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Preface

The intuitive concept of polynomial functions on groups (or on arbitrary al-
gebras) is rather straightforward: a polynomial function is a function that can be
expressed by a certain term. While this definition can certainly be made more
precise, its very nature makes it non-trivial to decide whether a given function
is polynomial. Still, for certain classes of groups, polynomial functions can be
characterized in a more convenient way. As an example, we state A. Fröhlich’s
result that all functions on finite simple non-abelian groups are polynomial.

In this thesis we want to deal with the following problems:

(1) How many unary polynomial functions are there on a given group?
(2) Are all automorphisms on a given group polynomial functions?
(3) Are all endomorphisms on a given group polynomial functions?

In Chapter 2 we describe the unary polynomial functions on the finite groups
whose quotient by the center has a non-abelian unique minimal normal sub-
group. This description was done and published jointly with E. Aichinger. It
generalizes a number of existing results on non-solvable groups including the one
by A. Fröhlich mentioned above. The main tool in the proof of our characteriza-
tion is the interpolation of functions by using commutators. For this, we rely on
the existence of a non-abelian chief factor.

In Chapter 3 the previous results are applied to the non-solvable groups G
all of whose normal subgroups are either central or contain the derived subgroup
of G. The finite linear, unitary, symplectic, and orthogonal groups (with the
exception of certain groups acting on vector spaces of low dimension) satisfy this
condition on normal subgroups. As a consequence, in Chapter 4, we are able to
give complete solutions of the problems (1), (2), and (3) for these classical groups.

From Chapter 2 to 4 we specialize our results from the most general class
of groups to the case of groups of regular linear transformations on finite vector
spaces. We note that the original direction of research was actually reversed.
The motivation was to understand polynomial functions on general linear groups.
Phenomena that were observed for GL(n, q) were then generalized.

In Chapter 5 we pursue a different line of ideas. We start with E. Aichinger’s
description of unary polynomial functions on certain semidirect products that
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iv PREFACE

have a Frobenius group as quotient. Then we determine the number of polyno-
mial functions on the finite solvable groups all of whose abelian subgroups are
cyclic. This class contains the solvable Frobenius complements. Results from
the previous chapters appear again, when we consider the non-solvable Frobe-
nius complements. All in all, for Frobenius complements, we obtain a complete
solution of problem (1) and partial solutions of (2) and (3). Finally the task of
counting polynomial functions on a Frobenius group is reduced to that of count-
ing the restrictions of these functions to the Frobenius kernel. We give these
numbers explicitly for certain classes of groups.



Vorwort

Eine intuitive Definition von Polynomfunktionen auf Gruppen (oder auf be-
liebigen Algebren) ist recht einfach verständlich: eine Polynomfunktion kann als
ein bestimmter Term geschrieben werden. Diese Definition ist zwar noch unge-
nau, aber sie zeigt schon, dass es nicht einfach ist zu entscheiden, ob eine gegebene
Funktion eine Polynomfunktion ist. Im allgemeinen muss man dazu entweder eine
konkrete Darstellung dieser Funktion finden oder zeigen, dass keine Darstellung
existiert. Für manche Klassen von Gruppen kann man Polynomfunktionen ein-
facher charakterisieren Als ein Beispiel führen wir ein Resultat von A. Fröhlich
an: Alle Funktionen auf endlichen einfachen nichtabelschen Gruppen sind Poly-
nomfunktionen.

In dieser Arbeit möchte ich folgende Probleme behandeln:

(1) Wieviele Polynomfunktionen gibt es auf einer Gruppe?
(2) Sind alle Automorphismen auf einer Gruppe Polynomfunktionen?
(3) Sind alle Endomorphismen auf einer Gruppe Polynomfunktionen?

Im Kapitel 2 beschreiben wir die einstelligen Polynomfunktionen auf jenen
endlichen Gruppen, deren Faktoren nach dem Zentrum einen einzigen mini-
malen Normalteiler besitzen, der auch nichtabelsch ist. Diese Beschreibung
wurde gemeinsam mit E. Aichinger publiziert. Sie verallgemeinert eine Reihe von
bestehenden Resultaten für nichtauflösbare Gruppen, insbesonders A. Fröhlich’s
Ergebnis. Ein wesentlicher Teil im Beweis unserer Charakterisation ist die Inter-
polation von Funktionen mithilfe von Kommutatoren. Dafür benötigen wir die
Existenz eines nichtabelschen Hauptfaktors.

Im Kapitel 3 werden die vorhergehenden Resultate auf nichtauflösbare Grup-
pen G angewandt, die die Eigenschaft haben, dass jeder Normalteiler entweder
zentral ist oder die Kommutatoruntergruppe enthält. Die endlichen linearen,
unitären, symplektischen und orthogonalen Gruppen (mit Ausnahme von be-
stimmten Gruppen auf niedrigdimensionalen Vektorräumen) erfüllen diese Bedin-
gung. Im Kapitel 4 können wir dann für diese klassischen Gruppen vollständige
Lösungen für die Probleme (1), (2) und (3) angeben.

Von Kapitel 2 bis 4 betrachten wir immer speziellere Gruppen. Ursprünglich
ist die Entwicklung anders verlaufen. Die Motivation war lineare Gruppen zu
untersuchen. Die Ergebnisse für GL(n, q) konnten dann verallgemeinert werden.
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vi VORWORT

Im Kapitel 5 verfolgen wir eine andere Richtung. Wir beginnen mit
E. Aichinger’s Beschreibung von Polynomfunktionen auf halbdirekten Produkten,
die eine Frobeniusgruppe als Faktor besitzen. Damit bestimmen wir die Anzahl
der Polynomfunktionen auf den endlichen auflösbaren Gruppen, deren sämtliche
abelsche Untergruppen zyklisch sind. Zu dieser Klasse zählen insbesonders die
auflösbaren Frobeniuskomplemente. Bei der Betrachtung der nichtauflösbaren
Frobeniuskomplemente begegnen wir einigen Resultaten aus den vorigen Kapiteln
wieder. Insgesamt erhalten wir für Frobeniuskomplemente eine vollständige
Lösung für das Problem (1) und partielle Lösungen für (2) und (3). Schließlich
reduziert sich die Bestimmung der Anzahl der Polynomfunktionen auf Frobenius-
gruppen darauf, die Einschränkungen der Funktionen auf den Frobeniuskern zu
zählen. Für einige Klassen von Gruppen geben wir diese Zahlen explizit an.
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CHAPTER 1

Introduction

In this chapter we introduce notations and the concepts with which we will
be dealing in the sequel. We write Z for the set of integers, N for the set of
positive integers, and N0 for the set of non-negative integers. For n ∈ N, we let
Zn denote the set of integers modulo n.

1. Groups

Let (G, ·) be a group. We will not distinguish between the group (G, ·) and
its underlying set G provided that the intended group operation is clear. For a
multiplicative group (G, ·), we let 1 denote the identity element.

If H is a subgroup of a group G, then we will write H ≤ G. If H ≤ G and
H 6= G, then H is called a proper subgroup, denoted by H < G.

Let G be a group, let g ∈ G, and let S ⊆ G. Then we write 〈g〉 for the
subgroup of G generated by g, and we write 〈S〉 for the subgroup of G generated
by the elements in S.

The order of a group G is defined to be the cardinality of the underlying set
G and is denoted |G|. For x ∈ G, the order of x is defined as |〈x〉| and denoted
by ord x. Elements of order 2 will be called involutions or involutory.

The exponent of a group G, denoted exp G is the smallest positive integer n
such that xn = 1 for all x ∈ G if such an n exists; otherwise exp G = ∞.

Let H be a subgroup of a group G. For x, y ∈ G, we write

x ∼H y if y−1x ∈ H.

Then ∼H is an equivalence relation on G. The equivalence class of x ∈ G is

xH := {xh | h ∈ H},

and xH is called the left coset of H containing x. Let T ⊆ G be a set of
representatives for ∼H on G. We call T a transversal for the left cosets of H in
G. The cardinality of the set of left cosets of H in G is called the index of H in
G, denoted |G : H|.

Let (G, ·) be a group, and let x, y ∈ G. We call xy := y−1xy the conjugate of
x by y, and we call [x, y] := x−1y−1xy the commutator of x and y. For subgroups
X and Y of G, we write

[X,Y ] := 〈{[x, y] | x ∈ X, y ∈ Y }〉.
1



2 1. INTRODUCTION

The subgroup G′ := [G, G] is called the derived subgroup of G.
The center Z(G) of a group G is defined as

Z(G) := {z ∈ G | zg = z for all g ∈ G}.

If Z(G) = {1}, then G is said to be centerless.
A subgroup N of a group G is a normal subgroup if nx ∈ N for all n ∈ N and

for all x ∈ G. If G has no normal subgroups apart from {1} and G, then G is said
to be simple. A normal subgroup N of G is called a minimal normal subgroup of
G if N 6= {1} and there is no normal subgroup K of G with {1} < K < N . Let
L, N be normal subgroups G with L < N . If N/L is a minimal normal subgroup
of G/L, then we say that N/L is a chief factor of G and write L ≺G N .

For subgroups N and H of a group G, we let NH := {nh | n ∈ N, h ∈ H}.
Then NH is a group if N is normal in G. If N is normal and N ∩ H = {1},
then we say NH is the semidirect product of N and H. If N, H are normal and
N ∩H = {1}, then we say that the product NH is direct.

Let G be a group, let H be a subgroup of G, and let X be a non-empty subset
of G. We define the centralizer of X in H as the set

CH(X) := {h ∈ H | xh = x for all x ∈ X}.

We also write CH(x) for CH({x}) with x ∈ G. For normal subgroups X, Y of G
with X < Y , we define

CG(Y/X) = {g ∈ G | [y, g] ∈ X for all y ∈ Y }.

For groups N , Q, we say that a group G is an extension of N by Q if there
exists a normal subgroup M of G such that M is isomorphic to N and G/M is
isomorphic to Q.

The set of all functions from G into G will be denoted M(G). For two func-
tions f, g ∈ M(G), the composition f ◦ g is defined by f ◦ g(x) = f(g(x)) for all
x ∈ G.

The set of endomorphisms of G, denoted EndG, forms a monoid under com-
position. We let Aut G denote the set of automorphisms of a group G. Then
(Aut G, ◦) is a group, called the automorphism group of G. The set of inner
automorphisms of G is denoted Inn G and forms the inner automorphism group
(Inn G, ◦).

A subgroup H of a group G is said to be characteristic in G if α(x) ∈ H for
all x ∈ H and for all automorphisms α of G. A subgroup H of a group G is said
to be fully-invariant in G if α(x) ∈ H for all x ∈ H and for all endomorphisms
α of G.



3. THE LENGTH OF POLYNOMIALS 3

2. Polynomials, polynomial functions, and endomorphism near-rings

Let (G, ·) be a finite group. As in [LN73], [MMT87, Definition 4.4], a unary
polynomial function p : G → G is a function that can be written in the form

p(x) := a0x
e0a1x

e1 · · · an−1x
en−1an,

where n ∈ N0, a0, . . . , an are in G, and e0, . . . , en−1 are integers. The set of all
polynomial functions on G will be denoted by P (G), the set of all functions from
G into G by M(G). For two functions f, g ∈ M(G), we define a product f · g
by f · g (x) = f(x) · g(x) for all x ∈ G. The group (M(G), ·) is isomorphic to the
direct product (G|G|, ·). We note that (P (G), ·) is the subgroup of (M(G), ·) that
is generated by the identity function and the constant functions on G.

The subgroup of M(G) that is generated by the inner automorphisms of
G is denoted by I(G). Then I(G) = {p ∈ P (G) | p(1) = 1}, and we have
|P (G)| = |I(G)| · |G| (see Lemma 1.4). We define A(G) as the subgroup of M(G)
that is generated by the automorphisms of G and E(G) as the subgroup of M(G)
generated by the endomorphisms of G. Each of the sets I(G), A(G), E(G) is
closed under functional composition; so (I(G), ·, ◦), (A(G), ·, ◦), (E(G), ·, ◦) are
near-rings, and they are referred to as the inner automorphism near-ring, the
automorphism near-ring, and the endomorphism near-ring of G (see [Pil83, §7],
[Mel85, Chapter 10]).

3. The length of polynomials

The concept of length of a polynomial was introduced by S. D. Scott
in [Sco69]. Let p be a polynomial (in the variety of all groups) in the vari-
able x over the group G (cf. [LN73, p. 27]). We write p in the form
a0x

e0a1x
e1 · · · an−1x

en−1an, and define its Scott-length λ(p) (cf. [Sco69, p. 251])
by

λ(p) :=
n−1∑
i=0

ei.

For a polynomial p over G, let p be the polynomial function induced by p on
G. The Scott-length of the group G, denoted by λ(G), is the smallest positive
integer n such that there is a polynomial p with λ(p) = n and p(x) = 1 for all
x ∈ G, and λ(G) is defined to be 0 if no such n exists.

For example, if A is a finite abelian group, then we have λ(A) = exp(A).
In [Eck98] we find examples of groups in which λ(G) 6= exp(G); actually
from [Sco69, Proposition 3.4], we obtain that all finite, simple, non-abelian
groups G satisfy λ(G) = 1.

We state those results of S. D. Scott’s to which we will refer later.
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Proposition 1.1 ([Sco69, Proposition 1.1]). Let p be a polynomial of a group
G such that p(x) = 1 for all x ∈ G. Then λ(G) divides λ(p).

Proposition 1.2 ([Sco69, Theorem 1.2]). Let p be a polynomial of a group
G such that the function p is bijective on G. Then λ(G) and λ(p) are relatively
prime.

Lemma 1.3. Let G be a finite group. Then exp(G/G′) divides λ(G), and
exp(Z(G)) divides λ(G).

Proof: Straightforward. �

4. Counting polynomial functions

The observations gathered in the following lemma are quite elementary and
will be used throughout this thesis without explicit reference.

Lemma 1.4. Let G be a finite group. Then we have:

(1) Let p be a polynomial function on G. Then we have n ∈ N and
a1, . . . , an, c ∈ G such that

(1.1) p(x) =
n∏

i=1

xai · c for all x ∈ G;

(2) I(G) = {p ∈ P (G) | p(1) = 1};
(3) |P (G)| = |I(G)| · |G|.

Proof: The assertions (2) and (3) follow from (1) immediately. For prov-
ing (1), we let p ∈ P (G). By definition, we have k ∈ N, b0, . . . , bk ∈ G and
e0, . . . , ek−1 ∈ Z such that

p(x) = b0x
e0b1x

e1 · · · bk−1x
ek−1bk for all x ∈ G.

For i ∈ {1, . . . , k}, we let fi ∈ {1, . . . , exp G} such that fi ≡ ei modulo exp G.
Then we have

p(x) = b0x
f0b1x

f1 · · · bk−1x
fk−1bk for all x ∈ G.

Let n :=
∑k

i=0 fi. Since all exponents fi are positive, we can find d0, . . . , dn ∈ G
such that

p(x) = d0xd1xd2 · · · dn−1xdn for all x ∈ G.

Hence we have

p(x) = d0x(d0)
−1(d0d1)x(d0d1)

−1 · · · (d0 · · · dn−1)x(d0 · · · dn−1)
−1(d0 · · · dn)

for all x ∈ G. We define ai := (
∏i

j=0 dj)
−1 for i ∈ {1, . . . , n} and c := d0 · · · dn.

Then p(x) has the form that is given in (1.1). The lemma is proved. �
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Let G be a group with a normal subgroup N , and let T be a subgroup of
M(G). We define the Noetherian quotient

(N : G)T := {f ∈ T | f(G) ⊆ N}.

Lemma 1.5. Let G be a finite group, and let N be a normal subgroup of G.
Then we have

|I(G)| = |I(G/N)| · |(N : G)I(G)|.

Proof: This is an immediate consequence of the following Lemma 1.6 since all
inner automorphisms of G/N are induced by inner automorphisms of G (see (1.5)
in Section 5). �

We will use the next lemma for S = Inn (G), Aut (G), or End(G), and hence
T = I(G), A(G), or E(G), where N is a normal, characteristic, or fully invariant
subgroup of G.

Lemma 1.6. Let G be a group, and let N be a normal subgroup of G. Let
S be a set of endomorphisms of G such that α(N) ⊆ N for all α ∈ S, and let
T := 〈S〉. Then we have:

(1) f(N) ⊆ N for all f ∈ T ;
(2) The function f̄ : G/N → G/N, xN 7→ f(x)N , is well-defined, and f̄ is

an element of E(G/N) for all f ∈ T ;
(3) The map ϕ : T → E(G/N), f 7→ f̄ (with f̄ as in (2)), is a homomor-

phism with kernel (N : G)T .

Proof: We let f ∈ T . Then we have n ∈ N, e1, . . . , en ∈ {−1, 1}, and we
have endomorphisms α1, . . . , αn ∈ S such that

f(x) = αe1
1 (x) · · ·αen

n (x) for all x ∈ G.

Now (1) follows from the assumption that α(N) ⊆ N for all α ∈ S.
To show that f̄ in (2) is well-defined, we let x, y ∈ G such that xN = yN .

For α ∈ S, we use the linearity of α and the invariance of N to obtain

α(x)N = Nα(y).

This yields

αe1
1 (x) · · ·αen

n (x)N = Nαe1
1 (y) · · ·αen

n (y).

Hence we have f(x)N = f(y)N . Thus f̄ is well-defined on G/N . Since ᾱ ∈
E(G/N) for all α ∈ S, we also have f̄ ∈ E(G/N).

That ϕ is a homomorphism follows from α · β = ᾱ · β̄ and α−1 = ᾱ−1 for all
α, β ∈ S. Then Ker(ϕ) = (N : G)T is immediate. The lemma is proved. �

The next lemma allows us to obtain information on endomorphism near-rings
on G from the endomorphism near-rings on certain factors of G.



6 1. INTRODUCTION

Lemma 1.7. Let G be a finite group, and let M, N be normal subgroups of
G. We assume that M and N have relatively prime orders. Then we have the
following:

(1) The size of I(G) is given by

|I(G)| = |I(G/M)| · |I(G/N)|
|I(G/(MN))|

.

(2) If M, N are characteristic and A(G/M) = I(G/M), A(G/N) = I(G/N),
A(G/MN) = I(G/MN), then A(G) = I(G).

(3) If M, N are fully invariant and E(G/M) = I(G/M), E(G/N) =
I(G/N), E(G/MN) = I(G/MN), then E(G) = I(G).

We will prove Lemma 1.7 after the following Lemma 1.8. We point out that
the assumption gcd(|M |, |N |) = 1 is only used twice in the proofs of these lemmas.
First to obtain M ∩ N = {1}. Second to show that the projection πM from
MN to M is a polynomial function on MN (see (1.3)). Thus the Lemmas 1.7
and 1.8 may be generalized by replacing the hypothesis gcd(|M |, |N |) = 1 by the
2 assumptions M ∩N = {1} and πM ∈ I(MN).

Lemma 1.8. Let G be a group, and let T = I(G), A(G), or E(G). Let M, N
be subgroups of G such that T (M) ⊆ M, T (N) ⊆ N , and gcd(|M |, |N |) = 1.
Then we have

(1.2) (MN : G)T = (M : G)T · (N : G)T ,

and this product is direct.

Proof: We note that M ∩ N = {1} by assumption. Hence H := MN is a
direct product. The inclusion “⊇” of (1.2) is obvious. In order to prove “⊆”, we
consider the projections πM : H → M and πN : H → N that are defined by

πM(xy) = x, πN(xy) = y for all x ∈ M, y ∈ N.

First we prove

(1.3) πM , πN ∈ I(H).

Let k ∈ Z such that k ≡ 1 mod |M | and such that |N | divides k. For x ∈ M, y ∈
N , we then have (xy)k = x. Hence πM is in I(H). By (xy)−kxy = y for all
x ∈ M, y ∈ N , we find πN ∈ I(H). Hence we have (1.3).

