
FINITE WEAKLY DIVISIBLE NEARRINGS

PETER MAYR AND FIORENZA MORINI

Abstract. A nearring (N,+, ∗) is called weakly divisible iff for all elements a, b ∈ N
there exists an element x ∈ N such that x∗a = b or x∗b = a. All such finite zerosymmetric
nearrings are determined.

1. Introduction

A right nearring (N,+, ∗) is a (2, 2)-algebra, where (N,+) is a (not necessarily abelian)
group, (N, ∗) is a semigroup and the distributive law (a+ b) ∗ c = a ∗ c+ b ∗ c holds.

Definition 1. A nearring (N,+, ∗) is called weakly divisible iff

∀a, b ∈ N ∃x ∈ N : x ∗ a = b or x ∗ b = a

This condition holds for example for integral planar nearrings, [Cla92].
Equivalently, a nearring (N,+, ∗) is weakly divisible (wd) if and only if the set of N -

subgroups of (N,+) is linearly ordered and each element of N has a left identity, that is,
n ∈ N ∗ n for each n ∈ N , ([BP99] Proposition 5). In particular, the set of (left) ideals
and the set of left annihilators of a wd nearring are linearly ordered.

For the finite zerosymmetric case the structure of wd nearrings is very similar to that
of integral planar ones. In this note a characterization for all such wd nearrings is given,
which resembles the construction of planar nearrings by G. Ferrero from a group (N,+)
and a group of fixed-point-free automorphisms of (N,+) in [Fer70]. This is also a gener-
alization of the results of two articles by A. Benini and F. Morini, [BM98a] and [BM98b],
wherein wd nearrings with cyclic additive groups of prime power order are determined.

2. Construction of wd nearrings

Theorem 1. Let (N,+) be a finite group and let the following hold:

(a) Let ψ be a nilpotent endomorphism of (N,+) with Imψr−1 = Kerψ, where r is
minimal such that ψr = 0. (Let ψ0 := id.)

(b) Let Φ be a group of automorphisms on (N,+) such that Φψ ⊆ ψΦ and

∀i, 0 ≤ i < r ∀n ∈ N \ Imψ |ψiΦ(n)| = |ψiΦ|
(c) Let E ⊆ N be a complete set of orbit representatives for Φ on N \ Imψ such that

∀i, 0 ≤ i < r ∀e1, e2 ∈ E ( ψiΦ(e1) = ψiΦ(e2)⇒ ψi(e1) = ψi(e2) )
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For any x ∈ N, e ∈ E,ϕ ∈ Φ and 0 ≤ i ≤ r define

x ∗ ψiϕ(e) := ψiϕ(x)

Then (N,+, ∗) is a zerosymmetric wd nearring.

Proof. First show that for all n ∈ N there exists 0 ≤ i ≤ r and ϕ ∈ Φ, e ∈ E such that
n has a presentation as n = ψiϕ(e). There exists a uniquely determined integer i such
that n ∈ Imψi \ Imψi+1. Thus n = ψi(m) for some m ∈ N \ Imψ and there is e ∈ E and
ϕ ∈ Φ such that m = ϕ(e). While there is only one choice for i with 0 ≤ i ≤ r such that
n = ψiϕ(e) both ϕ ∈ Φ and e ∈ E are not uniquely determined.

Suppose, that ψiϕ1(e1) = ψiϕ2(e2) or, equivalently, ϕ1(e1) + Kerψi = ϕ2(e2) + Kerψi.
By condition (a) Kerψi = Imψr−i and Imψr−i is invariant under automorphisms in Φ by
(b). Thus Φ(e1 +Kerψi) = Φ(e2 +Kerψi) and hence e1 +Kerψi = e2 +Kerψi by (c). Now
ϕ1(e1) + Kerψi = ϕ2(e1) + Kerψi and ψiϕ1(e1) = ψiϕ2(e1). The cardinality condition in
(b) states a bijection between ψiΦ(e1) and ψiΦ. If two maps ψiϕ1 and ψiϕ2 coincide on
one element e1 ∈ N \ Imψ, then they coincide on N as a whole. Thus ψiϕ1 = ψiϕ2 and
the product x ∗ n is the same for all choices of e ∈ E,ϕ ∈ Φ such that n = ψiϕ(e).

