17}, 2x^{18}, 4x^{19}, 2x^{20}, 4x^{21}, 4x^{22}, 8x^{23}, 2x^{24}.
     4x^{25}, 4x^{26}, 8x^{27}, 4x^{28}, 8x^{29}, 8x^{30}, 16x^{31}, x^{32}
```

An instance of the subnear-ring membership problem

Erhard Aichinger

The problem

Experimental data

The conjecture

Other generating sets

More general problems

 $M := \{ \sum_{i=1}^{n} c_i x^i \mid n \in \mathbb{N}, c_0 \in \mathbb{N}, \text{ and } 2^{s_2(i)-1} \mid c_i \text{ for all } i \in \{1, \dots, n\} \}.$ 

### Conjecture

A polynomial  $p = \sum_{i=0}^{n} c_i x^i \in \mathbb{Z}[x]$  lies in the subnear-ring of  $\langle \mathbb{Z}[x], +, \circ \rangle$  that is generated by  $\{1, x, x^2\}$  if and only if for all  $i \in \mathbb{N}$ ,  $c_i$  is a multiple of  $2^{s_2(i)-1}$ .  $(s_2(i)...$  binary digit sum of i).

Proof of the conjecture

We have to prove:

- 1. Every  $m \in M$  can be obtained from  $1, x, x^2$ .
- M is closed under ∘.

# Generating a function from $1, x, x^2$

$$F := \{1, x, x^2\}$$

We show

For all 
$$j \in \mathbb{N} : 2^{s_2(j)-1}x^j \in \langle F \rangle$$
.

If j is not a power of 2, choose  $k \in \mathbb{N}$  such that  $2^k < j < 2^{k+1}$ . By the induction hypothesis, we have

$$2^{s_2(j)-2}x^{j-2^k}\in\langle F\rangle.$$

Hence

$$\textbf{\textit{x}}^2 \circ \left(\textbf{\textit{x}}^{\,2^k} + 2^{s_2(j)-2}\textbf{\textit{x}}^{\,j-2^k}\right) \in \left\langle \textbf{\textit{F}} \right\rangle.$$

Thus

$$x^{2^{k+1}} + 2^{s_2(j)-1}x^j + 2^{2\cdot(s_2(j)-2)}x^{2(j-2^k)} \in \langle F \rangle$$
.

An instance of the subnear-ring membership problem

Erhard Aichinger

The problem

Experimental data

The conjecture

Other generating sets

More general problems

Generalisations

#### Theorem

A polynomial  $p = \sum_{i=0}^n c_i x^i \in \mathbb{Z}[x]$  lies in the subnear-ring of  $\langle \mathbb{Z}[x], +, \circ \rangle$  that is generated by  $\{1, x, x^3\}$  if and only if for all  $i \in \mathbb{N}$ ,  $c_i$  is a multiple of  $3^{\lfloor \frac{s_3(i)}{2} \rfloor}$ .

As a consequence,  $3x^2$  and  $3x^4$  both lie in the near-ring generated by  $\{1, x, x^3\}$ .

#### Theorem

A polynomial  $p = \sum_{i=0}^{n} c_i x^i \in \mathbb{Z}[x]$  lies in the subnear-ring of  $\langle \mathbb{Z}[x], +, \circ \rangle$  that is generated by  $\{x, x^2\}$  if and only if  $c_0 = 0$ , and for all  $i \in \mathbb{N}$ ,  $c_i$  is a multiple of  $2^{s_2(i)-1}$ .

We note that neither  $3x^2$  nor  $3x^4$  lie in the near-ring generated by  $\{x, x^3\}$  because all polynomials in this near-ring satisfy  $p \circ (-x) = -(p \circ x)$ .

An instance of the subnear-ring membership problem

Erhard Aichinger

The problem

zxporimoritai aa

ine conjecture

Other generating sets

roblems

# The subnear-ring membership problem for integer polynomials

Given A finite subset F of  $\mathbb{Z}[x]$ , and a polynomial  $f \in \mathbb{Z}[x]$ .

Asked Does f lie in the subnear-ring of  $\langle \mathbb{Z}[x], +, \circ \rangle$  that is generated by F?

At this moment, we do not know whether there exists an algorithm that would solve this problem.

A special case:

The completetness problem for integer polynomials

Given A finite subset F of  $\mathbb{Z}[x]$ .

Asked Is the subnear-ring of  $\langle \mathbb{Z}[x], +, \circ \rangle$  that is generated by F equal to  $\mathbb{Z}[x]$ ?

An instance of the subnear-ring membership problem

Erhard Aichinger

The problem

Experimental d

he conjecture

ither generating ets

More general problems

Given a set A and a collection F of finitary functions on A, one may ask which functions can be obtained as compositions of the functions in F. Using the terminology of universal algebra [McKenzie et al., 1987], one can state this problem as follows:

#### The clone membership problem

Given A set A, a subset F of  $\bigcup \{A^{A^n} \mid n \in \mathbb{N}\}$ , a natural number  $m \in \mathbb{N}$ , and a function  $f : A^m \to A$ .

Asked Is f a term operation of the algebra  $\mathbf{A} = \langle A, F \rangle$ ?

If both A and F are finite, then there is an obvious way to enumerate all m-ary term operations of  $\mathbf{A} = \langle A, F \rangle$ . Thus there is an algorithm that solves the problem above. [Bergman et al., 1999] and [Kozik, 2008] discuss the computational complexity of the clone membership problem.

An instance of the subnear-ring membership problem

Erhard Aichinger

ne problem

Other generating

ore general oblems

- Bergman, C., Juedes, D., and Slutzki, G. (1999). Computational complexity of term-equivalence. *Internat. J. Algebra Comput.*, 9(1):113–128.
- Kozik, M. (2008). A finite set of functions with an EXPTIME-complete composition problem. Theoret. Comput. Sci., 407(1-3):330–341.
- McKenzie, R. N., McNulty, G. F., and Taylor, W. F. (1987).

  Algebras, lattices, varieties, Volume I.

Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California.

An instance of the subnear-ring membership problem

Erhard Aichinger

The problem

Experimental data

The conjecture

Other generating sets

nore general roblems