Let f ∈ (H : G)T . By (1.3) and I(G) ⊆ T , we have πM ◦ f ∈ (M : G)T and
πN ◦ f ∈ (N : G)T . Together with f(x) = πM(f(x)) · πN(f(x)) for all x ∈ G, this
yields (1.2).

By (M : G)T ∩ (N : G)T = (M ∩N : G)T and M ∩ N = {1}, the product
in (1.2) is direct. �
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Proof of Lemma 1.7: Let G, M, N satisfy the assumptions of the lemma,
and let H := MN . First we show (1). By Lemma 1.8, we have

|(H : G)I(G)| = |(M : G)I(G)| · |(N : G)I(G)|.

By Lemma 1.5, we have |I(G)| = |(H : G)I(G)| · |I(G/H)|. Hence we obtain

|I(G)| = |(M : G)I(G)| · |(N : G)I(G)| · |I(G/H)|. After multiplying this equation

by |I(G/M)| · |I(G/N)|, we find

|I(G)| · |I(G/M)| · |I(G/N)| = |I(G)|2 · |I(G/H)|.

Now (1) follows.
For (2), we assume that M, N are characteristic and A(G/K) = I(G/K) for

K ∈ {M, N, H}. From Lemma 1.6 we obtain

|I(G/K)| ≤ |A(G)|
|(K : G)A(G)|

≤ |A(G/K)|.

Hence we have |A(G)| = |(K : G)A(G)| · |I(G/K)| for all K ∈ {M, N, H}. By
Lemma 1.8, we have

|(H : G)A(G)| = |(M : G)A(G)| · |(N : G)A(G)|.

Multiplying this equation by |A(G/M)| · |A(G/N)| yields

|A(G)| · |I(G/M)| · |I(G/N)| = |A(G)|2 · |I(G/H)|.

Then we find |I(G)| = |A(G)| by (1). Item (2) is proved. The proof of (3) follows
that of (2). �

5. Polynomial automorphisms and endomorphisms

Let G be a group. We note that I(G) = A(G) holds if and only if every
automorphism of G is a polynomial function of G, and I(G) = E(G) if and only
if every endomorphism is polynomial (cf. [Kow91]; see [Pet99] for groups that
satisfy I(G) < A(G) = E(G)). We give straightforward necessary conditions
such that I(G) = A(G), I(G) = E(G), respectively.

Proposition 1.9. Let G be a group.

(1) If I(G) = A(G), then all normal subgroups of G are characteristic.
(2) If I(G) = E(G), then all normal subgroups of G are fully-invariant.

Proof: This follows immediately from Lemma 1.6 (1). �

For a finite abelian group, the endomorphisms that fix all (normal) subgroups
are polynomial functions by the next lemma. Later on, we will give another class
of groups that have this property (see Lemma 3.8).



8 1. INTRODUCTION

Lemma 1.10. Let H be a finite abelian group, and let α be an endomorphism
of H such that α fixes all subgroups of H. Then there is an integer a such that

(1.4) α(x) = xa for all x ∈ H.

Proof: Since H is abelian, we have n ∈ N and cyclic subgroups H1, . . . , Hn of
H such that the product H = H1 . . . Hn is direct. Let xi be a generator of Hi for
i ∈ {1, . . . , n}. By assumption, α fixes the cyclic subgroup of H that is generated
by

∏n
i=1 xi. Hence we have a ∈ Z such that α(

∏n
i=1 xi) = (

∏n
i=1 xi)

a =
∏n

i=1 xa
i .

Since α is an endomorphism, we also have α(
∏n

i=1 xi) =
∏n

i=1 α(xi). Now α(xi) ∈
Hi and Hi ∩

∏n
j=1,j 6=i Hj = {1} yield α(xi) = xa

i for all i ∈ {1, . . . , n}. Thus we

obtain (1.4). �

Let N be a normal subgroup of G, and let α be an endomorphism of G such
that α(N) ⊆ N . Then the function

(1.5) ᾱ : G/N → G/N, xN 7→ α(x)N,

is well-defined and an endomorphism of G/N . We say that α induces the endo-
morphism ᾱ on G/N . If α is in I(G), then we have ᾱ ∈ I(G/N). However, we
note that I(G) = E(G) does not imply I(G/N) = E(G/N) in general. There may
be endomorphisms of the factor G/N that are not induced by endomorphisms of
G. The next result shows that I(G/N) = E(G/N) is necessary if G splits over
N (cf. Theorem 2.17).

Proposition 1.11. Let G be a finite group, and let Z := Z(G). Let N be a
normal subgroup of G, and let H be a complement for N in G. We assume that
I(G) = E(G). Then we have the following:

(1) Z = (H ∩ Z) · (N ∩ Z) is a direct product;
(2) gcd(λ(G/N), exp(Z)) = exp(Z/(N ∩ Z));
(3) I(G/N) = E(G/N).

Proof: Let G, N , and H satisfy the hypotheses. We consider the projection
α from G to H that is defined by

α(nh) := h for all n ∈ N, for all h ∈ H.

First we prove (1). By α(G) = H and α ∈ I(G), we have

(1.6) α(Z) ⊆ H ∩ Z.

The homomorphism theorem together with Ker(α) = N yields that α(Z) is
isomorphic to Z/(N ∩Z). By (1.6), we then obtain |Z| ≤ |H ∩Z| · |N ∩Z|. Since
(H ∩ Z)(N ∩ Z) ⊆ Z and N ∩ H is trivial, this yields Z = (H ∩ Z)(N ∩ Z).
Thus (1) is proved.
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Next we prove (2). By assumption, we have k ∈ N0 and a1, . . . , ak ∈ G such
that

α(x) =
k∏

i=1

xai for all x ∈ G.

By the definition of α, we have

h−1 ·
k∏

i=1

hai = 1 for all h ∈ H.

Hence Proposition 1.1 yields that

(1.7) λ(H) divides k − 1.

Since α(z) = zk for all z ∈ Z and N ∩ Z ⊆ Ker(α), we have that

(1.8) exp(N ∩ Z) divides k.

We note that exp(Z) divides exp(N ∩ Z) · exp(Z/(N ∩ Z)). Together with (1.7)
and (1.8), this yields

(1.9) gcd(λ(H), exp(Z)) ≤ gcd(k − 1, k · exp(Z/(N ∩ Z))) ≤ exp(Z/(N ∩ Z)).

Since H ∩ Z is a subgroup of Z(H) and since exp(Z(H)) divides λ(H), we have
that exp(H ∩Z) divides λ(H). By (1), H ∩Z is isomorphic to Z/(N ∩Z). Thus
we obtain

exp(Z/(N ∩ Z)) ≤ gcd(λ(H), exp(Z)).

Together with (1.9), this yields gcd(λ(H), exp(Z)) = exp(Z/(N ∩ Z)). Now (2)
follows since H is isomorphic to G/N .

For proving (3), we let β be an endomorphism of H. Then the composition
β◦α is an endomorphism of G. Since N ⊆ Ker(β ◦ α), we may define the induced
endomorphism,

β ◦ α : G/N → G/N, xN 7→ β(α(x))N.

First we will show that

ϕ : End(H) → End(G/N), β 7→ β ◦ α

is a bijection. Let β, γ be endomorphisms of H such that β ◦ α = γ ◦ α. Let
h ∈ H be fixed. Then we have β(α(h))N = γ(α(h))N . Since the restriction of
α to H is the identity map, this yields β(h)N = γ(h)N . Now γ(h)−1 · β(h) is
in N ∩ H. Since N ∩ H is trivial, we have β(h) = γ(h). Thus β = γ, and ϕ is
injective. Since H and G/N are isomorphic, we have |End(H)| = |End(G/N)|.
Thus ϕ is bijective.

Now it suffices to prove

(1.10) β ◦ α ∈ I(G/N) for all β ∈ End(H).
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Since β ◦ α is an endomorphism of G, we have k ∈ N0 and a1, . . . , ak ∈ G such
that

β(α(x)) =
k∏

i=1

xai for all x ∈ G.

We write x̄ := xN for x ∈ G. Then we have

β ◦ α(x̄) =
k∏

i=1

x̄ai for all x̄ ∈ G/N

This proves (1.10). Thus we have (3), and the proof of the proposition is complete.
�

We note that, under the hypotheses of the previous proposition, λ(G/N) and
exp(Z) are relatively prime if I(G) = E(G) and H ∩ Z is trivial (cf. Theo-
rem 3.20).

The next observation will be used in the characterization of linear groups that
satisfy I(G) = E(G) in Chapter 4.

Lemma 1.12. Let G be a finite group, and let α be an endomorphism of G.
We assume α ∈ I(G) and α(G) ∩ Z(G) = {1}. Then we have Z(G) ⊆ Ker(α).

Proof: Let Z := Z(G). By assumption, we have α(Z) ⊆ Z ∩ α(G) = {1}.
Thus we have Z ⊆ Ker(α). �

For Lemma 1.8, we have already noted that for a direct product G = MN of
groups M, N of relatively prime order the projection onto each component is in
I(G). The next result by S. A. Syskin is far less obvious.

Lemma 1.13 ([Sys95, Theorem 2]). Let G be a finite group with a normal
subgroup N and a subgroup H such that G = NH and gcd(|N |, |H|) = 1. Let

π : G → H, nh → h.

Then we have π ∈ I(G).

In Chapter 5 we will use the following consequence of the previous lemma and
a result by C. G. Lyons and G. L. Peterson.

Proposition 1.14. Let G be a finite group, and let N be a normal subgroup
of G such that gcd(|N |, |G : N |) = 1. We assume that I(N) = E(N). Then the
following are equivalent:

(1) I(G) = E(G);
(2) I(G/N) = E(G/N).

Proof: By the Schur-Zassenhaus Theorem [Rob96, 9.1.2], we have a comple-
ment H for N in G. Now (1) ⇒ (2) follows from Proposition 1.11. The converse
is obtained from [LP95, Theorem 2.1] together with Lemma 1.13. �
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6. Endomorphisms into the center and automorphisms

In general, the product of endomorphisms of a non-abelian group is not an
endomorphism. Still we would like to mention an important special case when
multiplying two endomorphisms yields an endomorphism again. Let ρ be an
endomorphism from G into Z(G), and let σ be an endomorphism of G. Then the
function

α : G → G, x 7→ ρ(x) · σ(x)

is an endomorphism of G. Under certain conditions, α might even be bijective
on G.

This simple observation yields a necessary condition for I(G) = A(G) by
considering endomorphisms into the center of a group (see Chapter 3, Section 5).

Lemma 1.15. Let G be a finite group, and let Z := Z(G). Let L be a subgroup
of G such that G′ ⊆ L, L/G′ is a cyclic direct factor in G/G′, and gcd(|L :
G′|, exp(Z)) does not divide exp(L ∩ Z). Then we have the following:

(1) There exists an endomorphism from G to Z that is not in I(G);
(2) There exists an endomorphism ρ from G to Z such that ρ̄, the induced

endomorphism on G/G′, is not in I(G/G′);
(3) I(G) 6= A(G).

Proof: Let G and L satisfy the assumptions of the lemma. First we will give a
particular endomorphism ρ from G to Z that is not in I(G) thus proving (1). Then
we will obtain (2) by showing that this endomorphism ρ induces an endomorphism
on G/G′, which is not a polynomial function on G/G′. Finally we will use ρ to
construct an automorphism that is not in I(G) and hence prove (3).

For x ∈ G, we write x̄ := xG′, and for subgroups A of G, that contain G′,
we write Ā := A/G′. By assumption, there is a prime p and an integer n ≥ 1
such that q := pn divides gcd(exp(L̄), exp(Z)) and q does not divide exp(L∩Z).
Hence we have c ∈ Z \ L with ord c = q. By assumption, we have a subgroup H
of G with G′ ⊆ H such that H̄ is a direct complement for L̄ in Ḡ. Let g ∈ G
such that ḡ generates L̄. We note that H〈gq〉 is a normal subgroup of G with
index q. Hence we have an endomorphism ρ from G to Z such that

ρ(g) = c and Ker(ρ) = H〈gq〉.
Since ρ does not fix L, which is a normal subgroup of G, we have ρ 6∈ I(G).
Hence (1) is proved.

For proving (2), we let ρ̄ be induced on G/G′ by that same endomorphism ρ
as above. Then

ρ̄(ḡ) = c̄.

Since c 6∈ L and G′ ⊆ L, we have c̄ 6∈ L̄. Hence ρ̄ does not fix the normal
subgroup L̄ of Ḡ. Thus ρ̄ is not in I(Ḡ). This proves (2).



12 1. INTRODUCTION

For the proof of (3), we consider that same endomorphism ρ as above yet
again. Let C := 〈c〉, and let K := Ker(ρ). First we assume that C ∩ K is not
trivial. We will show that

α : G → G, x 7→ ρ(x) · x

is an automorphism and that α 6∈ I(G). Since ρ(G) ⊆ Z, the function α is an
endomorphism of G. By the definition of ρ, we have Ker(α) = {x ∈ C | ρ(x) =
x−1}. Let x ∈ C such that ρ(x) = x−1. Since |〈ρ(x)〉| = |〈x〉/(〈x〉 ∩K)|, we then
obtain 〈x〉 ∩K = {1}. By the assumption that C ∩K is not trivial, K contains
the unique subgroup of order p of the cyclic p-group C. Hence 〈x〉 ∩ K = {1}
yields x = 1. Thus we have Ker(α) = {1}. Then α is an automorphism of G,
and α is not in I(G) because ρ 6∈ I(G).

Next we will deal with the case that C ∩K is trivial. Then we have G = KC
by the homomorphism theorem. We note that G′ = K ′ and that, by assumption,
p divides |L : (K ′C)∩L|. In particular, p divides |K : K ′|. Let k ∈ K, and let M
be a subgroup of K with K ′ ⊆ M such that K̄ is the direct product of 〈k̄〉 and M̄ .
Furthermore, we assume that p divides ord k̄. Then we have an endomorphism σ
from G to Z such that

σ(k) = cq/p and Ker(σ) = M〈kp〉C.

Since σ does not fix the normal subgroup K of G, we have σ 6∈ I(G). We now
consider the function

α : G → G, x 7→ σ(x) · x.

Then α is an endomorphism of G because σ(G) ⊆ Z. We have Ker(α) = {x ∈
C | σ(x) = x−1}. By Im(σ) ⊆ Ker(σ), this yields Ker(α) = {1}. Thus α is an
automorphism of G, and we have α 6∈ I(G) by σ 6∈ I(G). The proof of (3) is
complete. �

We will be interested in the following situation: Let G be a group with a
normal subgroup N . We assume that an automorphism of N can be extended to
an automorphism of G. What do the possible extensions look like?

For certain groups we can give an answer, and this answer uses endomorphisms
into the center of G again. We will use the next lemma in particular for classical
linear groups in Chapter 4. See also Proposition 3.15.

Lemma 1.16. Let A be a finite group, and let N be a normal subgroup of A.
We write C := CA(N), Ā := A/C, N̄ := (NC)/C, and x̄ := xC for x ∈ A. We
assume that CĀ(N̄) is trivial, and that for all automorphisms ϕ of N̄ there is
f̄ ∈ Ā such that

ϕ(n̄) = n̄f̄ for all n̄ ∈ N̄ .

Let G be a normal subgroup of A such that N ⊆ G and Z(G) = C ∩G. Let α be
an automorphism of G such that α(N) = N .
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Then there is a ∈ A, and there is an endomorphism ρ : G → C ∩G such that

α(x) = ρ(x) · xa for all x ∈ G.

Proof: We define an automorphism ᾱ on Ḡ := (GC)/C by

ᾱ(xC) = α(x)C for all x ∈ G.

To check that ᾱ is well-defined, we let x, y ∈ G such that xC = yC. Then
y−1x is an element of C ∩ G. Since, by hypothesis, N is invariant under α, also
the centralizer of N in G, that is C ∩ G, is invariant under α. Thus we have
α(y−1x) ∈ C ∩ G. This yields α(x)C = α(y)C. Hence ᾱ is well-defined. The
definition immediately yields that ᾱ is an automorphism on Ḡ.

Since ᾱ restricts to an automorphism on N̄ , we have a ∈ A such that

(1.11) ᾱ(n̄) = n̄ā for all n̄ ∈ N̄

by hypothesis. Let n ∈ N and g ∈ G be fixed. By (1.11), we have

(1.12) ᾱ(n̄ḡ) = ᾱ(n̄)ᾱ(ḡ) = n̄ā·ᾱ(ḡ).

Since n̄ḡ is in N̄ , we can evaluate the same expression as

(1.13) ᾱ(n̄ḡ) = n̄ḡā.

By (1.12) and (1.13), we obtain that ā · ᾱ(ḡ) · ā−1 · ḡ−1 commutes with n̄ for all
n ∈ N , g ∈ G. Since CĀ(N̄) is trivial by hypothesis, this yields

(1.14) ᾱ(ḡ) = ḡā for all ḡ ∈ Ḡ.

Now we prove that the function ρ on G defined by

ρ(x) = α(x) · (x−1)a for all x ∈ G

is an endomorphism from G to C ∩ G. By (1.14) and by the hypothesis that G
is normal in A, we have ρ(G) ⊆ C ∩G. For proving that ρ is a homomorphism,
we let x, y ∈ G. By the hypothesis that Z(G) = C ∩G, we obtain α(x) · α(y) =
ρ(x)xa·ρ(y)ya = ρ(x)ρ(y)·(xy)a. By comparing this with α(xy) = ρ(xy)·(xy)a, we
find ρ(xy) = ρ(x) · ρ(y). Hence ρ is an endomorphism. The lemma is proved. �





CHAPTER 2

Polynomial functions on certain non-solvable groups

We consider polynomial functions on those finite groups whose quotient by the
center has a non-abelian unique minimal normal subgroup. The results obtained
here will then be applied to linear groups in Chapter 4.

1. A characterization of polynomial functions

We present a criterion to decide whether a given function on a group is poly-
nomial. The following lemma uses several ideas found in [FK95, Theorem 2.1]
and [Kow97, Proposition 1].

Lemma 2.1 ([AM03, Lemma 5.3]). Let G be a finite group, let Z := Z(G)
be its center, and let N be a normal subgroup of G that satisfies the following
properties:

(C.1) N 6= {1} and N ′ = N ;
(C.2) For all normal subgroups K of G we have K ⊆ Z or N ⊆ K.

Let λ := λ(G/N) be the Scott-length of G/N . For a function f : G → N , the
following are equivalent:

(1) The function f is in I(G);
(2) There exists an integer µ such that f(z) = zλµ for all z ∈ Z, and we

have

f(g · z) = f(g) · f(z) for all g ∈ G, z ∈ Z.

Proof: (1) ⇒ (2): Let p be a polynomial over G such that p = f . Then we
have p(G) ⊆ N , and thus λ(p) is a multiple of λ(G/N). Since every polynomial
p satisfies

p(g · z) = p(g) · zλ(p) for all z ∈ Z(G), g ∈ G,

we obtain condition (2).
(2) ⇒ (1): Let k := |G : Z|, and let T = {1, t1, t2, . . . , tk−1} be a transversal

for the cosets of Z in G. Let f : G → N be a function that satisfies (2). Then f
is uniquely determined by µ such that f(z) = zλµ for all z ∈ Z, and by the values
f(t1), . . . , f(tk−1). We will show f ∈ I(G) by proving that for all α ∈ Z and for
all n1, . . . , nk−1 ∈ N there exists p ∈ I(G) such that p(z) = zλα for all z ∈ Z,
and p(ti) = ni for all i ∈ {1, . . . , k − 1}. By (1) ⇒ (2), we will then obtain that
there is some p ∈ I(G) such that p = f . Hence f is in I(G).

15
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Step 1: We first construct a function e ∈ I(G) that satisfies

(2.1) e(G) ⊆ N and e(z) = zλ for all z ∈ Z.