For associativity

(x ∗ ψiϕ1(e1)) ∗ ψjϕ2(e2) = x ∗ (ψiϕ1(e1) ∗ ψjϕ2(e2))

or, equivalently,

ψjϕ2ψ
iϕ1(x) = x ∗ ψjϕ2ψ

iϕ1(e1)

for all x ∈ N, e1, e2 ∈ E,ϕ1, ϕ2 ∈ Φ and integers i, j has to be shown. Equality is proved
by substituting ϕ2ψ

i with ψiϕ′2 for some ϕ′2 ∈ Φ according to condition (b).
Distributivity holds by definition of the multiplication via endomorphisms.
Let a = ψi(ϕ1(e1)) and b = ψj(ϕ2(e2)) with 0 ≤ i ≤ j ≤ r. Then x = ϕ−1

1 ψj−iϕ2(e2)
solves the equation x ∗ a = b and (N,+, ∗) is wd.

In the sequel a nearring defined as in Theorem 1 is denoted by W (N,ψ,Φ, E).
For the choice of ψ = 0 the condition (a) of the above theorem is trivially fulfilled

and (b), (c) are equivalent to Φ being a group of fixed-point-free automorphisms. In this
case the construction method is then equivalent to the construction method for planar
nearrings according to G. Ferrero [Fer70] and W (N, 0,Φ, E) is a integral planar nearring.

The following natural questions arise and are answered in this note:

(a) For which choice of (N,+), ψ,Φ and E are the conditions (a), (b) and (c) as required
in Theorem 1 fulfilled?

(b) Are all wd nearrings obtained as some W (N,ψ,Φ, E)?
(c) Which “inputs” to Theorem 1 give rise to isomorphic nearrings?

3. Structure of W (N,ψ,Φ, E)

Condition (a) in Theorem 1 poses a restriction on the endomorphism ψ as well as on
the additive group (N,+). In particular, it shows that (N,+) has a normal series

N = Imψ0 � Imψ1 � Imψ2 � · · ·� Imψr−1 � Imψr = {0}
where each factor Imψi/ Imψi+1 for 0 ≤ i < r is isomorphic to Imψr−1 = Kerψ, thus
|N | = |Kerψ|r.
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Moreover, Imψi/ Imψj ∼= Kerψj−i for all 0 ≤ i ≤ j ≤ r; that is, for 0 < k < r all
subseries of k consecutive terms of the above normal series describe isomorphic groups.

The next result shows the relations between (N,+), ψ,Φ, E and the characteristics of
the nearring W (N,ψ,Φ, E) constructed thereof.

Proposition 1. Let N = W (N,ψ,Φ, E) with r minimal such that ψr = 0. Then

(a) E is the set of right identities of (N,+, ∗).
(b) The set of N -subgroups of N equals {Imψi}0≤i≤r.
(c) The set of ideals of N equals {Imψi}0≤i≤r.
(d) The elements of Imψ are nilpotent and Imψ is a prime ideal.
(e) N/ Imψ is either a zerosymmetric constant nearring or an integral planar nearring.

Proof. Straightforward calculations.

In the case of Φ being a group of fixed-point-free automorphisms on (N,+) the condition
(c) of Theorem 1 can be exchanged by a more convenient one:

Proposition 2. Let (N,+), ψ be according to the assumption (a) of Theorem 1 and let
Φ be a group of fixed-point-free automorphisms on (N,+) such that Φψ ⊆ ψΦ. Then the
second condition in (b) is fulfilled.

Let E be a complete set of orbit representatives of Φ on N\Imψ. Then the condition (c)

is fullfilled if and only if E =
⋃
ê∈Ê ê where Ê is a set of all nonzero orbit representatives

of Φ acting on N/ Imψ.

Proof. The second condition on Φ in (b) is fulfilled, since Φ is fixed-point-free on all
normal subgroups Kerψi and all factors N/Kerψi for 0 ≤ i < r.

Suppose that the set of orbit representatives E fulfills condition (c). In particular
for all pairs of elements e1, e2 ∈ E Φ(e1) + Kerψr−1 = Φ(e2) + Kerψr−1 implies that
e1 + Kerψr−1 = e2 + Kerψr−1. Equivalently, if two orbits Φ(e1),Φ(e2) are congruent
modulo Imψ, then their respective representatives e1, e2 also have to be congruent modulo
Imψ. If Ê is a set of all nonzero orbit representatives of Φ acting on N/ Imψ, then in

any case E has to be a subset of the union of cosets ê = e+ Imψ with ê ∈ Ê.
Since Φ is fixed-point-free on N and in particular on N/ Imψ, the size of orbits of Φ on

N \ Imψ equals the size of nonzero orbits of Φ acting on N/ Imψ. The number of orbits
on N \ Imψ is (|N | − | Imψ|)/|Φ| and equals (|N/ Imψ| − 1) ∗ | Imψ|/|Φ| the number of
elements in

⋃
ê∈Ê ê. Thus E and

⋃
ê∈Ê ê coincide.

For the converse the observation that E =
⋃
ê∈Ê ê is indeed a set of orbit representatives

of Φ on N/ Imψ if Φ is fixed-point-free suffices again. Then the condition (c) is clearly
fulfilled for E.

4. All wd nearrings

All finite zerosymmetric wd nearrings are obtained by the construction method of The-
orem 1.

Theorem 2. Let (N,+, ∗) be a finite zerosymmetric wd nearring with Q the maximal
proper N -subgroup of (N,+). Then the following hold:

(a) There is an element q ∈ Q such that Q = N ∗ q and the mapping ψ : x 7→ x ∗ q is a
nilpotent endomorphism on (N,+).
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(b) Φ := {ϕc : x 7→ x ∗ c | c ∈ N \Q} is a group of automorphisms on (N,+).
(c) The set of right identities E of (N,+, ∗) is a set of orbit representatives of N \ Q

under Φ.

ψ,Φ, E fulfill the conditions (a), (b), (c) in Theorem 1 and (N,+, ∗) = W (N,ψ,Φ, E).

Proof. (a) The family of N -subgroups {N ∗ p | p ∈ Q} of (N,+) is linearly ordered. Let
N ∗ q for some q be the unique maximal element therein. Suppose that Q 6= N ∗ q
and let q′ ∈ Q\N ∗q. Then q ∈ N ∗q′ and N ∗q ⊆ N ∗q′ implying that N ∗q = N ∗q′,
since N ∗ q is maximal. Now, q′ ∈ N ∗ q in contradiction to the assumption. Thus
Q = N ∗ q.

Consider the chain of N -subgroups N ≥ N ∗ q ≥ N ∗ q2 ≥ . . . . There is an integer
r such that N ∗ qr−1 > N ∗ qr = N ∗ qr+1. Suppose that Kerψ < N ∗ qr. Then
(N ∗ qr)/Kerψ ∼= N ∗ qr+1 implies Kerψ = {0} and N = Q in contradiction to our
assumption.

Thus Kerψ ≥ N ∗ qr and ψ is nilpotent by {0} = N ∗ qr+1 = N ∗ qr.
(b) Let c 6∈ N ∗ q. Then N ∗ c = N and ϕc : x 7→ x ∗ c is a group-automorphism of

(N,+). Since N \ N ∗ q is closed under multiplication, the set of automorphisms
{ϕc : x 7→ x ∗ c | c ∈ N \Q} forms a group.

(c) By (b) the solution of x ∗ c = c for each c ∈ N \ Q is unique. Let it be denoted by
ec. Then c = ϕc(ec) is an element of the orbit Φ(ec) and by ϕc(x ∗ ec) = ϕc(x) also
x ∗ ec = x holds for all x ∈ N . Therefore ec is a right identity of (N,+, ∗) and this
right identity is unique in the orbit Φ(c).