To construct e, we start with a polynomial p over G/N with p(xN) = 1N for
all x ∈ G, and λ(p) = λ(G/N). By lifting the coefficients of p from G/N to G,
we obtain a polynomial p′ with p′(G) ⊆ N and λ(p′) = λ. Now the function
e : G → G defined by e(x) := (p′(1))−1 · p′(x) satisfies the requirements of (2.1).

Step 2: By the assumptions (C.1) and (C.2), we have

(2.2) N/(N ∩ Z) is a non-abelian minimal normal subgroup of G/(N ∩ Z),

and

(2.3) CG/(N∩Z)(N/(N ∩ Z)) = Z/(N ∩ Z).

Step 3: Let S ⊆ T \ {1}, let s ∈ S, and let n ∈ N . Then there exists
q ∈ I(G) such that

q(G) ⊆ N,

q(s) = n,

q(u) = 1 for all u ∈ S, u 6= s,

q(z) = 1 for all z ∈ Z.

For proving this statement, we use induction on |S|. First assume that S = {s}.
For

Q := {q(s) | q ∈ I(G), q(G) ⊆ N, and q(z) = 1 for all z ∈ Z},
we have to prove Q = N . We note that Q is a normal subgroup of G. First we
show

∃n ∈ N such that [s, n] 6∈ Z.

Otherwise, if [s, n] ∈ Z for all n ∈ N , then s(N ∩ Z) centralizes N/(N ∩ Z).
By (2.3), we then have s ∈ Z, which contradicts s ∈ T \ {1}. Now, let n ∈ N
such that [s, n] 6∈ Z, and let q(x) := [x, n] for all x ∈ G. Then q(G) ⊆ [G, N ] ⊆ N
and q(z) = 1 for all z ∈ Z. Hence q(s) ∈ Q and Q 6⊆ Z. By assumption (C.2),
we then have N ⊆ Q. So N = Q, and the base case of the induction is proved.

Next, we assume that |S| > 1. Let s ∈ S. We consider

Q := {q(s) | q ∈ I(G), q(G) ⊆ N, q(S \ {s}) = {1}, and q(Z) = {1}}.
For proving that the normal subgroup Q of G is equal to N , we show that Q 6⊆ Z.
Let t ∈ S, t 6= s, and let

M := 〈{(s−1t)a | a ∈ G}〉.
Then M is normal in G. Since s−1t 6∈ Z, we have M 6⊆ Z. So N ⊆ M . By the
assumptions (C.1) and (C.2), there are n1, n2 ∈ N such that [n1, n2] 6∈ Z. Since

n1 ∈ M , there is l ∈ N and there are a1, . . . , al ∈ G such that n1 =
∏l

i=1(s
−1t)ai .

We define q1(x) :=
∏l

i=1(x
−1t)ai for all x ∈ G.
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By the induction hypothesis, there is q2 ∈ I(G) such that q2(G) ⊆ N, q2(s) =
n2, q2(u) = 1 for all u ∈ S \ {s, t}, and q2(z) = 1 for all z ∈ Z. We now have
q ∈ I(G) defined by q(x) := [q1(x), q2(x)] which satisfies

q(G) ⊆ [G, N ] ⊆ N,

q(t) = [1, q2(t)] = 1,

q(u) = [q1(u), 1] = 1 for all u ∈ S \ {s, t},

q(Z) ⊆ [Z,Z] = {1}.

Thus q(s) ∈ Q. Since q(s) = [n1, n2] 6∈ Z, we have Q 6⊆ Z and N ⊆ Q. This
completes the proof of Step 3.

Step 4: For S = {t1, . . . , tk−1}, Step 3 yields that there exist the following
“Lagrange interpolation functions”. For each i ∈ {1, 2, . . . , k − 1} and for each

n ∈ N , there is q
(i)
n ∈ I(G) such that

q(i)
n (G) ⊆ N,

q(i)
n (ti) = n,

q(i)
n (tj) = 1 for all j ∈ {1, 2, . . . , k − 1} \ {i},

q(i)
n (z) = 1 for all z ∈ Z.

We recall that f : G → N is a function that satisfies f(z) = zλµ for all z ∈ Z
and f(gz) = f(g) · f(z) for all g ∈ G, z ∈ Z. We define p ∈ I(G) by

p(x) := e(x)µ ·
k−1∏
i=1

q
(i)

e(ti)−µ·f(ti)
(x) for x ∈ G.

Then we have f |Z = p|Z and f(ti) = p(ti) for all i ∈ {1, . . . , k− 1}. We note that
p satisfies p(gz) = p(g) · p(z) for all g ∈ G, z ∈ Z by (1) ⇒ (2) of Lemma 2.1.
To prove p = f , we fix x ∈ G. Then there exists i ∈ {0, 1, . . . , k − 1} and there
exists z ∈ Z such that x = tiz. We compute

f(x) = f(tiz) = f(ti) · f(z) = p(ti) · p(z) = p(tiz) = p(x).

This implies p = f . Hence f ∈ I(G). �

Before we state consequences of Lemma 2.1 in the following sections, we
investigate the structure of groups that satisfy the assumptions (C.1) and (C.2)
of this result.
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2. A description of groups with property (C)

Let N be a normal subgroup of the group G such that the following properties
are satisfied:

(C.1) N 6= {1} and N ′ = N ;
(C.2) For all normal subgroups K of G we have K ⊆ Z(G) or N ⊆ K.

Then we say that N satisfies (C.1) and (C.2) in G.
We say that G has property (C) if there exists a normal subgroup N of G

such that N satisfies (C.1) and (C.2) in G.
The next figure shows part of the lattice of normal subgroups of such a group

G. By (C.2), any normal subgroup of G is central or contains N . In particular,
there is no normal subgroup K of G with N ∩ Z(G) < K < N or Z(G) < K <
N · Z(G).
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q q
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N ∩ Z(G)
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As we will prove in Lemma 2.2, there is at most one normal subgroup N of G
that satisfies (C.1) and (C.2) in G. Thus, if G has property (C), then the normal
subgroup N that satisfies (C.1) and (C.2) is uniquely determined.

The class of groups with property (C) contains non-abelian simple groups,
groups that have a non-abelian unique minimal normal subgroup (for example
finite symmetric groups of degree at least 5), and quasisimple groups. A group G
is called quasisimple if and only if G′ = G and G/Z(G) is simple [Suz86, p. 446,
Definition 6.1].

The finite classical linear and semi-linear groups provide a variety of examples
with property (C) (see Chapter 4 and Appendix A). These are the groups for
which Lemma 2.1 was made. Here we only want to mention that for every
non-solvable finite general linear group G := GL(n, q), the special linear group
SL(n, q) satisfies (C.1) and (C.2) in G.

We now give a list of properties that are equivalent to (C).
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Lemma 2.2. Let G be a group, and let N be a normal subgroup of G. We
write Z := Z(G). Then the following are equivalent:

(1) N satisfies (C.1) and (C.2) in G.
(2) N is the unique normal subgroup of G that satisfies (C.1) and (C.2) in

G.
(3) N satisfies the following:

(a) N ′ = N ;
(b) N ∩ Z ≺G N ;
(c) CG(N) = Z.

(4) N satisfies the following:
(a) N ′ = N ;
(b) (NZ)/Z is a minimal normal subgroup of G/Z;
(c) CG/Z((NZ)/Z) is trivial.

(5) N satisfies the following:
(a) N ′ = N ;
(b) (NZ)/Z is the unique minimal normal subgroup of G/Z.

(6) There exists a normal subgroup M of G such that N = M ′ and the
following are satisfied:
(a) Z ⊆ M ;
(b) M/Z is a minimal normal subgroup of G/Z;
(c) CG/Z(M/Z) is trivial.

(7) There exists a normal subgroup M of G such that N = M ′ and the
following are satisfied:
(a) Z ⊆ M ;
(b) M/Z is the unique minimal normal subgroup of G/Z.
(c) M/Z is non-abelian;

By the equivalence of (1) and (7) in Lemma 2.2, a group G has property (C)
if and only if G/Z(G) has a non-abelian unique minimal normal subgroup.

We note that usually condition (3) is the one that is most convenient to check
in order to determine whether a given normal subgroup N satisfies (C.1) and
(C.2) in G.

Proof of Lemma 2.2: (1) ⇒ (2): We assume that N1 and N2 are normal
subgroups of G that both satisfy (C.1) and (C.2) in G. By (C.1), we have N1 6⊆ Z
and N2 6⊆ Z. Thus (C.2) yields N1 ⊆ N2 and N2 ⊆ N1. Hence we have N1 = N2,
and (2) is proved.

(2) ⇒ (3): We assume that N satisfies (C.1) and (C.2) in G. As a part of
(C.1), condition (3a) is obviously satisfied. Since, by (C.1), N is not abelian,
we have N ∩ Z < N . We suppose that there is a normal subgroup K of G with
N∩Z < K < N . Then K ⊆ Z by (C.2), and hence K ⊆ N∩Z, which contradicts
our assumption that N ∩ Z < K. Thus we have (3b). Since N ⊆ CG(N) implies
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N ′ = {1}, which contradicts (C.1), condition (C.2) yields CG(N) ⊆ Z. The
converse inclusion is obvious, and (3c) is proved.

(3) ⇒ (4): We assume that (3) holds for N . Condition (4a) is (3a). Since,
by (3b), N/(N ∩Z) is a minimal normal subgroup in G/(N ∩Z), the homomor-
phism theorem yields that (NZ)/Z is a minimal normal subgroup in G/Z. Thus
we have (4b). For proving (4c), we let K be a normal subgroup of G with Z ⊆ K
such that K/Z = CG/Z((NZ)/Z). Then we have [K, N ] ⊆ Z, which implies that
[K, N, N ] and [N, K, N ] are trivial. The Three Subgroup Lemma (see [Rob96,
p.122, 5.1.10]) yields that [N, N, K] is trivial as well. By using (4a), we obtain
{1} = [N, N, K] = [N ′, K] = [N, K]. Thus K centralizes N , and, by (3c), we
have K ⊆ Z. Item (4c) is proved.

(4) ⇒ (5): We assume that (4) holds for N . Condition (5a) is (4a). For
proving (5b), we let K be a normal subgroup of G with Z < K such that K/Z is
a minimal normal subgroup of G/Z. By (4c), [(NZ)/Z,K/Z] is not trivial. Thus
[(NZ)/Z,K/Z] ⊆ (NZ)/Z and (4b) yield (NZ)/Z = [(NZ)/Z,K/Z]. Since
[(NZ)/Z,K/Z] ⊆ K/Z and K/Z is minimal, we then obtain (NZ)/Z = K/Z.
Thus (5b) is proved.

(5) ⇒ (6): We assume that (5) holds for N . Let M := NZ. Then we have
M ′ = N ′ and, by (5a),

(2.4) M ′ = N.

Conditions (6a) and (6b) are satisfied by the definition of M and by (5b). Seeking
a contradiction, we suppose that CG/Z(M/Z) is non-trivial. Then we have M/Z ⊆
CG/Z(M/Z) by (5b). Thus the derived subgroup of M/Z is trivial, which yields
M ′ ⊆ Z. With (2.4), we now obtain N ⊆ Z and M ⊆ Z. This contradicts (6b).
Hence CG/Z(M/Z) is trivial.

(6) ⇒ (7): Let M be a normal subgroup of G that satisfies (6). Then we
have M ′ = N , Z ⊆ M , and that M/Z is a minimal normal subgroup in G/Z
by assumption. Furthermore, by (6c), M/Z is non-abelian. It only remains to
prove that M/Z is the unique minimal normal subgroup of G/Z. The argument
is the same as in the proof of (4) ⇒ (5). Let K be a normal subgroup of G
with Z < K such that K/Z is a minimal normal subgroup of G/Z. By (6c),
[M/Z, K/Z] is not trivial. Then the minimality of M/Z and of K/Z yields
M/Z = [M/Z, K/Z] = K/Z. Thus we have (7).

(7) ⇒ (1): Let M be a normal subgroup of G that satisfies (7) with N = M ′.
First we prove that N satisfies (C.1). By (7b) and (7c), we have (M/Z)′ = M/Z.
This yields M ′Z = M . Hence we have M ′′ = M ′ and N ′ = N . By (7c), M is not
abelian. Thus N 6= {1}, and N satisfies (C.1). For proving (C.2), we let K be
a normal subgroup of G, and we consider X := (KZ) ∩M . Since Z ⊆ X ⊆ M ,
property (7b) yields that either X = M or X = Z. If X = M , then we have
K ⊇ K ′ = (KZ)′ ⊇ M ′ = N . Next we consider the case X = Z. By [KZ, M ] ⊆
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X, we then obtain that (KZ)/Z centralizes M/Z. We suppose that (KZ)/Z is
not trivial. Then we have M/Z ⊆ (KZ)/Z by (7b) and M/Z ⊆ CG/Z(M/Z),
which contradicts (7c). Hence (KZ)/Z is trivial and K ⊆ Z. Condition (C.2) is
satisfied. �

It is easy to see that the class of groups with property (C) is closed under
certain homomorphic images and central extensions:

Lemma 2.3. Let G be a group, and let Y be a subgroup of Z(G). Then the
following are equivalent:

(1) G has property (C);
(2) G/Y has property (C) and Z(G/Y ) = Z(G)/Y .

Proof: Let G be a group, let Z := Z(G), and let Y be a subgroup of Z.
(1) ⇒ (2): We assume that G has property (C). By Lemma 2.2, (1) ⇒ (6),

we have a normal subgroup M of G with Z ⊆ M such that M/Z is a minimal
normal subgroup of G/Z and CG/Z(M/Z) is trivial.

First we prove Z(G/Y ) = Z/Y . By Z/Y ⊆ Z(G/Y ), we have a normal
subgroup K of G with Z ⊆ K such that K/Y = Z(G/Y ). But [M, K] ⊆ Y
and Y ⊆ Z yield that K/Z centralizes M/Z. Hence K/Z is trivial, and we have
Z(G/Y ) = Z/Y .

Now the homomorphism theorem yields that M/Y satisfies the conditions
(6a), (6b), and (6c) of Lemma 2.2 for the group G/Y with center Z/Y . By
Lemma 2.2, (6) ⇒ (1), G/Y has property (C).

(2) ⇒ (1): We assume that G/Y has property (C) and Z(G/Y ) = Z/Y .
By Lemma 2.2, (1) ⇒ (7), we have a normal subgroup M of G such that
Z/Y ⊆ M/Y , that (M/Y )/(Z/Y ) is the unique minimal normal subgroup of
(G/Y )/(Z/Y ), and that (M/Y )/(Z/Y ) is non-abelian. The homomorphism the-
orem yields that Z ⊆ M , that M/Z is the unique minimal normal subgroup of
G/Z, and that M/Z is non-abelian. Hence G has property (C) by Lemma 2.2,
(7) ⇒ (1). �

Obviously the class of groups with property (C) is not closed under taking
direct products. Neither is property (C) inherited by all subgroups. Even if N
satisfies (C.1) and (C.2) in a group G and if H is subgroup of G with N ⊆ H,
in general N does not satisfy (C.1) and (C.2) in H as is shown by the following
example.

Example 2.4. Let N := A5 × A5 be the direct product of the alternating
group of degree 5 by itself. Let i be an involution that acts on N by (x, y)i = (y, x)
for all (x, y) ∈ N . We consider the semidirect product G := N o 〈i〉 defined by
this action of 〈i〉 on N . Then N is a minimal normal subgroup of G with trivial
centralizer. By Lemma 2.2, (6) ⇒ (1), the group G has property (C). Still N
does not have property (C), since Z(N) is trivial, and A5 × {()}, {()} × A5 are
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two distinct minimal normal subgroups of N (cf. Lemma 2.2, (1) ⇒ (7)). Here
() denotes the identity of A5.

In the example above (N · Z(G))/Z(G) does not have property (C), because
it is not simple. In the following lemma we prevent this flaw.

Lemma 2.5. Let G be a group, and let N be a normal subgroup of G such that
N satisfies (C.1) and (C.2) in G. We assume that (N · Z(G))/Z(G) is simple.
Let H be a subgroup of G with N ⊆ H. Then we have:

(1) Z(H) = Z(G) ∩H;
(2) For all normal subgroups K of H, we have K ⊆ Z(H) or N ⊆ K;
(3) H has property (C).

Proof: Let G, N , and H satisfy the assumptions. By Lemma 2.2 (3c), we
have

(2.5) Z(G) = CG(N).

Together with

Z(G) ∩H ⊆ Z(H) ⊆ CG(N) ∩H,

this yields (1). For proving (2) and (3), we have to use the hypothesis that
(N · Z(G))/Z(G) is simple. We consider (3) first. By Lemma 2.2, (3) ⇒ (1), it
suffices to verify the following conditions:

(2.6) N = N ′;

(2.7) N ∩ Z(H) ≺H N ;

(2.8) CH(N) = Z(H).

Item (2.6) is true by assumption. From N ⊆ H and Z(H) = Z(G)∩H we obtain
Z(H) ∩N = Z(G) ∩N . Since N/(Z(G) ∩N) is simple by assumption, we have
(2.7). Equation (2.8) follows immediately from (2.5). Hence H has property (C).
Item (3) of the lemma is proved. Thus we have (2) as well. �

A group T is said to be almost simple if there is a simple non-abelian group
S and an embedding ϕ from T into Aut S such that Inn S ⊆ ϕ(T ) [KL90, p.1].
We note the following:

Lemma 2.6. A group T is almost simple if and only if T has a unique minimal
normal subgroup and this subgroup is non-abelian simple.

Thus, if G/Z(G) is almost simple, then G has property (C) by
Lemma 2.2, (7) ⇒ (1). We give the following reformulation of Lemma 2.5.
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Lemma 2.7. Let G be a group with center Z := Z(G) such that G/Z is almost
simple. Let M be the normal subgroup of G such that Z ⊆ M and M/Z is the
unique minimal normal subgroup of G/Z.

Then all groups H with M ′ ⊆ H ⊆ G have property (C).

Proof: We note that, by Lemma 2.6, the normal subgroup M that satisfies
the assumptions of the lemma exists and that M is uniquely determined. Further
M/Z is non-abelian simple, and M ′ satisfies (C.1) and (C.2) in G. Thus the result
is given by Lemma 2.5 (3). �

We append the proof of the fact that every almost simple group has a non-
abelian unique minimal normal subgroup.

Proof of Lemma 2.6: For proving the “if”-direction, we may assume that
there exists a simple, non-abelian group S such that Inn S ⊆ T ⊆ Aut S. Since
Inn S is isomorphic to S and normal in Aut S, we have that Inn S is a minimal
normal subgroup in T . It remains to show that this is the unique minimal normal
subgroup. To this end, we prove

(2.9) CAut S(Inn S) is trivial.

Let α ∈ Aut S such that α centralizes Inn S. Then

α(xs) = α(x)s for all x, s ∈ S

yields
α(s) · s−1 ∈ Z(S) for all s ∈ S.

Since Z(S) = {1} by assumption, we obtain α(s) = s for all s ∈ S. Hence α is
the identity mapping on S, and (2.9) is proved.

For a non-trivial normal subgroup K of T , we then have {1} < [K, Inn S].
Together with [K, Inn S] ⊆ K ∩ Inn S and the minimality of Inn S, this yields
Inn S ⊆ K. Thus Inn S is the unique minimal normal subgroup of T .

For proving the converse implication, we let S be the non-abelian unique
minimal normal subgroup of T . Since S 6⊆ CT (S), we have CT (S) = {1}. For
each element a ∈ T , the function ϕa : S → S, x 7→ xa, is an automorphism of S.
Now

ϕ : T → Aut S, a → ϕa,

is a homomorphism, and ϕ is injective by CT (S) = {1}. Hence ϕ is an embedding
of T into Aut S with Inn S ⊆ ϕ(T ). Thus T is almost simple. The lemma is
proved. �

3. Invariant subgroups

In this section we gather information on endomorphisms of groups with prop-
erty (C) and related groups. First we show that the center of a group with
property (C) is invariant under certain endomorphisms.
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Lemma 2.8. Let G be a finite group such that G/Z(G) is centerless. Let α be
an endomorphism of G with Ker(α) ⊆ Z(G). Then α(Z(G)) ⊆ Z(G).

We note that by Lemma 2.2, (1) ⇒ (6), all groups with property (C) satisfy
the hypotheses of the lemma above.

Proof of Lemma 2.8: Let Z := Z(G). The homomorphism theorem yields:

(2.10) α(G)/α(Z) is isomorphic to G/Z.

Since G/Z is centerless by assumption, (2.10) implies that Z(α(G)) ⊆ α(Z). The
converse inclusion is immediate. Thus we obtain

(2.11) Z(α(G)) = α(Z).

By the homomorphism theorem, we have

(2.12) |Z · α(G)| · |Z ∩ α(G)| = |α(G)| · |Z|.

The right hand side of (2.12) is |G|
|Ker(α)| · |Z|. But Z ∩α(G) ⊆ Z(α(G)) and (2.11)

yield that the left hand side of (2.12) is at most |G| · |Z|
|Ker(α)| . Hence (2.12) implies

|Z ∩ α(G)| = |Z|
|Ker(α)| , and thus Z ∩ α(G) = Z(α(G)). By (2.11), we obtain

Z ∩ α(G) = α(Z), which yields α(Z) ⊆ Z. �

We note that the assumption Ker(α) ⊆ Z(G) of the previous lemma cannot
be omitted in general.

Example 2.9. To illustrate this fact, we consider G := A5 × Z2, the direct
product of the alternating group of degree 5 and the cyclic group of order 2. Let
() denote the identity of A5. Then we have Z(G) = {()} × Z2, and G/Z(G) is
centerless.

The function α : G → G defined by α((x, 0)) := ((), 0) and α((x, 1)) :=
((1, 2), 0) for x ∈ A5 is an endomorphism of G with Ker(α) = A5×{0}. We have
Ker(α) 6⊆ Z(G), and Z(G) is not invariant under α.

Unlike the center of a group with property (C), a normal subgroup N that
satisfies (C.1) and (C.2) in G is invariant under all endomorphisms of G.

Lemma 2.10. Let G be a group, and let N be a normal subgroup of G such
that N satisfies (C.1) and (C.2) in G. Then N is fully-invariant.

This lemma yields in particular that for every endomorphism α of G, the
induced function

ᾱ : G/N → G/N, xN 7→ α(x)N,

is a well-defined endomorphism of G/N .

Proof of Lemma 2.10: Let α be an endomorphism of G. We will prove

(2.13) α(N) ⊆ N.
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Let Z := Z(G). By (C.2), we have either Ker(α) ⊆ Z or N ⊆ Ker(α).
Since (2.13) is obvious for the latter case, it only remains to be proved under
the assumption Ker(α) ⊆ Z. First we show

(2.14) α(N) ⊆ NZ ∩ α(G).

Since N satisfies (C.2) in G, the homomorphism theorem yields that every normal
subgroup of α(G) is either contained in α(Z) or contains α(N). Obviously NZ ∩
α(G) is normal in α(G). Hence we have NZ ∩ α(G) ⊆ α(Z) or (2.14). Seeking

a contradiction, we suppose the former. From |G| ≥ |NZα(G)| = |NZ|·|α(G)|
|NZ∩α(G)| we

obtain |NZ ∩ α(G)| ≥ |NZ|
|Ker(α)| . By Ker(α) ⊆ NZ, we then have

|α(NZ)| ≤ |NZ ∩ α(G)|.
Together with our assumption NZ ∩ α(G) ⊆ α(Z), this yields |α(NZ)| ≤ |α(Z)|
and consequently |NZ| ≤ |Z|. Finally, we obtain N ⊆ Z, which contradicts
(C.1), namely, N ′ 6= {1}. Thus (2.14) is proved.

Now, α(N) ⊆ NZ yields α(N ′) ⊆ N ′. By (C.1), we have N ′ = N . This
completes the proof of (2.13) and of the lemma. �

4. Size of I(G)

The description of polynomial functions in Lemma 2.1 yields a formula for
|I(G)| for groups G that have property (C).

Theorem 2.11. Let G be a finite group, let Z := Z(G) be its center, and let
N be a normal subgroup of G that satisfies (C.1) and (C.2) in G. Let λ(G/N) be
the Scott-length of G/N . Then we have

|I(G)| = |I(G/N)| · exp(Z)

gcd(exp(Z), λ(G/N))
· |N ||G:Z|−1.

We will state corollaries of this result for G/N abelian in Chapter 3, Section 2.
For the proof of Theorem 2.11, we first determine the size of the Noetherian

quotient
(N : G)I(G) := {f ∈ I(G) | f(G) ⊆ N}.

Lemma 2.12 ([AM03, cf. Lemma 5.2]). Let G be a finite group, let Z :=
Z(G), and let N be a normal subgroup of G that satisfies (C.1) and (C.2) in G.
Let λ := λ(G/N). Then we have

|(N : G)I(G)| =
exp(Z)

gcd(exp(Z), λ)
· |N ||G:Z|−1.

Proof: Let k := |G : Z|, and let 1 = t0, t1, t2, . . . , tk−1 be a transversal for
the cosets of Z in G. Let

(2.15) B := {b : Z → Z, x 7→ xλµ |µ ∈ N0},
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By Lemma 2.1, (1) ⇒ (2), we may define the mapping

Φ : (N : G)I(G) −→ B ×Nk−1

p 7−→
(
p|Z , p(t1), . . . , p(tk−1)

) .

Let p ∈ (N : G)I(G). Since we have

p(gz) = p(g) · p(z) for all g ∈ G, z ∈ Z,

the function p is uniquely determined by p|Z and p(t1), . . . , p(tk−1). Thus Φ is
injective. That Φ is surjective follows from Lemma 2.1, (2) ⇒ (1). Hence Φ is
bijective and

(2.16) |(N : G)I(G)| = |B| · |N |k−1.

It remains to compute the size of the set B defined in (2.15). We know that for
all natural numbers r, s, the set {0, 1, . . . , r − 1} contains r

gcd(r,s)
multiples of s.

Setting r := exp(Z) and s := λ(G/N), we obtain

(2.17) |B| = exp(Z)

gcd
(
exp(Z), λ(G/N)

) .

The result follows (2.16) and (2.17). �

Proof of Theorem 2.11: By Lemma 1.5, we have

|I(G)| = |I(G/N)| · |(N : G)I(G)|.

Hence the result follows immediately from Lemma 2.12. �

5. Polynomial automorphisms

Based on Lemma 2.1, we give a criterion to decide whether I(G) = A(G)
for certain groups with property (C). In Section 3 of Chapter 3, we will obtain
several variations of this result.

First we note that, by Lemma 2.10, a normal subgroup N of G that satisfies
(C.1) and (C.2) in G is fully-invariant. Hence each endomorphism α of G induces
an endomorphism ᾱ on G/N defined by

ᾱ : G/N → G/N, xN 7→ α(x)N.

Theorem 2.13. Let G be a finite group, let Z := Z(G), and let N be a
normal subgroup of G that satisfies (C.1) and (C.2) in G. We assume that
gcd(λ(G/N), exp(Z)) = exp(Z/(N ∩ Z)). Then the following are equivalent:

(1) I(G) = A(G);
(2) All subgroups of Z are characteristic, and for all automorphisms α of G,

we have that ᾱ, induced by α on G/N , is in I(G/N).
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We note that in general I(G) = A(G) does not imply I(G/N) = A(G/N).
There may be automorphisms of the factor G/N that are not induced by auto-
morphisms of G. For instance, let G := U(2, 52) · {a ∗ 12 | a ∈ GF(52)∗} (see
Appendix A, Section 6, for the definition and the structure of unitary groups).
Then N := G′ satisfies (C.1) and (C.2) in G, and G/N is not cyclic. Hence not
all automorphisms of the abelian group G/N are polynomial functions. Still we
have I(G) = A(G) by Corollary 4.17.

For the proof of Theorem 2.13, we establish the following auxiliary result.

Lemma 2.14. Let G be a finite group, let Z := Z(G), and let N be a
normal subgroup of G that satisfies (C.1) and (C.2) in G. We assume that
gcd(λ(G/N), exp(Z)) = exp(Z/(N ∩ Z)). Let α be an endomorphism of G that
satisfies the following properties:

(1) α(K) ⊆ K for all subgroups K of Z;
(2) ᾱ, induced by α on G/N , is in I(G/N).

Then we have α ∈ I(G).

Proof: We will prove α ∈ I(G) by using our description of polynomial func-
tions in Lemma 2.1.

By assumption (1), all subgroups of Z are invariant under α. Therefore, by
Lemma 1.10, we have a ∈ Z such that

α(z) = za for all z ∈ Z.

By assumption (2), we have k ∈ N0 and a1, . . . , ak ∈ G such that

α(x) ·N =
k∏

i=1

xai ·N for all x ∈ G.

We define the function f ∈ E(G) by

f(x) = (
k∏

i=1

xai)−1 · α(x) for all x ∈ G.

Then f maps G into N , and we have

f(z) = za−k for all z ∈ Z.

Since f(Z) ⊆ N ∩ Z, this yields that exp(Z/(N ∩ Z)) divides a − k. Let λ :=
λ(G/N) be the Scott-length of G/N . By the assumption that gcd(λ, exp(Z)) =
exp(Z/(N ∩ Z)), we can find µ ∈ Z such that

µ · λ ≡ a− k mod exp(Z).
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Now we have f(z) = zµλ for all z ∈ Z. For g ∈ G and z ∈ Z, we compute

f(gz) = (
k∏

i=1

(gz)ai)−1 · α(gz) = (
k∏

i=1

gai)−1 · α(g) · z−k · α(z) = f(g) · f(z).

Therefore Lemma 2.1, (2) ⇒ (1), yields that f is a polynomial function. This
implies that α is polynomial. The lemma is proved. �

Proof of Theorem 2.13: The implication (1) ⇒ (2) is obviously true for
each group G and each normal subgroup N of G.

For the converse, we assume that G satisfies the hypothesis of Theorem 2.13
and (2). Then Lemma 2.14 yields that all automorphisms of G are polynomial
functions. Thus we have I(G) = A(G). �

We obtain the conclusion of Theorem 2.13 also for some groups where
gcd(λ(G/N), exp(Z)) is slightly bigger than exp(Z/(N ∩ Z)).

Theorem 2.15. Let G be a finite group, let Z := Z(G) and let N be a
normal subgroup of G that satisfies (C.1) and (C.2) in G. We assume that
gcd(λ(G/N), exp(Z)) = 2 · exp(Z/(N ∩ Z)) and that exp(Z/(N ∩ Z)) is odd.
Then the following are equivalent:

(1) I(G) = A(G);
(2) All subgroups of Z are characteristic, and for all automorphisms α of G,

we have that ᾱ, induced by α on G/N , is in I(G/N).

Proof: Let G, N and Z satisfy the hypotheses. Obviously we have (1) ⇒ (2).
It suffices to prove the converse. Let α be an automorphism of G such that
α(K) = K for all normal subgroups K of Z and ᾱ ∈ I(G/N). We will show
α ∈ I(G) by a modification of the proof of Lemma 2.14.

By Lemma 1.10, we have a ∈ Z such that

α(z) = za for all z ∈ Z.

We note that a is odd because α is bijective on Z and |Z| is even by assumption.
Since ᾱ ∈ I(G/N), we have k ∈ N0 and a1, . . . , ak ∈ G such that

α(x) ·N =
k∏

i=1

xai ·N for all x ∈ G.

Since ᾱ is bijective on G/N and |G : N | is even by assumption, Proposition 1.2
yields that k is odd. The function f ∈ E(G) that is defined by

f(x) = (
k∏

i=1

xai)−1 · α(x) for all x ∈ G

maps G into N , and we have

(2.18) f(z) = za−k for all z ∈ Z.
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Let λ := λ(G/N) be the Scott-length of G/N . By assumption, we have
gcd(λ, exp(Z)) = 2 · exp(Z/(N ∩ Z)). Since f(Z) ⊆ N ∩ Z, (2.18) yields that
a− k is a multiple of exp(Z/(N ∩Z)). Moreover, since both a and k are odd and
since exp(Z/(N ∩ Z)) is odd by assumption, we have that 2 · exp(Z/(N ∩ Z))
divides a− k. Thus there is µ ∈ Z such that

µ · λ ≡ a− k mod exp(Z).

Now we have f(z) = zµλ for all z ∈ Z. Since, by definition, f is a product of
endomorphisms of G which fix the center Z of G, we have

f(gz) = f(g) · f(z) for all g ∈ G, z ∈ Z.

Hence f is a polynomial function by Lemma 2.1, (2) ⇒ (1). Thus we have
α ∈ I(G), and (2) ⇒ (1) of the theorem is proved. �

6. Polynomial endomorphisms

Similar to our description of when all automorphisms of a group are polyno-
mial functions in the previous section, we now give a criterion to decide whether
I(G) = E(G) for certain groups with property (C). In Chapter 3, Section 4, we
will obtain some corollaries of this result.

Theorem 2.16. Let G be a finite group, let Z := Z(G), and let N be a
normal subgroup of G that satisfies (C.1) and (C.2) in G. We assume that
gcd(λ(G/N), exp(Z)) = exp(Z/(N ∩ Z)). Then the following are equivalent:

(1) I(G) = E(G);
(2) All subgroups of Z are fully-invariant, and for all endomorphisms α of

G, we have that ᾱ, induced by α on G/N , is in I(G/N).

Proof: The implication (1) ⇒ (2) is obviously true for any group G and any
normal subgroup N of G.

For the converse, we assume that G satisfies the hypothesis of Theorem 2.16
and (2). Then Lemma 2.14 yields that all endomorphisms of G are polynomial
functions. Thus we have I(G) = E(G). �

All groups with property (C) such that I(G) = E(G) that we know of satisfy
I(G/N) = E(G/N). Still we cannot find a reason why this should be true in
general. Even if I(G) = E(G), there may be endomorphisms of the factor G/N
that are not induced by endomorphisms of G.

The assumption gcd(λ(G/N), exp(Z)) = exp(Z/(N ∩ Z)) of Theorem 2.16
might seem a bit artificial. We recall that by Proposition 1.11, which holds re-
gardless of whether G has property (C) or not, this condition is actually necessary
for I(G) = E(G) if N has a complement in G.



30 2. POLYNOMIAL FUNCTIONS ON CERTAIN NON-SOLVABLE GROUPS

By combining Theorem 2.16 and Proposition 1.11, we are now able to char-
acterize when I(G) = E(G) for groups G that split over a normal subgroup N
that satisfies (C.1) and (C.2) in G.

Theorem 2.17. Let G be a finite group, let Z := Z(G), and let N be a
normal subgroup of G that satisfies (C.1) and (C.2) in G. We assume that N has
a complement in G. Then we have I(G) = E(G) if and only if the following are
satisfied:

(1) I(G/N) = E(G/N);
(2) All subgroups of Z are fully-invariant;
(3) gcd(λ(G/N), exp(Z)) = exp(Z/(N ∩ Z)).

Proof: Let G be a group that satisfies the hypothesis. First we assume that
G satisfies (1), (2), and (3) of the theorem. Then Theorem 2.16, (2) ⇒ (1), yields
I(G) = E(G).

For proving the converse, we assume I(G) = E(G). Then (1) and (3) follow
from Proposition 1.11, and (2) is obvious. �

7. Endomorphisms into the center

Although simple, the following observation on endomorphisms into the center
of a group will help us when dealing with orthogonal groups in Chapter 4.

Lemma 2.18. Let G be a finite group, and let N be a normal subgroup of G
that satisfies (C.1) and (C.2) in G. We assume that λ(G/G′) is square-free and
that Z(G) is cyclic. Let α be an endomorphism from G into Z(G)∩N . Then we
have α ∈ I(G).

Proof: Let λ := λ(G/N). Let Z := Z(G), and let z be a generator of Z. We
have an integer a such that α(z) = za. By Lemma 2.1, (1) ⇒ (2), it suffices to
show that gcd(λ, |Z|) divides a.

By G′ ⊆ Ker(α) and |α(Z)| = |Z/(Z ∩Ker(α))|, we have that |α(Z)| divides
|Z|/|Z ∩ G′|. Hence |Z ∩ G′| divides a. Since N ⊆ G′, we have α(Z) ∈ Z ∩ G′.
Then |Z : (Z ∩ G′)| divides a. Thus a is a multiple of gcd(λ, |Z ∩ G′|) and
a multiple of gcd(λ, |Z : (Z ∩ G′)|). Since λ is square-free by assumption, we
have gcd(λ, s) · gcd(λ, t) = gcd(λ, st) for all s, t ∈ Z. In particular, we have
gcd(λ, |Z|) = gcd(λ, |Z ∩G′|) · gcd(λ, |Z : (Z ∩G′)|). Thus gcd(λ, |Z|) divides a.
Lemma 2.1, (1) ⇒ (2), yields α ∈ I(G). �



CHAPTER 3

Consequences for groups with property (A)

We consider groups G with center Z such that (G′Z)/Z is non-abelian and the
unique minimal normal subgroup of G/Z. Additionally we assume that G′′ = G′.
Since these groups have property (C) by Lemma 2.2, (7) ⇒ (1), we may apply the
characterization of polynomial functions in Lemma 2.1 of the previous chapter.
First we investigate the structure of these groups.

1. A description of groups with property (A)

As in [AM03], we define a class of groups that is included in the class of
groups with property (C). We say that a group G has property (A) if it satisfies
the conditions (A.1), (A.2), and (A.3) that are given by

(A.1) G′ ∩ Z(G) ≺G G′;
(A.2) G′ = G′′;
(A.3) G/Z(G) is centerless.

From Chapter 2, Section 2, we recall that G has property (C) if and only if G
has a normal subgroup N such that the following conditions are satisfied:

(C.1) N 6= {1} and N ′ = N ;
(C.2) For all normal subgroups K of N we have K ⊆ Z(G) or N ⊆ K.

By comparing (A.1), (A.2), and (A.3) with the conditions in Lemma 2.2 (4) for
N := G′, it becomes apparent that (A) implies (C). The relation between (A)
and (C) is made explicit in Lemma (3.1).

Obviously, all non-abelian simple groups and all quasisimple groups have
property (A). We also note that all non-solvable finite general linear groups
have (A) (see Chapter 4 and Appendix A). Certain quotients of non-solvable
finite semi-linear groups provide examples of groups that have (C) but not (A).
We will investigate such groups in Theorem 4.11.

Lemma 3.1. Let G be a finite group, and let Z := Z(G). Then the following
are equivalent:

(1) G has property (A);
(2) G′ satisfies (C.1) and (C.2) in G;
(3) G has a normal subgroup N that satisfies (C.1) and (C.2) in G such that

G/N is abelian;

31
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(4) (G′Z)/Z is the unique minimal normal subgroup of G/Z and G′′ = G′.

Proof: (1) ⇒ (2): We assume that G has property (A). Then (A.1) and
(A.2) immediately imply that G′ satisfies (C.1). For (C.2), we let K be a normal
subgroup of G, and we consider X := (K ∩G′)(Z ∩G′). Since Z ∩G′ ⊆ X and
X ⊆ G′, property (A.1) yields that either X = Z ∩G′ or X = G′.

If X = Z ∩G′, then K ∩G′ ⊆ Z ∩G′. Now [K, G] ⊆ K ∩G′ ⊆ Z implies that
(KZ)/Z is central in G/Z. Thus KZ = Z by (A.3) and K ⊆ Z.

If X = G′, then (A.2) yields G′ = G′′ = ((K ∩ G′)(Z ∩ G′))′ = (K ∩ G′)′ ⊆
K ∩G′. Thus we have G′ ⊆ K, which completes the proof of condition (C.2).

(2) ⇒ (3) is obvious.
(3) ⇒ (4): We assume that G and N satisfy (3). By (C.1), we have G′ 6⊆ Z.