Thus the set of right identities are orbit representatives as required.
Let n ∈ N be arbitrary. Then n has a representation as n = c∗qi with c ∈ N \N ∗q and

some integer i ≥ 0. For any x ∈ N the product x∗n equals x∗ c∗ qi = ψi(x∗ c) = ψiϕc(x)
where ϕc(ec) = c.

What remains to be shown is that the additional conditions on ψ,Φ, E as stated in the
assumptions (a), (b), (c) of Theorem 1 hold.

Imψr−1 ⊆ Kerψ, since ψr = 0. To prove the converse inclusion, let k ∈ Kerψ be
represented as k = ψiϕ(e) for some integer j and e ∈ E,ϕ ∈ Φ. By definition 0 = ψ(k) =
ψi+1ϕ(e) and hence x ∗ 0 = x ∗ ψi+1ϕ(e) = ψi+1ϕ(x) for all elements x ∈ N . This implies
that N ∗0 = ψi+1(N) and finally {0} = Imψr = Imψi+1. Thus i ≥ r−1 and k ∈ Imψr−1.

Associativity implies that Φψ ⊆ ψΦ: Let e ∈ E and ϕ ∈ Φ be arbitrary but fixed.
Then (x ∗ ψ(e)) ∗ ϕ(e) = x ∗ (ψ(e) ∗ ϕ(e)) for all x ∈ N . There exist e′ ∈ E and ϕ′ ∈ Φ
such that ϕψ(e) = ψiϕ′(e′) for some integer i. This substition yields ϕψ(x) = ψiϕ′(x)
and subsequently ϕ Imψ = Imψi. Thus i = 1 and ϕψ = ψϕ′.

Let ψiϕ1(e1) = ψiϕ2(e2) for e1, e2 ∈ E,ϕ1, ϕ2 ∈ Φ and 0 ≤ i < r. The equality
x ∗ ψiϕ1(e1) = x ∗ ψiϕ2(e2) implies that ψiϕ1(x) = ψiϕ2(x) for all x ∈ N .

With the choice of e1 = e2 this gives the bijection between ψiΦ(e1) and ψiΦ as stated
in condition (b) of Theorem 1.

On the other hand, ψiϕ1(e1) = ψi(e2) implies that ψiϕ1 = ψi and hence ψi(e1) = ψi(e2),
as demanded by condition (c) of Theorem 1.

5. Isomorphisms of wd nearrings

Theorem 3. The nearrings W (N1, ψ1,Φ1, E1) and W (N2, ψ2,Φ2, E2) are isomorphic if
and only if the following conditions are satisfied:
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(a) There exists a group isomorphism α from (N1,+1) to (N2,+2).
(b) E2 = α(E1).
(c) Φ2 = αΦ1α

−1.
(d) ψ2 ∈ αψ1Φ1α

−1.

Proof. Let the multiplication in W1 := W (N1, ψ1,Φ1, E1) be denoted with ∗1 and the
multiplication in W2 := W (N2, ψ2,Φ2, E2) with ∗2.

“⇒”: Suppose that α is a nearring isomorphism from W1 to W2. Then in particular
α is a group isomorphism from (N1,+) to (N2,+). Necessarily, α maps the set of right
identities of W1 to right identities of W2, thus α(E1) = E2. Furthermore, nilpotency is
invariant under homomorphisms, hence α(Imψ1) = Imψ2.