Hence (C.2) yields N ⊆ G′. Since G/N is abelian, we have G′ ⊆ N . Thus
N = G′. Now Lemma 2.2, (1) ⇒ (5), yields that (G′Z)/Z is non-abelian and the
unique minimal normal subgroup of G/Z, and that G′′ = G′.

(4) ⇒ (1): We assume that (G′Z)/Z is the unique minimal normal subgroup
of G/Z and that G′ = G′′. Then we have (A.2). By the homomorphism theorem,
G′/(G′∩Z) is a minimal normal subgroup in G/(G′∩Z). Hence (A.1) is satisfied.
(A.3) is immediate from the assumption that G/Z has a non-abelian unique
minimal normal subgroup. �

We restate parts of Lemma 2.3 and Lemma 2.5 for groups with property (A).

Lemma 3.2. Let G be a group with property (A), and let Y be a subgroup of
Z(G). Then we have:

(1) (G/Y )′ = (G′Y )/Y and Z(G/Y ) = Z(G)/Y ;
(2) G/Y has property (A).

Proof: This is an immediate consequence of Lemma 3.1 and Lemma 2.3,
(1) ⇒ (2). �

We note that only the implication (1) ⇒ (2) of Lemma 2.3 can be adapted to
groups with property (A). Let G be a finite group, and let Y be a subgroup of
Z(G). We assume Z(G/Y ) = Z(G)/Y and that G/Y has property (A). Then
Lemma 2.3, (2) ⇒ (1), yields that G has property (C). However, in general, G
does not have property (A).

Lemma 3.3. Let G be a group with property (A) such that (G′ · Z(G))/Z(G)
is simple. Let H be a subgroup of G with G′ ⊆ H. Then we have:

(1) H ′ = G′ and Z(H) = Z(G) ∩H;
(2) All normal subgroups of H are normal in G;
(3) H has property (A).

Proof: Let G and H satisfy the hypotheses. Then G′′ ⊆ H ′ ⊆ G′ and the
assumption G′′ = G′ yield H ′ = G′. We note that, by Lemma 3.1, (1) ⇒ (2),
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N := G′ satisfies (C.1) and (C.2) in G. By Lemma 2.5 (1), we have Z(H) =
Z(G) ∩H. Item (1) of the lemma is proved.

Lemma 2.5 (2) yields:

(3.1) For all normal subgroups K of H we have K ⊆ Z(H) or G′ ⊆ K.

Hence all normal subgroups of H are central in G or contain the derived subgroup
of G. Thus we have (2).

By (3.1) and H ′ = G′, we have that H ′ satisfies (C.1) and (C.2) in H. Hence
Lemma 3.1, (2) ⇒ (1), yields (3). The proof is complete. �

Without making further use of this fact, we note that for groups that satisfy
the assumptions of Lemma 3.3 all subnormal subgroups are normal.

2. Size of I(G)

The next result is an application of Theorem 2.11 to groups with property (A).

Theorem 3.4 ([AM03, Theorem 2.1]). Let G be a finite group with prop-
erty (A). Then we have

(3.2) |I(G)| = |G′||G:Z(G)|−1 · lcm(exp(G/G′), exp(Z(G))).

Proof: Let G be a finite group with property (A). Then G′ satisfies (C.1) and
(C.2) in G by Lemma 3.1. Since G/G′ is abelian, we have λ(G/G′) = exp(G/G′)
and |I(G/G′)| = exp(G/G′). Lemma 2.12 yields

|(G′ : G)I(G)| =
exp(Z(G))

gcd
(
exp(Z(G)), exp(G/G′)

) · |G′||G:Z(G)|−1.

Now (3.2) follows from |I(G)| = |(G′ : G)I(G)| · |I(G/G′)| (see Lemma 1.5). �

For central extensions by simple, non-abelian groups, and in particular for
quasisimple groups, Theorem 3.4 specializes as follows.

Corollary 3.5 (cf. [ST99, Theorem 4.9]). Let G be a finite group such that
G/Z(G) is simple and non-abelian. Then the size of I(G) is given by

|I(G)| = |G′||G:Z(G)|−1 · exp(Z(G)).

Proof: Let Z := Z(G). By hypothesis, we have (G/Z)′ = G/Z, which yields

(3.3) G′Z = G.

From this, we obtain G′′ = G′. Thus G has property (A) by Lemma 3.1, (4)⇒ (1).
Since (G′Z)/G′ is isomorphic to Z/(G′ ∩ Z), equation (3.3) yields that G/G′

is isomorphic to Z/(G′ ∩ Z). Hence exp(G/G′) divides exp(Z). Now
lcm(exp(G/G′), exp(Z)) = exp(Z), and the result follows from Theorem 3.4. �
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3. Polynomial automorphisms

The description of polynomial functions in Lemma 2.1 allows to prove the
following facts about the automorphism near-ring of certain groups (cf. Theo-
rem 2.13).

Theorem 3.6. Let G be a finite group with property (A). We let Z := Z(G),
and we assume gcd(exp(G/G′), exp(Z)) = exp(Z/(G′ ∩ Z)). Then the following
are equivalent:

(1) I(G) = A(G);
(2) All normal subgroups of G are characteristic.

We give two proofs of Theorem 3.6. In the first we will derive Theorem 3.6
from Theorem 2.13 by Lemma 3.7. The second uses Lemma 3.8, an observation
concerning polynomial endomorphisms, which seems to be interesting in its own.

Lemma 3.7. Let G be a finite group with property (A), and let α be an endo-
morphism of G. Then the following are equivalent:

(1) All subgroups K of G with G′ ⊆ K are fixed by α;
(2) ᾱ, induced by α on G/G′, is in I(G/G′).

Proof: We note that

ᾱ : G/G′ → G/G′, xG′ 7→ α(x)G′,

that is induced by the endomorphism α on G/G′, is well-defined since G′ is fully-
invariant.

First we assume (1). Then all subgroups of the abelian group G/G′ are
invariant under ᾱ. By Lemma 1.10, there exists an integer a such that ᾱ(x̄) = x̄a

for all x̄ ∈ G/G′. Hence we have ᾱ ∈ I(G/G′), and (2) is proved.
For proving (2) ⇒ (1), we note that ᾱ ∈ I(G/G′) yields that all subgroups of

G/G′ are fixed by ᾱ. Hence the homomorphism theorem yields (1). �

Proof of Theorem 3.6, variant 1: Let G satisfy the hypothesis of the
theorem. Then G′ satisfies (C.1) and (C.2) in G by Lemma 3.1. Lemma 3.7 yields
that all normal subgroups of G are characteristic if and only if all subgroups of
Z(G) are characteristic and all automorphisms of G induce polynomial functions
on G/G′. Hence condition (2) of the theorem is equivalent to condition (2) of
Theorem 2.13. Thus Theorem 2.13 yields the result. �

By Lemma 1.10, the endomorphisms which fix all (normal) subgroups of
an abelian group are polynomial functions. The following lemma represents an
equivalent result for certain groups with property (A).
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Lemma 3.8. Let G be a finite group with property (A), and let Z := Z(G).
We assume that gcd(exp(G/G′), exp(Z)) = exp(Z/(G′ ∩ Z)). Let α be an endo-
morphism of G such that α(K) ⊆ K for all normal subgroups K of G. Then we
have α ∈ I(G).

Proof: We will prove α ∈ I(G) by using Lemma 2.14. First we verify that
the assumptions of this lemma are satisfied. By Lemma 3.1, N := G′ satisfies
(C.1) and (C.2) in G. The group G/N is abelian and has Scott-length λ(G/N) =
exp(G/N). Let Z := Z(G). Then we have gcd(λ(G/N), exp(Z)) = exp(Z/(N ∩
Z)) by hypothesis. By assumption, all subgroups of Z are invariant under α. It
remains to be shown that

ᾱ : G/N → G/N, xN 7→ α(x)N

is in I(G/N). This follows from Lemma 3.7, (1) ⇒ (2), or from Lemma 1.10. We
may apply Lemma 2.14, which yields α ∈ I(G). The result is proved. �

Proof of Theorem 3.6, variant 2: By Proposition 1.9, I(G) = A(G)
implies that all normal subgroups of G are characteristic. For the converse, we
assume that all normal subgroups of G are characteristic. Then Lemma 3.8
yields that all automorphisms of G are polynomial functions. Thus we have
I(G) = A(G), and the theorem is proved. �

The following corollary of Theorem 3.6 uses slightly stronger assumptions.

Corollary 3.9. Let G be a finite group with property (A). We assume that
|G : (G′ · Z(G))| and |G′ ∩ Z(G)| are relatively prime. Then the following are
equivalent:

(1) I(G) = A(G);
(2) All normal subgroups of G are characteristic.

Proof: Let G and Z := Z(G) satisfy the assumptions. We will prove

(3.4) gcd(exp(G/G′), exp(Z)) = exp(Z/(G′ ∩ Z)).

Since (G′Z)/G′ is isomorphic to Z/(G′ ∩ Z), we have that exp(Z/(G′ ∩ Z)) di-
vides gcd(exp(G/G′), exp(Z)). We also note that gcd(exp(G/G′), exp(Z)) di-
vides exp(Z/(G′ ∩ Z)) · gcd(exp(G/(G′Z)), exp(G′ ∩ Z)). Hence the hypoth-
esis gcd(|G : G′Z|, |G′ ∩ Z|) = 1 yields that gcd(exp(G/G′), exp(Z)) divides
exp(Z/(G′ ∩ Z)). Thus we have (3.4). Theorem 3.6 yields the result. �

For groups whose center and quotient by the derived subgroup are cyclic,
Corollary 3.9 yields the following.

Corollary 3.10 ([AM03, Theorem 3.1]). Let G be a finite group with prop-
erty (A), and let Z := Z(G). We assume that the following conditions are satis-
fied:
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(1) G/G′ is cyclic,
(2) Z is cyclic,
(3) gcd(|G : G′Z|, |G′ ∩ Z|) = 1.

Then we have I(G) = A(G).

Proof: Let G be a group satisfying the assumptions. Since Z and G/G′ are
cyclic, all normal subgroups of G are characteristic. Now (2)⇒ (1) of Theorem 3.6
yields I(G) = A(G). �

Theorem 3.6 applies to central extensions of cyclic groups by simple, non-
abelian groups; in particular, it applies to quasisimple groups with cyclic center
(cf. Theorem 4.22).

Corollary 3.11 ([AM03, Corollary 3.2]). Let G be a finite group such that
G/Z(G) is simple and non-abelian, and such that Z(G) is cyclic. Then we have
I(G) = A(G).

Proof: As in the proof of Corollary 3.5, we obtain that G has property (A),
and that G′Z = G. Now the result follows from Corollary 3.10. �

As we have done for groups with property (C) (cf. Theorems 2.13, 2.15), we
can slightly modify the assumptions of Theorem 3.6 and still obtain the same
conclusion.

Theorem 3.12. Let G be a finite group with property (A), and let Z :=
Z(G). We assume that gcd(exp(G/G′), exp(Z)) = 2 · exp(Z/(G′ ∩ Z)) and that
exp(Z/(G′ ∩ Z)) is odd. Then the following are equivalent:

(1) I(G) = A(G);
(2) All normal subgroups of G are characteristic.

Proof: The result follows from Theorem 2.15 by the same argumentation as
in the first proof that we gave for Theorem 3.6. �

We now consider groups where the center or the quotient by the derived
subgroup is an elementary abelian 2-group.

Corollary 3.13. Let G be a finite group with property (A). We assume that
exp(G/G′) = 2 or exp(Z(G)) = 2. Then the following are equivalent:

(1) I(G) = A(G);
(2) All normal subgroups of G are characteristic.

Proof: Let G and Z := Z(G) satisfy the hypothesis. The implication
(1) ⇒ (2) is obvious. By Lemma 3.8, it remains to prove (2) ⇒ (1) under
the assumption that gcd(exp(G/G′), exp(Z)) = 2 and exp(Z/(G′ ∩ Z)) = 1. For
this case, Theorem 3.12, (2) ⇒ (1) yields the result. �

The following corollary will be applied to orthogonal groups in Theorem 4.25
and to non-solvable Frobenius complements in Theorem 5.18.
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Corollary 3.14. Let G be a finite group with property (A). We assume that
one of the following two conditions is satisfied:

(1) |Z(G)| = 2 and G/G′ is cyclic;
(2) Z(G) is cyclic and |G/G′| = 2.

Then we have I(G) = A(G).

Proof: Let G satisfy the assumptions. Since Z(G) and G/G′ are cyclic, all
normal subgroups of G are characteristic. Now (2) ⇒ (1) of Corollary 3.13 yields
I(G) = A(G). �

The next result will come handy when we deal with classical linear groups in
the following chapter (see Theorems 4.7, 4.22).

Proposition 3.15. Let A be a finite group, and let G be a normal subgroup
of A such that the following are satisfied:

(1) G has property (A);
(2) G/G′ is cyclic, and Z(G) is cyclic;
(3) |A/CA(G′)| = |Aut ((G′ · CA(G′)/CA(G′))|.

We assume that the function ϕa : G → G, x 7→ xa, is in I(G) for all a ∈ A.
Then we have I(G/Y ) = A(G/Y ) for all subgroups Y of Z(G).

Proof: The result will follow from Lemma 1.16 together with Lemma 3.23.
We let N := G′ and C := CA(G′). First we let K be a normal subgroup of A,
and we show:

(3.5) If [N, K] ⊆ C, then K ⊆ C.

We assume [N, K] ⊆ C. Hence [K, N, N ] and [N, K, N ] are trivial. By the
Three Subgroup Lemma (see [Rob96, p.122, 5.1.10]) the commutator [N, N, K]
is trivial as well. By hypothesis (1), we have N ′ = N . This yields [N, K] =
[N ′, K] = [N, N, K] = {1}. Hence K centralizes N , and (3.5) is proved.

Let Y be a subgroup of Z(G). We will now prove that Â := A/Y , Ĝ := G/Y ,

and N̂ := (NC)/Y satisfy the assumptions of Lemma 1.16. Let Ĉ := C/Y .

From (3.5) we obtain CÂ(N̂) = Ĉ. Moreover, for Ā := Â/Ĉ and N̄ := N̂/Ĉ,
we have that CĀ(N̄) is trivial. The homomorphism theorem and hypothesis (3)
yield |Ā| = |Aut N̄ |. Thus each automorphism of N̄ is induced by conjugation
by an element of Ā.

We note that Z(G) = C ∩ G by the hypothesis that G has property (A).

Lemma 3.2 yields Z(Ĝ) = Ĉ ∩ Ĝ. Thus all assumptions of Lemma 1.16 are

satisfied for Â, N̂ , and Ĝ.
Let α be an automorphism of Ĝ. We will prove

(3.6) α ∈ I(Ĝ).
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Since N̂ is the derived subgroup of Ĝ, we have α(N̂) ⊆ N̂ . By Lemma 1.16, we

have an element a ∈ A and an endomorphism ρ from Ĝ into Z(Ĝ) such that

(3.7) α(x̂) = ρ(x̂) · x̂â for all x ∈ G.

Here and until the end of the proof, we use the convention that ŷ denotes yY for
all y ∈ A. By hypothesis, we have k ∈ N0 and g1, . . . , gk ∈ G such that

xa =
k∏

i=1

xgi for all x ∈ G.

When we consider this equation modulo C, it is clear that ϕâ : Ĝ → Ĝ, x̂ 7→ x̂â,
is in I(Ĝ).

Lemma 3.2 yields that Ĝ has property (A). By hypothesis (2), we obtain that

Z(Ĝ) and Ĝ/Ĝ′ are cyclic. Hence ρ is in I(Ĝ) by Lemma 3.23. Now (3.6) follows

from (3.7). Thus I(Ĝ) = A(Ĝ) is proved. �

4. Polynomial endomorphisms

We restate Theorem 2.16 for groups with property (A).

Theorem 3.16. Let G be a finite group with property (A), and let Z := Z(G).
We assume that gcd(exp(G/G′), exp(Z)) = exp(Z/(G′ ∩Z)). Then the following
are equivalent:

(1) I(G) = E(G);
(2) All normal subgroups of G are fully-invariant.

Theorem 3.16 could be derived directly from Theorem 2.16. Instead of us-
ing this approach, we give an argumentation that follows the second proof of
Theorem 3.6.

Proof: By Proposition 1.9, we have (1) ⇒ (2). For the converse, we assume
that all normal subgroups of G are fully-invariant. Then Lemma 3.8 yields that all
endomorphisms of G are polynomial functions. Thus we have I(G) = E(G). �

Corollary 3.17. Let G be a finite group with property (A). We assume that
|G : (G′ · Z(G))| and |G′ ∩ Z(G)| are relatively prime. Then the following are
equivalent:

(1) I(G) = E(G);
(2) All normal subgroups of G are fully-invariant.

Proof: As in the proof of Corollary 3.9, we obtain gcd(exp(G/G′), exp(Z)) =
exp(Z/(G′ ∩ Z)) for Z := Z(G). Thus the result follows immediately from The-
orem 3.16. �

As in the case of automorphism near-rings, we specialize Theorem 3.16 for
groups whose center and quotient by the derived subgroup are cyclic. We note
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that the normal subgroups of such a group are characteristic but not necessarily
fully-invariant. Hence, in Corollary 3.18, we require the additional condition (3)
on the sizes of the center and the derived subgroup to guarantee that all normal
subgroups are fully-invariant.

Corollary 3.18 ([AM03, Theorem 4.1]). Let G be a finite group with prop-
erty (A) that satisfies the following conditions:

(1) G/G′ is cyclic;
(2) Z(G) is cyclic;
(3) gcd(|G : G′|, |Z(G)|) = 1.

Then we have I(G) = A(G) = E(G).

We should note that all groups G with property (A) such that I(G) = E(G)
that we know of satisfy conditions (1) and (2) in the corollary above (see Chap-
ter 4, in particular Theorems 4.21, 4.22, 4.25, 4.26).

In Example 3.30 at the end of this chapter, we give a group G with prop-
erty (A) such that I(G) = E(G) but G does not satisfy condition (3) in the
corollary above.

Proof of Corollary 3.18: Let G be a group that satisfies the assumptions.
It suffices to show that all normal subgroups of G are fully-invariant. Then
Corollary 3.17, (2) ⇒ (1), yields I(G) = E(G).

Let α be an endomorphism of G. Since G′ is fully-invariant, α induces an
endomorphism ᾱ on G/G′ defined by ᾱ(xG′) = α(x)G′ for all x ∈ G. Then ᾱ
fixes all subgroups of the cyclic group G/G′. By the homomorphism theorem, α
fixes all subgroups containing G′. Thus all normal subgroups of G that contain
G′ are fully-invariant.

Let Z := Z(G). We claim that

(3.8) Z is fully-invariant.

We know that (G′Z)/G′ is isomorphic to Z/(G′ ∩ Z). Since G/G′ and Z have
relatively prime orders by assumption, we have Z ⊆ G′. Let Y := Ker(α). If
Y ⊇ Z, then α(Z) ⊆ Z is obvious. Hence we will assume Y 6⊇ Z. Then Y 6⊇ G′.
Since G′ satisfies (C.1) and (C.2) in G by Lemma 3.1, this yields Y ⊆ Z. By
assumption (A.3), G/Z is centerless. Hence Lemma 2.8 yields α(Z) ⊆ Z. This
completes the proof of (3.8).

Since Z is cyclic, (3.8) implies that all subgroups of Z are fully-invariant in
G. Finally, by (C.2), we have that all normal subgroups of G are fully-invariant.
Now I(G) = E(G) follows from Corollary 3.17. �

We apply the results that we have developed so far to the non-solvable sym-
metric groups. Corollary 3.18 immediately yields

I(Sn) = E(Sn) for all n ≥ 5
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(see [Mel78], [FM81]). From Theorem 3.4 we obtain

|I(Sn)| = 2 · (n!

2
)n!−1 for all n ≥ 5.