For all ϕ1 ∈ Φ1 and e1 ∈ E1 the equation α(x ∗1 ϕ1(e1)) = α(x) ∗2 αϕ1(e1) holds and
is equivalent to αϕ1(x) = α(x) ∗2 αϕ1(e1). Now, αϕ1(e1) 6∈ Imψ2 for cardinality reasons.
Thus αϕ1(e1) = ϕ2(e2) for some ϕ2 ∈ Φ2, e2 ∈ E2 and αϕ1(x) = ϕ2α(x) for all x ∈ N ,
finally Φ2 ⊇ αΦ1α

−1 and equality follows again from a cardinality argument.
Consider α(x ∗1 ψ1(e1)) = α(x) ∗2 αψ1(e1) for e1 ∈ E1. Since αψ1(e1) = ψ2ϕ2(e2) for

some ϕ2 ∈ Φ2, e2 ∈ E2, this can be rewritten as αψ1(x) = ψ2ϕ2α(x) and ψ2 ∈ αψ1Φ1α
−1.

“⇐”: It suffices to show that for all x ∈ N1 and ϕ ∈ Φ1, e ∈ E1, 0 ≤ i ≤ r

α(x ∗1 ψ
i
1ϕ(e)) = α(x) ∗2 αψ

i
1ϕ(e)

Let ψ1 = α−1ψ2ϕ2α with ϕ2 ∈ Φ2:

α(x) ∗2 αψ
i
1ϕ(e) = α(x) ∗2 α(α−1ψ2ϕ2α)iϕ(e)

= α(x) ∗2 (ψ2ϕ2)iαϕ(e)

= α(x) ∗2 (ψ2ϕ2)i(αϕα−1)α(e)

Since αϕα−1 ∈ Φ2 and α(e) ∈ E2, this yields

α(x) ∗2 αψ
i
1ϕ(e) = (ψ2ϕ2)i(αϕα−1)α(x)

= (αψ1α
−1)i(αϕα−1)α(x)

= αψi1ϕ(x)

= α(x ∗1 ψ
i
1ϕ(e))

which completes the proof.

6. An example: wd nearrings on cyclic groups

For the choice of (N,+) being a cyclic group, the initial conditions on the nilpotent
endomorphism ψ, automorphism group Φ and representatives E can be restated in a more
convenient way.

Proposition 3. Let ψ be a nilpotent endomorphism on (Zn,+) with |Kerψ| = q not
prime and let Φ be a subgroup of Aut(Zn,+) with E a set of orbit representatives for
Zn \ Imψ under Φ.

Then the conditions (a), (b), (c) in Theorem 1 are fulfilled iff the following conditions
hold:

(a) There exists an integer r such that n = qr.
(b) Φ is a group of fixed point free automorphisms on Zqr .

(c) E =
⋃
ê∈Ê ê with Ê a set of orbit representatives for Φ acting on Zqr/q

r−1
Zqr .
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Proof. “⇒”: Since the size n of the additive group is a power of |Kerψ| = q by the first
paragraph of Section 3, the assertions on n and ψ hold.

The set of fixed points of an automorphism ϕ ∈ Φ forms an N -subgroup of Zqr and
therefore equals qsZqr with 0 ≤ s ≤ r by Proposition 1 (b).

Suppose that there exists an automorphism ϕ ∈ Φ with ϕ(x) = fx for some integer f
and a non-trivial set of fixed points qsZqr with 0 < s < r. Thus gcd(f − 1, qr) = qr−s.

Now, for q not prime let p be a either an odd prime divisor of q or p = 2 if q is a power
of 2 and consider ϕp(x) = fpx. A number theoretical consideration yields a contradiction:

fp − 1

f − 1
= fp−1 + · · ·+ f + 1

≡ 1 + · · ·+ 1︸ ︷︷ ︸
p times

mod q

≡ p mod q

Since gcd(fp − 1, qr) = pqr−s, the set of fixed points of ϕp ∈ Φ violates the structure of
N -groups as stated above.

Since Φ is fixed-point-free, E is determined by Proposition 2.
“⇐”: Proposition 2.

Theorem 2 in [BM98b] deals with the case that the size of Kerψ is a prime. Then the
automorphisms of Φ need not be fixed point free, but still a corresponding condition on
the orbit representatives can be given, as is shown there.

Functions for the construction of wd nearrings and geometries derived from them are
available as part of SONATA [Tea00].
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