For completeness, we mention that |I(S4)| = 235 · 33 and that I(S4) = E(S4)
(see [FM81], [FK95, Example 3]). We also note that |I(S3)| = 54 and that
I(S3) = E(S3) (see Corollaries 5.9, 5.10).

As a further corollary, we obtain a result announced in [STS95, Theorem 12]
(cf. [ST99, Theorem 4.9]). It applies to special linear, special unitary and sym-
plectic groups (see Theorems 4.5, 4.13, Corollary 4.19).

Corollary 3.19. Let G be a finite quasisimple group with cyclic center.
Then we have I(G) = A(G) = E(G).

Proof: We have G = G′. Corollary 3.18 yields the result. �

The conditions given in Corollary 3.18 are sufficient but not necessary for
I(G) = E(G) (see Example 3.30). However, for certain groups with property (A)
we have the following characterization of when all endomorphisms are polynomial
functions (cf. Theorem 2.17). We will use this result when investigating classical
linear groups in the next chapter (see Theorems 4.5, 4.13, 4.25).

Theorem 3.20. Let G be a finite group with property (A). We assume that G′

has a complement H in G such that Z(G)∩H = {1}. Then we have I(G) = E(G)
if and only if G satisfies the following conditions:

(1) G/G′ is cyclic;
(2) All subgroups of Z(G) are fully-invariant;
(3) gcd(|G : G′|, |Z(G)|) = 1.

Proof: Let G be a group that satisfies the hypothesis. First we assume that
G satisfies the conditions (1), (2), and (3) of the theorem. By the same argument
as in the proof of Corollary 3.18, we find that all normal subgroups of G that
contain G′ are fully-invariant. Since all subgroups of Z(G) are fully-invariant
by assumption, we then have that all normal subgroups of G are fully-invariant.
Thus Theorem 3.16, (2) ⇒ (1), yields I(G) = E(G).

For proving the converse, we assume I(G) = E(G). Let Z := Z(G), and let
H be a complement for G′ in G. We consider the projection α from G to H
that is defined by α(nh) = h for all n ∈ G′ and h ∈ H. Seeking a contradiction,
we suppose that H is not cyclic. Then there is an endomorphism β of H and
a subgroup U of H such that β(U) 6⊆ U . Now the composition β ◦ α is an
endomorphism of G, and G′U is a normal subgroup of G. By definition, G′U is
not invariant under β ◦ α, which contradicts β ◦ α ∈ I(G). Thus H is cyclic,
and (1) is proved. Item (2) is obvious.
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To prove (3), we let k ∈ N0 and a1, . . . , ak ∈ G such that

(3.9) α(x) =
k∏

i=1

xai for all x ∈ G.

Then we have α(z) = zk for all z ∈ Z. Since α(Z) is contained in Z ∩H, which
is trivial by assumption, this yields that

(3.10) exp(Z) divides k.

Next we consider the induced endomorphism ᾱ on G/G′ with ᾱ(xG′) = α(x)G′

for all x ∈ G. By the definition of α as projection, we have

ᾱ(xG′) = xG′ for all x ∈ G.

From (3.9) we obtain

ᾱ(xG′) = xkG′ for all x ∈ G.

Thus we have that

exp(G/G′) divides k − 1.

Together with (3.10), this yields gcd(exp(G/G′), exp(Z)) = 1. Hence (3) is
proved. �

The assumptions of the next result describe exactly the situation that occurs
for homomorphic images of linear groups (see Theorems 4.8, 4.18, and 4.22).

Proposition 3.21. Let G be a finite group with property (A), and let Z :=
Z(G). We assume that the following conditions are satisfied:

(1) Z is cyclic;
(2) G′ has a cyclic complement H in G;
(3) H ∩ Z = {1}.

Let Y be a subgroup of Z. Then we have I(G/Y ) = E(G/Y ) if and only if
|Z(G/Y )| and |(G/Y ) : (G/Y )′| are relatively prime.

Proof: The “if”-direction is immediate by the homomorphism theorem and
Corollary 3.18. For proving the converse, we assume I(G/Y ) = E(G/Y ). We will
construct a specific endomorphism ᾱ of G/Y , and we will show that ᾱ ∈ I(G/Y )
implies that |Z(G/Y )| and |(G/Y ) : (G/Y )′| are relatively prime.

Let m := |H|, and let t := |G : G′Y |. Since H is abelian, we have an
endomorphism α from G to H such that

α(nh) = hm/t for all n ∈ G′ and for all h ∈ H.

Then we have

(3.11) Ker(α) = G′Y.
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We now consider the induced endomorphism ᾱ on G/Y defined by

ᾱ(xY ) = α(x)Y for all x ∈ G.

We note that ᾱ is well-defined because Y ⊆ Ker(α). We show

(3.12) Ker(ᾱ) = (G′Y )/Y.

The inclusion “⊇” is obvious by 3.11. For proving “⊆”, let x be in G such that
xY ∈ Ker(ᾱ). Then ᾱ(xY ) = α(x)Y implies α(x) ∈ Y . Since α(G)∩ Y ⊆ H ∩Z
and the latter is trivial by assumption, we have α(x) = 1. Thus x is in Ker(α),
and (3.12) is proved.

By assumption, ᾱ is a polynomial function. We have l ∈ N0 and a1, . . . , al ∈ G
such that

(3.13) ᾱ(x̄) =
l∏

i=1

x̄ai for all x̄ ∈ G/Y,

where we denote aiY by ai. Let s := |Z : Y |. By considering the restriction of ᾱ
to Z(G/Y ), we will now prove

(3.14) l ≡ 0 mod s.

We note that Z(G/Y ) = Z/Y by Lemma 3.2. Since the center of G/Y is invariant
under ᾱ and since ᾱ(G/Y ) ⊆ (HY )/Y , we have

(3.15) ᾱ(Z/Y ) ⊆ (HY )/Y ∩ Z/Y.

By Y ⊆ Z, the modular law yields (HY )∩Z = (H ∩Z)Y . From the assumption
H ∩ Z = {1}, we then obtain (HY ) ∩ Z = Y . Now (3.15) yields that ᾱ(Z/Y ) is
trivial and consequently

(3.16) Z/Y ⊆ Ker(ᾱ).

Hence we have

α(z)Y = Y for all z ∈ Z,

and, by (3.13), we find

α(z)Y = zlY for all z ∈ Z.

Thus (3.14) is proved.
Next we consider the endomorphism induced by ᾱ on (G/Y )/(G/Y )′ to prove

(3.17) l ≡ m

t
mod t.

Let α̂ be the endomorphism of (G/Y )/(G/Y )′ defined by α̂(x̄ · (G/Y )′) = ᾱ(x̄) ·
(G/Y )′ for all x̄ ∈ G/Y . We note that α̂ is well-defined by (3.12). In the
following, let x̂ denote the coset (x · Y ) · (G/Y )′ for x ∈ G. By (3.13), we obtain

α̂(x̂) = x̂l for all x ∈ G.
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By the definition of α, we have

α̂(ĥ) = ĥm/t for all h ∈ H.

Together with ord ĥ = t, this yields (3.17).
By the congruences (3.14) and (3.17), we obtain that

(3.18) gcd(s, t) divides
m

t
.

Hence gcd(s, t) divides gcd(s, m
t
). We will now complete the proof by showing

(3.19) gcd(s,
m

t
) = 1.

First we note that (3.12) and (3.16) yield G′Y = G′Z. Hence we have |Y |
|Y ∩G′| =

|Z|
|Z∩G′| . We obtain |Z|

|Y | = |Z∩G′|
|Y ∩G′| . The former has been defined as s. So we have

s = |(Z ∩G′) : (Y ∩G′)|.

Next m = |G′H : G′| and t = |G′H : G′Y | yield m
t

= |G′Y : G′|. By the
homomorphism theorem, we obtain

m

t
= |Y : (Y ∩G′)|.

We note that (Z ∩ G′)/(Y ∩ G′) and Y/(Y ∩ G′) are subgroups of the cyclic
group Z/(Y ∩ G′) and that their intersection is trivial. Hence the orders of
(Z ∩G′)/(Y ∩G′) and Y/(Y ∩G′) are relatively prime. This yields (3.19), which
together with (3.18) implies gcd(s, t) = 1. The proof is complete. �

5. Endomorphisms into the center

We conclude this chapter with an investigation of endomorphisms into the
center of a group G with property (A). For us, the importance of these endomor-
phisms lies in their connection with the automorphisms of G, which we already
exploited in Proposition 3.15 (see also Lemma 1.16). The main results of this
section are the Propositions 3.26 and 3.28. For their proofs we will need a cou-
ple of technical lemmas. The following Lemma 3.22 will also be used when we
investigate polynomial automorphisms on unitary groups (see Theorem 4.15).

Lemma 3.22. Let G be a finite group with property (A), and let Z := Z(G).
We assume the following:

(1) Z is cyclic;
(2) For all subgroups L of G such that G′ ⊆ L and L/G′ is a cyclic direct

factor in G/G′, we have that gcd(|L : G′|, |Z|) divides |L ∩ Z|.
Let α be an endomorphism from G into Z. Then we have α ∈ I(G).
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Some comments on the hypotheses of the lemma above seem to be in order.
Condition (1) can actually be relaxed a little bit. Our proof (which we postpone
until after the proof of Lemma 3.25) only requires that the Sylow p-subgroup of Z
is cyclic for any prime divisor p of |G : G′|. However, the less technical condition
that Z is cyclic suffices for our applications in the next chapter.

Condition (2) is necessary for the assertion of the lemma. It is even necessary
for I(G) = A(G) as we have seen in Lemma 1.15. Assuming (1), hypothesis (2) is
equivalent to the statement that the uniquely determined subgroup of Z of order
gcd(|L : G′|, |Z|) is contained in L.

Since condition (2) of Lemma 3.22 is trivially fulfilled when G/G′ is cyclic,
we obtain the next lemma as a consequence. See Proposition 4.9 for a curious
application.

Lemma 3.23. Let G be a finite group with property (A) such that Z(G) is
cyclic and G/G′ is cyclic. Let α be an endomorphism from G into Z(G). Then
we have α ∈ I(G).

Proof: Let G be a group that satisfies the assumptions, and let Z := Z(G).
It suffices to show that G satisfies condition (2) of Lemma 3.22. To this end, we
let L be a subgroup of G with G′ ⊆ L, and let d := gcd(|L : G′|, |Z|). We will
prove that

(3.20) d divides |L ∩ Z|.

By assumption, we have a subgroup C of Z with |C| = d. Then the size of
(CG′)/G′ divides d. In particular, |(CG′)/G′| divides |L/G′|. Since G/G′ is cyclic,
we then have (CG′)/G′ ⊆ L/G′. Hence C is contained in L. This yields (3.20).
Now Lemma 3.22 proves the result. �

Before we give the proof of Lemma 3.22, we establish two auxiliary results.
The first one states that an endomorphism with abelian image is a polynomial
function if and only if certain products of this endomorphism are polynomial. We
note that this is true for all finite groups, not just for those with property (A).

Lemma 3.24. Let G be a finite group. For a prime p, let Sp be the subgroup
of G such that G′ ⊆ Sp and Sp/G

′ is the Sylow p-subgroup of G/G′. Let α be an
endomorphism of G with G′ ⊆ Ker(α), and let the function αexp(G/Sp) be defined
by αexp(G/Sp)(x) = α(x)exp(G/Sp) for all x ∈ G.

Then we have α ∈ I(G) if and only if αexp(G/Sp) ∈ I(G) for all primes p.

Proof: If α ∈ I(G), then all powers of α are in I(G). For proving the converse,
let D denote the set of prime divisors of |G : G′|. We assume αexp(G/Sp) ∈ I(G)
for all p ∈ D. For p ∈ D, let rp be an integer such that rp ≡ 1 mod exp(Sp/G

′)
and rp ≡ 0 mod exp(G/Sp). Let x ∈ G be fixed. Then xrp is in Sp. Since G/G′
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is abelian, we have

xG′ =
∏
p∈D

xrpG′.

By the assumption that G′ ⊆ Ker(α), this yields

α(x) =
∏
p∈D

α(xrp).

Since αexp(G/Sp) ∈ I(G) and since exp(G/Sp) divides rp, we have fp ∈ I(G) such
that α(x)rp = fp(x) for all x ∈ G. Hence we obtain

α(x) =
∏
p∈D

fp(x) for all x ∈ G.

Thus we have α ∈ I(G). The lemma is proved. �

Lemma 3.25. Let G be a finite group with property (A), let p be a prime, and
let P be the Sylow p-subgroup of Z(G). We assume the following:

(1) P is cyclic;
(2) For all subgroups L of G such that G′ ⊆ L and L/G′ is a cyclic direct

factor in G/G′, we have that gcd(|L : G′|, |P |) divides |L ∩ P |.
Let α be an endomorphism from G into P . Then we have α ∈ I(G).

Proof: Let G be a group with center Z such that the assumptions are satis-
fied. Let p be a prime divisor of |G : G′|, and let α be an endomorphism from G
into P , the Sylow p-subgroup of Z. If P is in G′, then we have α(G) ⊆ G′ and
Z ⊆ Ker(α). For N := G′, Lemma 2.1, (2) ⇒ (1), yields α ∈ I(G). The result
remains to be proved under the assumption that P 6⊆ G′.

For x ∈ G, we write x̄ := xG′, and for subgroups A of G, we write Ā :=
(AG′)/G′. Let H be the subgroup of G such that G′ ⊆ H and such that H̄ is the
Sylow p-subgroup of Ḡ. Then we have P̄ ⊆ H̄. Let λ := exp(H̄). We note that
λ > 1 by the assumption P 6⊆ G′. We will distinguish the cases exp(H̄/P̄ ) = λ
and exp(H̄/P̄ ) < λ. First we consider the former. We will prove α ∈ I(G) by
using Lemma 2.1 with N := G′. As a first step, we show that

(3.21) λ divides |P ∩G′|.

By assumption, we have a subgroup L of H with G′ ⊆ L such that L̄ is cyclic
and |L̄/(P̄ ∩ L̄)| = λ. Then P̄ intersects L̄ trivially, and we have P ∩ L ⊆ G′.
Hence hypothesis (2) yields

gcd(|L : G′|, |P |) = gcd(|L : G′|, |P ∩G′|).

Since gcd(|L : G′|, |P : (P ∩ G′)|) > 1 by P 6⊆ G′ and L 6= G′, we obtain that
|L : G′| divides |P ∩G′|. Thus (3.21) is proved.
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By (3.21), α(G) is contained in P ∩G′. In particular, we have

α(G) ⊆ G′.

Hence we may apply Lemma 2.1 for f := α, N := G′. Since λ(G/G′) =
exp(G/G′), we have to find µ ∈ Z such that

(3.22) α(z) = zµ·exp(G/G′) for all z ∈ Z.

To this end, let c be a generator of the cyclic group P . Since ord α(c) divides
|P : (P ∩G′)|, there exists an integer ν such that

(3.23) α(c) = cν·|P∩G′|.

Let µ ∈ Z such that

(3.24)
µ · exp(G/G′) ≡ ν · |P ∩G′| mod |P |,
µ · exp(G/G′) ≡ 0 mod |Z : P |.

We note that such an integer µ exists since gcd(exp(G/G′), |P |) divides |P ∩G′|
by (3.21), gcd(exp(G/G′), |Z : P |) obviously divides 0, and |P | and |Z : P | are
relatively prime. By (3.23), we obtain (3.22). We clearly have α(xz) = α(x)α(z)
for all x ∈ G, z ∈ Z. Hence Lemma 2.1, (2) ⇒ (1), yields α ∈ I(G).

Next we assume that exp(H̄/P̄ ) < λ. Our first goal is to obtain a function
f such that f satisfies the assumptions of Lemma 2.1 for N := G′ and such
that f ∈ I(G) yields α ∈ I(G). The definition of such a function in (3.30)
requires some preparation. Let L be a subgroup of H with G′ ⊆ L such that L̄
is cyclic and |L̄| = λ. Then P̄ intersects L̄ non-trivially. As a maximal cyclic
subgroup of the abelian p-group H̄, the group L̄ has a direct complement in H̄
(see [Rob96, p.102, 4.2.7]). Since P̄ intersects this complement trivially, we have
exp(H̄/L̄) < λ. Furthermore hypothesis (2) yields that

(3.25) exp(H̄/L̄) divides |P ∩G′|.

Let ν := exp(L̄/(L̄ ∩ P̄ )), and let q := exp(P̄ /(L̄ ∩ P̄ )). We note that ν ≥ q.
Then we have g ∈ G with 〈ḡ〉 = L̄, and we have a generator c of the cyclic group
P such that

(3.26) ḡν = c̄q.

Let a ∈ Z such that α(g) = ca. We show that

(3.27) q divides a.

It suffices to prove this for q > 1. Since G′ ⊆ L, we have |P : (P ∩L)| = q. Then
hypothesis (2) in the form gcd(|L : G′|, |P |) = gcd(|L : G′|, |P ∩L|) together with
q > 1 yields that |L : G′| divides |P ∩ L|. Hence

(3.28) λ divides
|P |
q

if q > 1.
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Now (3.27) follows since ord ca = |P |
gcd(a,|P |) divides λ.

Since lcm(λ, |P |) and lcm(exp(G/H), exp(Z/P )) are relatively prime, we have
b ∈ Z such that

(3.29)
b ≡ −a

q
· ν mod lcm(λ, |P |),

b ≡ 0 mod lcm(exp(G/H), exp(Z/P )).

We consider the function f ∈ E(G) that is defined by

(3.30) f(x) = xb · α(x) for all x ∈ G.

We will prove f ∈ I(G) by using Lemma 2.1 with N := G′. First we verify
that f satisfies the assumptions of this lemma. As noted above, L̄ has a direct
complement in H̄ and hence in Ḡ. For x ∈ G, we then have i ∈ Z and y ∈ G
such that yexp(Ḡ/L̄) ∈ G′ and x = giy. Modulo G′ we have

f(x) = ḡib · α(gi) · ȳb · α(y).

By ord ḡ = λ and by (3.26), we find

ḡib = ḡ−i a
q
ν = c̄−ia.

Together with α(gi) = cia, this yields

(3.31) f(x) = ȳb · α(y).

As an intermediate result, we will prove that

(3.32) exp(H̄/L̄) divides
a

q
· ν.

Since this is certainly true for exp(H̄/L̄) ≤ ν, we will assume exp(H̄/L̄) > ν in
the following. Then, by (3.25), there exists t ∈ Z such that

(3.33) t · ν = |P ∩G′|.

We recall λ = |P̄ |
q
·ν from the definition of ν and q. Hence we obtain t·λ = |P̄ |

q
·|P∩

G′|, that is, t · λ = |P |
q

. Together with (3.33), this yields |P |
λ·q · ν = |P ∩G′|. Since

|P |
λ

divides a by definition, we then have that |P ∩G′| · q divides aν. Thus (3.25)
yields (3.32).

We proceed to consider (3.31). By (3.29) and (3.32), the exponent of Ḡ/L̄
divides b. Hence we have yb ∈ G′. Since α(y) ∈ Z ∩G′ by (3.25), equation (3.31)

yields f(x) = 1̄. Thus we have f(G) ⊆ G′.
Next we show that f satisfies the first part of condition (2) of Lemma 2.1:

(3.34) There exists µ ∈ Z such that f(z) = zµ·exp(G/G′) for all z ∈ Z.

For z ∈ Z, we have i ∈ Z and y ∈ Z such that yexp(Z/P ) = 1 and z = ciy.
By (3.26), we have n ∈ G′ such that cq = gνn. Since G′ ⊆ Ker(α) and y ∈ Ker(α),
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we obtain

α(z)q = (α(gν) · α(n))i · α(y)q = ciaν .

By (3.29), we have

zbq = cibqybq = c−iaν .

Hence we obtain

(3.35) f(z)q = 1 for all z ∈ Z.

If q = 1, then µ = 0 shows that (3.34) is satisfied. In the following we assume

q > 1. By (3.28), λ divides |P |
q

. Hence, by (3.35), we have an integer r such that

(3.36) f(z) = zr·λ for all z ∈ P.

Let Y be the direct complement of P in Z. We have

(3.37) f(y) = 1 for all y ∈ Y.

Let µ ∈ Z such that

µ · exp(G/G′) ≡ r · λ mod |P |,
µ · exp(G/G′) ≡ 0 mod exp(Z/P ).

We note that such an integer µ exists since gcd(exp(G/G′), |P |) = λ by (3.28),
gcd(exp(G/G′), exp(Z/P )) divides 0, and |P | and exp(Z/P ) are relatively prime.
Since, by definition, f is a product of endomorphisms which map the abelian
group Z into itself, the restriction of f to Z is an endomorphism of Z. Thus (3.36)
and (3.37) together with the definition of µ yields f(z) = zµ·exp(G/G′) for all z ∈ Z.
Hence (3.34) is satisfied.

The second part of condition (2) of Lemma 2.1, that is, f(xz) = f(x) · f(z)
for all x ∈ G, z ∈ Z, is immediate. Now Lemma 2.1, (2) ⇒ (1), yields that f
is a polynomial function. Thus we have α ∈ I(G). The proof of the lemma is
complete. �

We are now prepared to show Lemma 3.22.

Proof of Lemma 3.22: Let G be a group with property (A) and a cyclic
center Z. Let p be a prime divisor of |G : G′|, and let Sp be the subgroup of G
with G′ ⊆ Sp such that Sp/G

′ is the Sylow p-subgroup of G/G′. We assume that
for all subgroups L of Sp such that G′ ⊆ L and such that L/G′ is a cyclic direct
factor in Sp/G

′, we have that gcd(|L : G′|, |P |) divides |L ∩ P |. This assumption
is certainly satisfied under condition (2) of the lemma.

Let α be an endomorphism from G into Z. Then

αexp(G/Sp) : G → Z, x 7→ α(x)exp(G/Sp)

is an endomorphism from G into the Sylow p-subgroup P of Z. By Lemma 3.25,
we have αexp(G/Sp) ∈ I(G). Lemma 3.24 yields α ∈ I(G). The result is proved. �
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We are now able to formulate two more intuitive results. We have to empha-
size however that we depend on the previous lemmas for their proofs.

Proposition 3.26. Let G be a finite group with property (A) and cyclic cen-
ter. Then the following are equivalent:

(1) All endomorphisms from G to Z(G) are in I(G);
(2) All endomorphisms from G to Z(G) induce polynomial functions on

G/G′.

Proof: The implication (1)⇒ (2) is obviously true for all groups. For proving
the converse, we need that G has property (A) and cyclic center. We assume
that (2) of the proposition is satisfied. Then Lemma 1.15 yields that G satisfies
condition (2) of Lemma 3.22. Thus Lemma 3.22 applies to prove (1). �

We will use Proposition 3.26 in the proof of Theorem 4.15. For a group G
with property (A) and cyclic center, it is not true that a single endomorphism
α into the center is in I(G), if its induced endomorphism ᾱ is in I(G/G′). We
illustrate this by the following example.

Example 3.27. See Appendix A, Section 6, for definitions and the structure
of unitary groups. Let w be a primitive element in GF(32). Then the unitary
group U := U(4, 32) is the semidirect product of the special unitary group S :=
SU(4, 32) and the cyclic group that is generated by the diagonal matrix h :=
diag(w2, 1, 1, 1). The next figure shows the lattice of normal subgroups of the
group H := U〈w ∗ 14〉.
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{14}

〈−14〉

〈w2 ∗ 14〉

SU(4, 9)

SU(4, 9) · 〈h2〉

U(4, 9) = SU(4, 9) · 〈h〉

〈w ∗ 14〉 = Z(H)

SU(4, 9) · 〈w ∗ 14〉

SU(4, 9) · 〈h2, w ∗ 14〉

U(4, 9) · 〈w ∗ 14〉 = H
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We have H ′ = S, and Z(H) is generated by w ∗ 14. Then H has property (A).
The factor H/H ′ is generated by hS of order 4 and (w ∗ 14)S of order 2. Since
h2(w ∗ 14) 6∈ S, we have that H/H ′ is the direct product of 〈hS〉 and 〈(w ∗ 14)S〉.

We consider G := H/〈−14〉. Then Z(G) is generated by z := (w ∗ 14) ·
〈−14〉, and G/G′ is isomorphic to H/H ′. For g := h · 〈−14〉, we have that G/G′

is the direct product of 〈gG′〉 of order 4 and 〈zG′〉 of order 2. We define an
endomorphism α from G to Z(G) by

α(z) = z2 and Ker(α) = G′〈g〉.

We note that α is a function from G to G′. Hence α induces the constant function
ᾱ(xG′) = 1G′ for all x ∈ G, which is in I(G/G′). However, since exp(G/G′) = 4
and α(c) = c2 for all c ∈ Z(G), Lemma 2.1, (1) ⇒ (2), yields that α is not
a polynomial function on G. Hence we have I(G) < A(G) by the following
Proposition 3.28.

Proposition 3.28. Let G be a finite group with property (A) and cyclic cen-
ter. If I(G) = A(G), then all endomorphisms from G into Z(G) are in I(G).

Proof: Let G be a finite group with property (A). We assume that Z(G)
is cyclic and that I(G) = A(G). By Lemma 1.15, we then have that G satisfies
condition (2) of Lemma 3.22. Hence Lemma 3.22 yields that all endomorphisms
from G into Z(G) are in I(G). �

6. Examples

Chapter 4 is devoted entirely to applications of the results that we developed
up to this point. In this section we provide some supplementary examples of
groups and polynomial functions to illustrate phenomena that do not occur in
the case of classical groups.

Example 3.29. Let N := SL(2, 5), and let A be a cyclic group of order 4
with generator g. We define an action of A on N by

xg = ( 0 1
2 0 )−1 · x · ( 0 1

2 0 ) for all x ∈ N.

Let G := N · A be the semidirect product of N and A defined by this action.
We show that G has property (A). Since SL(2, 5) is perfect (see Lemma A.3), we
have G′ = N . Now we prove

(3.38) CG(N) = 〈−12〉 · 〈g2〉.

By Lemma A.5, we see that the map α : N → N, x 7→ xg is an outer automor-
phism of N . Hence CG(N) is contained in N〈g2〉. Since g2 centralizes N , we
then obtain (3.38) from CN(N) = 〈−12〉. We note that CG(N) = Z(G), that
N/(N ∩ Z(G)) is simple, and that N ′ = N (see Lemma A.3). Then Lemma 2.2,
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(3) ⇒ (1), yields that N satisfies (C.1) and (C.2) in G. Hence G has property (A)
by G′ = N , Lemma 3.1, (3) ⇒ (1).

We note that

G/Z(G) ∼= (SL(2, 5) · 〈( 0 1
2 0 )〉)/〈2 ∗ 12〉 ∼= PGL(2, 5) ∼= S5.

Below we give the lattice of normal subgroups of G.
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{12}

〈−12〉

N

〈g2〉

〈−12, g
2〉 = Z(G)

N〈g2〉

N〈g〉 = G

From Theorem 3.4 we obtain

(3.39) |I(G)| = 120119 · 4.

Next we will show

(3.40) I(G) = A(G).

By Theorem 3.6, it suffices to prove that all normal subgroups are characteristic.
This is immediate for all normal subgroups of G with the exception of 〈g2〉 and
〈−g2〉. We can settle these cases by Lemma 1.16. The assumptions of this lemma
are satisfied for A := G, G, N , and C := Z(G) since each automorphism of
(NC)/C ∼= A5 is induced by conjugation by an element in G/C ∼= S5 (see [Sco87,
p.314 (11.4.8)]). Hence for every automorphism α of G, there exist a ∈ G and an
endomorphism ρ from G into Z(G) such that

(3.41) α(x) = ρ(x) · xa for all x ∈ G.

We proceed by proving that all normal subgroups are invariant under all en-
domorphisms from G to Z(G). Let ρ : G → Z(G) be an endomorphism. By
exp G/G′ = 4 and exp Z(G) = 2, we find NZ(G) ⊆ Ker(ρ). Thus we have
ρ(K) ⊆ K for all normal subgroups K of G with K ⊆ NZ(G). But then all nor-
mal subgroups of G are invariant under ρ. Hence, by (3.41), all normal subgroups
are characteristic. Theorem 3.6 yields (3.40).
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Since 〈g2〉 is not invariant under the endomorphism α : G → G defined by
α(g) = ( 2 0

0 3 ) ∈ N and Ker(α) = N , we have

I(G) < E(G).

In the following we will now consider a certain factor H of the group given
in the previous example such that I(H) = E(H) and gcd(|Z(H)|, |H : H ′|) > 1.
This shows that condition 3 of Corollary 3.18 is not necessary to have all endomor-
phisms as polynomial functions. We note that the group H that is constructed in
the following is actually the unique non-solvable Frobenius complement of order
240 (see Appendix B and Chapter 5, Section 6).

Example 3.30. Let G = N〈g〉 be the extension of N = SL(2, 5) as in defined
in Example 3.30. Let M := 〈−g2〉, and let H := G/M . Then the lattice of normal
subgroups of H forms the chain

{1} < Z(H) < H ′ < H.

We have Z(H) = 〈−12, g〉/M ∼= Z2,

H ′ = (NM)/M ∼= N/(N ∩M) ∼= SL(2, 5),

and |H : H ′| = 2. By Theorem 3.4, we have

(3.42) |I(H)| = 120119 · 2,
and by Corollary 3.14, we have

(3.43) I(H) = A(H).

Since gcd(|Z(H)|, |H : H ′|) = 2, our results from Section 4 are not applicable to
prove

(3.44) I(H) = E(H).

We note that there is no endomorphism ρ on H with Ker(ρ) = Z(H) since H ′

is the unique subgroup of index 2 in H and H ′ is not isomorphic to H/Z(H).
By (3.43), it then suffices to show that all endomorphisms ρ of H with Ker(ρ) =
H ′ are contained in I(H). Let ρ be an endomorphism with Ker(ρ) = H ′. Then
|ρ(H)| = 2. We claim that

(3.45) −12M is the unique involution in H.

From this we obtain ρ(H) ⊆ Z(H) ⊆ H ′, and hence ρ is a polynomial function
by Lemma 2.1, (2) ⇒ (1). This proves (3.44). We note that ρ is actually unique
by (3.45).

For the proof of (3.45), we note that ( 2 0
0 3 ) M , ( 0 −1

1 0 ) M , and gM generate a
generalized quaternion group Q of order 16. Then Q is a Sylow 2-subgroup of H.
Hence every involution in H is conjugate to the unique involution −12M of Q.
Since −12M is central in H, we have (3.45).



CHAPTER 4

Consequences for classical groups

Classical groups in the sense of [KL90] comprise of linear and semilinear,
unitary, symplectic, and orthogonal groups on finite vector spaces as well as
certain quotients and extensions of those. For a precise definition, see Section 3
in Appendix A.

We will apply the results from the previous chapter to those classical groups
whose quotient by the center has a non-abelian unique minimal normal subgroup.
These include all linear groups with certain exceptions that act on vector spaces of
low dimension. Polynomial functions on solvable linear groups will be investigated
in the next chapter. We refer to the Corollaries 5.9, 5.10 for SL(2, 2) and to the
Propositions 5.24, 5.25 for SL(2, 3), GL(2, 3), respectively.

The main results, which we will prove in this chapter, are summarized in the
following. We note that all groups that satisfy the assumptions of the next three
theorems have property (A), that the center is cyclic, and that the factor by the
center has a unique minimal normal subgroup, which is non-abelian simple (see
Appendix A).

Theorem 4.1. Let V be a vector space of dimension n ≥ 2 over the field F
with q elements. Let k be a bilinear form as in the cases L,U,S. We assume that
(n, q) 6∈ {(2, 2), (2, 3)} in the cases L, S, and that (n, q) 6∈ {(2, 22), (2, 32), (3, 22)}
in case U. Let G be a group such that S(V, F, k) ⊆ G ⊆ ∆(V, F, k). Then we
have:

(1) |I(G)| = |G′||G:Z(G)|−1 · lcm(exp(G/G′), exp(Z(G)));
(2) I(G) = A(G);
(3) I(G) = E(G) iff G is centerless or G = G′.

Theorem 4.1 will be proved in Sections 1, 2, and 3.

Theorem 4.2. Let V be a vector space of dimension n ≥ 5 over the field F
with q elements. Let k be a quadratic form as in the case O. Let G be a group
such that S(V, F, k) ⊆ G ⊆ I(V, F, k). Then we have:

(1) |I(G)| = |G′||G:Z(G)|−1 · lcm(exp(G/G′), exp(Z(G)));
(2) I(G) = A(G) iff q is even or G < I(V, F, k);
(3) I(G) = E(G) iff G is centerless or G = G′.

Theorem 4.2 will be proved in Section 4.

53
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Theorem 4.3. Let V be a vector space of dimension n ≥ 2 over the field F
with q elements. Let k be a bilinear form as in the cases L,U,S. We assume that
(n, q) 6∈ {(2, 2), (2, 3)} in the cases L, S, and that (n, q) 6∈ {(2, 22), (2, 32), (3, 22)}
in case U. Let G be a group such that S(V, F, k) ⊆ G ⊆ I(V, F, k), and let Y be
a subgroup of Z(G). For Ḡ := G/Y , we have:

(1) |I(Ḡ)| = |Ḡ′||Ḡ:Z(Ḡ)|−1 · lcm(exp(Ḡ/Ḡ′), exp(Z(Ḡ)));
(2) I(Ḡ) = A(Ḡ);
(3) I(Ḡ) = E(Ḡ) iff |Z(Ḡ)| and |Ḡ : Ḡ′| are relatively prime.

Theorem 4.3 will be proved in Sections 1, 2, and 3.

1. Linear groups

Polynomial functions on the non-solvable groups SL(n, q) and GL(n, q) have
been studied in Chapter 11 of [Mel85] (see also [Mel79]). In [ST99], answers
have been announced to the question whether all automorphisms (all endomor-
phism) on, e. g., the general linear, the special linear, and the projective general
linear groups are polynomial functions; a formula for |I(SL(n, q)| is given. In the
proof of [Kow97, Proposition 2], the size of I(GL(n, q)) is determined.

In this section we will revisit some results on classical linear groups G and
their non-solvable quotients from our joint work with E. Aichinger in [AM03] and
give some generalizations. First we obtain |I(G)| as a corollary of Theorem 3.4.

Corollary 4.4 ([AM03, Corollary 2.3]). Let n be a natural number with
n ≥ 2, and let q be a prime power such that (n, q) 6∈ {(2, 2), (2, 3)}. Let G be a
group such that SL(n, q) ⊆ G ⊆ GL(n, q), and let Y be a subgroup of Z(G). Let
m := |G : SL(n, q)|, let s := |SL(n, q)|, and let k := |Y |. Then we have

|I(G/Y )| = lcm

(
m · gcd(n, k)

k
,
gcd(nm, q − 1)

k

)
·
(

s

gcd(n, k)

) m·s
gcd(nm,q−1)

−1

.

Proof: By Lemma A.4, the group G/Y has property (A). Furthermore the

center of G/Y is cyclic and has size gcd(mn,q−1)
k

. From the definition of G/Y , we
immediately obtain |G/Y | = m·s

k
. We compute

|(G/Y ) : Z(G/Y )| =
m·s
k

gcd(mn,q−1)
k

=
m · s

gcd(mn, q − 1)
.

By Lemma A.4, we have (G/Y )′ = (SL(n, q)Y )/Y and |(G/Y )′| = s/ gcd(n, k).
By the homomorphism theorem, (G/Y )/(G/Y )′ is cyclic and has size, and hence
exponent,

|(G/Y ) : (G/Y )′| = m · gcd(n, k)

k
.

Now the formula given in Theorem 3.4 yields the expression for |I(G/Y )| stated
in the corollary. �
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From our characterization of polynomial functions in Lemma 2.1 and the
description of automorphisms of linear groups in Lemma A.10, we obtain the
following:

Theorem 4.5 ([AM03, Theorem 3.4, Theorem 4.3 (2)]). Let n be a natural
number with n ≥ 2, and let q be a prime power such that (n, q) 6∈ {(2, 2), (2, 3)}.
We assume that G is a group such that SL(n, q) ⊆ G ⊆ GL(n, q). Then we have:

(1) I(G) = A(G);
(2) I(G) = E(G) if and only if G = SL(n, q).

For the proof of (1) of the theorem, we use an intermediate result.

Lemma 4.6. Let G be as in Theorem 4.5, and let α be an endomorphism of
G with Ker(α) ⊆ Z(G). Then we have α ∈ I(G).

Proof: By Lemma A.4, G has property (A). By Lemma A.10, we have a ∈ N
such that α(z) = za for all z ∈ Z(G) and det α(x) = (det x)a for all x ∈ G. We
define the function f ∈ A(G) as

f(x) = x−a · α(x) for all x ∈ G.

Then we have f(G) ⊆ SL(n, q) and f(z) = 1 for all z ∈ Z(G). Since f(gz) =
f(g) · f(z) for all g ∈ G, z ∈ Z(G), Lemma 2.1, (2) ⇒ (1), yields f ∈ I(G). Thus
α is a polynomial function. The lemma is proved. �

Proof of Theorem 4.5: Lemma 4.6 yields that all automorphisms of G are
in I(G). Hence we have (1).

We will reduce (2) to Theorem 3.20. First we we show that the assumptions
of this result are satisfied. We recall that G has property (A) by Lemma A.4.
Let m := |G : SL(n, q)|, and let d be a primitive m-th root of unity in GF(q).
Then H := 〈diag(d, 1, . . . , 1)〉 is a complement for SL(n, q) in G, and we have
Z(G) ∩H = {1n}. Hence Theorem 3.20 applies.

We assume E(G) = I(G). Then |G : G′| and |Z(G)| are relatively prime by
Theorem 3.20. Since |G : G′| = m and |Z(G)| = m · gcd(n, q−1

m
) by Lemma A.4,

this yields m = 1. Thus we have G = SL(n, q).
The converse implication follows from Corollary 3.19 (or from Theorem 3.20

together with Lemma 2.8) since SL(n, q) is quasisimple and has cyclic center by
Lemma A.3. �

The next result generalizes Theorem 4.5 (1). However, its proof depends on
the characterization of the automorphism groups of the projective special groups
by Dieudonnè (see Lemma A.2), which we do not prove here. We note that the
proof of Theorem 4.5 (1) only requires Lemma A.10 which we will prove with a
modest amount of representation theory.
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Theorem 4.7. Let n be a natural number with n ≥ 2, and let q be a prime
power such that (n, q) 6∈ {(2, 2), (2, 3)}. Let G be a group such that SL(n, q) ⊆
G ⊆ GL(n, q), and let Y be a subgroup of Z(G).

Then we have I(G/Y ) = A(G/Y ).

Proof: We will use Proposition 3.15 to prove the result. Before we can apply
this proposition, we have to introduce some notation.

Let F be the field GF(q). As in Appendix A, Section 1 (A.4), we have a
semidirect product GL(n, q) · Aut F . For ϕ ∈ Aut F and a ∈ GL(n, q), the

matrix aϕ has the entry (aij)
(ϕ−1) in row i, column j. Now let î be the involutory

automorphism of GL(n, q) · Aut F defined by

(x · ϕ)î = (x−1)t · ϕ for all x ∈ GL(n, q), ϕ ∈ Aut F.

With this action, we can define

A :=

{
GL(n, q) · Aut F for n = 2

(GL(n, q) · Aut F ) · 〈̂i〉 for n > 2

We will now show that A and G satisfy the assumptions of Proposition 3.15. Let
N := SL(n, q) and C := {a ∗ 1n | a ∈ F ∗}. By Lemma A.4, the group G has
property (A) and G′ = N . We note that Z(G) = C ∩ G is cyclic and G/N is
cyclic. Lemma A.5 yields CA(N) = C. By Lemma A.2, the full automorphisms
group of (NC)/C is isomorphic to A/C.

Let a ∈ A. We will prove that the automorphism σa : G → G, x 7→ xa, is an
element of I(G). To this end, we let b ∈ GL(n, q), ϕ ∈ Aut F , and j ∈ 〈̂i〉 such
that a = bϕj. Let m ∈ Z such that uϕ = um for all u ∈ F . We let s := 1 for
j = 1 and s := −1 for j = î. By the definition of the action of Aut F on GL(n, q),
we obtain

za = zϕj = z−ms for all z ∈ Z(G)

and

xa ≡ xϕj ≡ x−ms mod N for all x ∈ G.

Hence the function f ∈ A(G) that is defined by

f(x) = xms · xa for all x ∈ G

maps G into N and satisfies f(z) = 1 for all z ∈ Z(G). Since, by definition, f
is a product of endomorphisms which map Z(G) into Z(G), we have f(xz) =
f(x) · f(z) for all x ∈ G, z ∈ Z(G). Now Lemma 2.1, (2) ⇒ (1), yields that f is
a polynomial function. From this we obtain σa ∈ I(G). Finally Proposition 3.15
applies to prove the theorem. �

From Proposition 3.21, we obtain a characterization of the non-solvable quo-
tients of classical linear groups, whose endomorphisms are polynomial functions.
We note that the following Theorem 4.8 implies Theorem 4.5 (2).
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Theorem 4.8 ([AM03, Theorem 4.3 (1)]). Let n be a natural number with
n ≥ 2, and let q be a prime power such that (n, q) 6∈ {(2, 2), (2, 3)}. Let G be a
group such that SL(n, q) ⊆ G ⊆ GL(n, q), and let Y be a subgroup of Z(G).

Then we have I(G/Y ) = E(G/Y ) if and only if |(G/Y ) : (G/Y )′| and
|Z(G/Y )| are relatively prime.

We note that for m := |G : SL(n, q)| and k := |Y |, Lemma A.4 yields

gcd (|(G/Y ) : (G/Y )′|, |Z(G/Y )|) = gcd

(
m · gcd(n, k)

k
,
gcd(nm, q − 1)

k

)
.

Proof of Theorem 4.8: It suffices to check that G satisfies the assumptions
of Proposition 3.21 since this proposition immediately yields the result. To this
end, we note that G has property (A) and Z := Z(G) is cyclic by Lemma A.4.
Furthermore we have G′ = SL(n, q). For m := |G : SL(n, q)|, let d be a primitive
m-th root of unity in GF(q). Then H := 〈diag(d, 1, . . . , 1)〉 is a cyclic comple-
ment for SL(n, q) in G, and we have H ∩ Z = {1n}. Hence the assumptions of
Proposition 3.21 are satisfied, and the theorem follows. �

As a further consequence of our characterization of polynomial functions in
Lemma 2.1 we obtain that the determinant function can be represented by a
polynomial.

Proposition 4.9. For n and G as in Theorem 4.8, let

d : G → G, x 7→ (det x) ∗ 1n.

Then we have d ∈ I(G).

Since G/G′ and Z(G) are cyclic, and since d is an endomorphism from G into
Z(G), Lemma 3.23 immediately yields d ∈ I(G). Because of its brevity, we also
include a proof which refers to Lemma 2.1 directly. While this lemma guarantees
the existence of a polynomial function whose values match the values of d, we
are not able to give an actual presentation of d as polynomial function.

Proof of Proposition 4.9: By Lemma A.4, G has property (A). We will
show that the function f defined by f(x) := x−n · d(x) lies in I(G) by using
Lemma 2.1 with N := SL(n, q). First we show f(G) ⊆ N . We fix x ∈ G and
compute

det f(x) = det(x−n) · det((det x) ∗ 1n) = (det x)−n · (det x)n = 1.

Hence f(x) ∈ SL(n, q). Next we prove

(4.1) f(z) = 1n for all z ∈ Z(G).

Let z be a central element of G. Then there is a ∈ GF(q)∗ such that z = a ∗ 1n.
Thus we have (det z) ∗ 1n = (det(a ∗ 1n)) ∗ 1n = an ∗ 1n = zn, which yields (4.1).
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We obtain

(4.2) f(gz) = f(g) · f(z) for all g ∈ G, z ∈ Z(G),

by computing f(gz) = (gz)−n · (det(gz) ∗ 1n) = g−nz−n · ((det(g) det(z)) ∗ 1n) =
g−nz−n((det g)∗1n)((det z)∗1n) = g−n((det g)∗1n) ·z−n((det z)∗1n) = f(g) ·f(z).
By (4.1) and (4.2), condition (2) of Lemma 2.1 is satisfied for µ = 0. This lemma
now yields f ∈ I(G). Hence we have d ∈ I(G). �

The map that transposes all matrices is also polynomial. Let F be a (possibly
infinite) field, and let x be a 2× 2 matrix over F with det x = 1. Then we have

xt = ( 0 −1
1 0 )

−1 · x−1 · ( 0 −1
1 0 ) .

While we do not know a term presentation of x 7→ xt in general, we still have the
following:

Proposition 4.10. For G as in Theorem 4.8, let

τ : G → G, x 7→ xt.

Then we have τ ∈ I(G).

Proof: We consider the function f on G defined by f(x) := x−1 ·xt. Then we
have f(G) ⊆ SL(n, q). Since f(z) = 1 and f(gz) = f(g) · f(z) for all g ∈ G, z ∈
Z(G), Lemma 2.1, (2) ⇒ (1), yields that f ∈ I(G). Hence we have τ ∈ I(G). �

Lemma 2.1 can be successfully applied to answer questions about polynomial
functions on linear groups. Unfortunately, the groups of semilinear transforma-
tions of finite vector spaces (see Appendix 3, Section 1) do not have property (C).
Hence Lemma 2.1 is not applicable to these groups in general. Still we can give
one result that is related to semilinear groups.

Theorem 4.11. Let n, f be natural numbers with n ≥ 2, and let p be a prime
such that (n, pf ) 6∈ {(2, 2), (2, 3)}. Let H := GL(n, pf ) ·Aut GF(pf ), and let Y :=
{a∗1n | ap−1 = 1, a ∈ GF(pf )}. We write G := H/Y and N := (SL(n, pf )·Y )/Y .
Then we have

|(N : G)I(G)| = |N ||G|/(p−1)−1.

We note that Y is a normal subgroup of H. Here the automorphism group
of the field acts on the matrix group as usual. For ϕ ∈ Aut GF(pf ) and a ∈
GL(n, pf ), the matrix aϕ has the entry (aij)

(ϕ−1) in row i, column j.

Proof of Theorem 4.11: We will show that N satisfies (C.1) and (C.2) in
G by Lemma 2.2, (3) ⇒ (1). We write q := pf , and C := {a ∗ 1n | a ∈ GF(q)∗}.
First we prove

(4.3) CG(N) = C/Y.
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By Lemma A.5, we have CH(SL(n, q)) = C. By SL(n, q)′ = SL(n, q) and the
Three Subgroup Lemma [Rob96, p.122, 5.1.10], this yields (4.3). Next we show

(4.4) Z(G) = C/Y.

The inclusion “⊆” is obvious by (4.3). For the converse, we let g · ϕ ∈ H with
g ∈ GL(n, q), ϕ ∈ Aut GF(q). We have s ∈ Z such that ϕ(u) = ups

for all
u ∈ GF(q). For c ∈ C, we then find

cg·ϕ = cϕ = cp−s

.

Hence cg·ϕ ≡ c mod Y . Thus all elements in C/Y are central in H/Y . This
completes the proof of (4.4).

Thus N satisfies CG(N) = Z(G), N ′ = N and N/(N ∩ Z(G)) is simple by
Lemma A.3. Now Lemma 2.2, (3) ⇒ (1), yields that N satisfies (C.1) and (C.2)
in G.

Let λ(G/N) be the Scott-length of G/N , and let Z := Z(G). Lemma 2.12
yields

(4.5) |(N : G)I(G)| =
exp(Z)

gcd(exp(Z), λ)
· |N ||G:Z|−1.

By (4.4), the center of G is a cyclic group of order p−1. It remains to prove that

(4.6) p− 1 divides λ.

To this end, we let w be a primitive element of GF(q) and g := diag(w, 1, . . . , 1).
We will show

(4.7) G′ = (SL(n, q) · 〈gp−1〉)/Y.

We note that Y ⊆ SL(n, q) · 〈gp−1〉 by definition. Since there is ϕ ∈ Aut GF(q)
such that gϕ = gp, we have [g, ϕ] = gp−1 ∈ G′. This proves “⊇” in (4.7). For
the converse inclusion, we argue that H/(SL(n, q) · 〈gp−1〉) is abelian. Since this
factor is generated by the projections of g and ϕ, it suffices that g ≡ gϕ modulo
SL(n, q) · 〈gp−1〉. This was shown above. Hence we have (4.7).

By the definition of H and by the previous arguments, G/G′ is the direct
product of 〈gG′〉 and 〈ϕG′〉. Thus the exponent of G/G′ is the least common
multiple of the respective orders, that is, exp(G/G′) = lcm(p−1, f). In particular,
p−1 divides exp(G/G′). Since N ⊆ G′, we have that exp(G/G′) divides λ(G/N)
by the homomorphism theorem and by Lemma 1.3. Thus (4.6) is proved. Now
the result follows from (4.5). �

The previous proof shows why GL(n, q) · Aut GF(q) does not have prop-
erty (C). To obtain Z(G) = CG(N) (cf. (4.4)), it is necessary to consider a
factor of the semilinear group.

We note that G as in Theorem 4.11 has property (A) if and only if SL(n, q) ·
〈gp−1〉 = SL(n, q) · Y (see (4.7)). Hence G has property (A) iff Aut GF(q) is
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trivial (that is H = GL(n, q)) or Y ∩ SL(n, q) is trivial. In general, G/N is
a metacyclic group, namely, the semidirect product of 〈gN〉 with 〈ϕN〉. We
recall that |I(G)| = |I(G/N)| · |(N : G)I(G)|. Hence Theorem 4.11 reduces the

problem of computing the size of I(G) to the problem of determining |I(G/N)|.
In Corollary 5.9 we will give a formula for the number of polynomial functions
on a metacyclic group M under the assumption that M ′ and M/M ′ are cyclic
and have coprime order. We note that this assumption is satisfied for M := G/N
iff p − 1 and f are relatively prime. We do not know |I(G/N)| for arbitrary
G. We admit that we do not know the Scott-length of G/N either. In the
proof of Theorem 4.11, it sufficed to determine gcd(exp(Z(G)), λ(G/N)) which
we achieved by finding a large enough factor of λ(G/N).

2. Unitary groups

The structure of unitary groups is quite similar to that of linear groups. (see
Lemma A.4 and Lemma A.9). Therefore, it is not too surprising that we obtain
similar results for their endomorphism near-rings by essentially the same proofs.

Theorem 3.4 allows to describe I(G) for classical linear groups G and their
non-solvable quotients (cf. Corollary 4.4).

Corollary 4.12. Let n be a natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let G be a subgroup of the
unitary group U(n, q2) with SU(n, q2) ⊆ G, and let Y be a subgroup of Z(G). Let
m := |G : SU(n, q)|, let s := |SU(n, q)|, and let k := |Y |. Then we have

|I(G/Y )| = lcm

(
m · gcd(n, k)

k
,
gcd(nm, q + 1)

k

)
·
(

s

gcd(n, k)

) m·s
gcd(nm,q+1)

−1

.

Proof: By Lemma A.8, G/Y has property (A). We also find that the center

of G/Y is cyclic and has size gcd(mn,q+1)
k

by Lemma A.9. From the definition of
G/Y , we immediately obtain |G/Y | = m·s

k
. We compute

|G/Y : Z(G/Y )| =
m·s
k

gcd(mn,q+1)
k

=
m · s

gcd(mn, q + 1)
.

By Lemma A.9, we have (G/Y )′ = (SL(n, q)Y )/Y and |(G/Y )′| = s/ gcd(n, k).
By the homomorphism theorem, (G/Y )/(G/Y )′ is cyclic and has size, and, hence,
exponent,

|(G/Y ) : (G/Y )′| = m · gcd(n, k)

k
.

Now the formula given in Theorem 3.4 yields the expression for |I(G/Y )| stated
in the corollary. �
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The characterization of polynomial functions in Lemma 2.1 together with
the description of automorphisms of unitary groups in Lemma A.10 yields the
following:

Theorem 4.13. Let n be a natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let G be a group such that
SU(n, q2) ⊆ G ⊆ U(n, q2). Then we have:

(1) I(G) = A(G);
(2) I(G) = E(G) if and only if G = SU(n, q2).

As in the case of linear groups (see Lemma 4.6), we will prove a slightly
stronger version of Theorem 4.13 (1).

Lemma 4.14. Let G be as in Theorem 4.13, and let α be an endomorphism
of G with Ker(α) ⊆ Z(G). Then we have α ∈ I(G).

Proof: By Lemma A.8, G has property (A). By Lemma A.10, we have a ∈ N
such that α(z) = za for all z ∈ Z(G) and det α(x) = (det x)a for all x ∈ G. We
define the function f ∈ A(G) as

f(x) = x−a · α(x) for all x ∈ G.

Then we have f(G) ⊆ SU(n, q2) and f(z) = 1 for all z ∈ Z(G). Since f(gz) =
f(g) · f(z) for all g ∈ G, z ∈ Z(G), Lemma 2.1, (2) ⇒ (1), yields f ∈ I(G). Thus
α is a polynomial function. The lemma is proved. �

Proof of Theorem 4.13: Item (1) follows from Lemma 4.14. As in the case
of linear groups, we will derive (2) from Theorem 3.20. By Lemma A.8, G has
property (A). Let m := |G : SU(n, q2)|. Then G is a semidirect product,

G = SU(n, q2) · 〈diag(w, 1 . . . , 1)〉

with w a primitive m-th root of unity in GF(q2). Since the complement
〈diag(w, 1 . . . , 1)〉 of SU(n, q2) intersects Z(G) trivially by Lemma A.9, we may
apply Theorem 3.20.

We assume I(G) = E(G). Then |G : G′| and |Z(G)| are relatively prime
by Theorem 3.20 (3). Since |G : G′| = m and |Z(G)| = m · gcd(n, q+1

m
) by

Lemma A.9, this yields m = 1. Hence we have G = SU(n, q2).
Conversely, I(SU(n, q2)) = E(SU(n, q2)) follows from Corollary 3.19 (or

from Theorem 3.20 together with Lemma 2.8) since SU(n, q2)′ = SU(n, q2) and
Z(SU(n, q2)) is cyclic. �

Assuming the characterization of automorphisms of projective special uni-
tary groups by Dieudonnè (see Lemma A.2), we obtain a generalization of The-
orem 4.13 (1).
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Theorem 4.15. Let n be a natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let H be a group such that
SU(n, q2) ⊆ H ⊆ U(n, q2) · {a ∗ 1n | a ∈ GF(q2)∗}, and let Y be a subgroup of
Z(H). For G := H/Y and Z := Z(G), the following are equivalent:

(1) I(G) = A(G);
(2) For all subgroups L of G such that G′ ⊆ L and L/G′ is a cyclic direct

factor in G/G′, we have that gcd(|L : G′|, |Z|) divides |L ∩ Z|;
(3) G/G′ is cyclic, or the size of the Sylow 2-subgroup of G/(G′Z) divides

|G′ ∩ Z|;
(4) All endomorphisms from G to Z induce polynomial functions on G/G′;
(5) All endomorphisms from G to Z are in I(G).

There are groups that satisfy the assumptions of the theorem above and do not
satisfy I(G) = A(G). We refer to G := (U(4, 32) · {a ∗ 14 | a ∈ GF(32)∗})/〈−14〉.
as considered in Example 3.27 at the end of Chapter 3, Section 5. There we
argued that G/G′ is not cyclic and that there exists an endomorphism from G
into Z(G) that is not a polynomial function. By (5) ⇒ (1) of the theorem above,
we then have I(G) < A(G).

Proof of Theorem 4.15: Let H satisfy the assumptions of the theorem. By
Lemma A.8, we have H ′ = SU(n, q2) and Z(H) = H ∩ {a ∗ 1n | a ∈ GF(q2)∗}.
Furthermore, H has property (A). Let Y be a subgroup of Z(H), and let G :=
H/Y . Then Lemma 3.2 yields that

(4.8) G′ = (SU(n, q2)Y )/Y and Z(G) = Z(H)/Y,

and that G has property A.
(1) ⇒ (2) is immediate by Lemma 1.15.
(2) ⇒ (3): We assume that G satisfies (2) and that G/G′ is not cyclic. Let s

denote the size of the Sylow 2-subgroup of G/(G′Z). We will prove that s divides
|G′ ∩ Z|. By Lemma A.8, we have a group L with G′ ⊆ L ⊆ (U(n, q2)Y )/Y
such that L/G′ is a 2-group and a cyclic direct factor in G/G′. We also note
that |Z : (L ∩ Z)| is even, because otherwise G/G′ is cyclic. Since the Sylow
2-subgroup of G/G′ is contained in (LZ)/G′, we have

(4.9)
|LZ|
|ZG′|

= s.

By (2), gcd(|L : G′|, |Z|) is equal to gcd(|L : G′|, |L∩Z|), which then yields that

(4.10) |L : G′| divides |L ∩ Z|.

By the homomorphism theorem, we have

(L ∩ Z)/(G′ ∩ Z) ∼= ((L ∩ Z)G′)/G′.



2. UNITARY GROUPS 63

By G′ ⊆ L and the modular law, we obtain (L ∩ Z)G′ = L ∩ (ZG′). Hence we
have

|L ∩ Z| = |G′ ∩ Z| · |(L ∩ (ZG′))/G′|.
By using the homomorphism theorem, we compute

|L ∩ Z|
|L : G′|

=
|G′ ∩ Z| · |(L ∩ (ZG′))/G′|

|L/(L ∩ (ZG′)| · |(L ∩ (ZG′)/G′|
=

|G′ ∩ Z|
|(L ∩ (ZG′)/G′|

.

Then (4.10) yields that |L/(L∩(ZG′))| divides |G′∩Z|. Since L/(L∩(ZG′)) and
(LZ)/(ZG′) are isomorphic and since the latter has order s by (4.9), we finally
obtain that s divides |G′ ∩ Z|. Thus (3) is proved.

(3) ⇒ (2): For x ∈ G, we write x̄ := xG′, and for subgroups A of G, we write
Ā := (AG′)/G′. Let p be a prime divisor of |Ḡ|, and let L be a subgroup of G
with G′ ⊆ L such that L̄ is a cyclic p-group. Let d := gcd(|L̄|, |Z|). Assuming (3),
we will show that

(4.11) d divides |L ∩ Z|.

We have a uniquely determined, cyclic subgroup C of Z with |C| = d. Since |C̄|
divides d, we find that |C̄| divides |L̄|. If the Sylow p-subgroup of Ḡ is cyclic,
this yields C̄ ⊆ L̄. Then C is contained in L, and we have (4.11). It remains to
consider the case that the Sylow p-subgroup of Ḡ is not cyclic. Then p = 2 by
Lemma A.8. Condition (3) yields that |(L̄Z̄)/Z̄| divides |G′ ∩ Z|. Hence

(4.12) |L̄| divides |L̄ ∩ Z̄| · |G′ ∩ Z|.

Since G′ ⊆ L, we find the following chain of isomorphic groups:

L̄ ∩ Z̄ ∼= (L ∩ (ZG′))/G′ ∼= ((L ∩ Z)G′)/G′ ∼=
∼= (L ∩ Z)/(L ∩ Z ∩G′) ∼= (L ∩ Z)/(G′ ∩ Z).

By (4.12), we then have that |L̄| divides |(L ∩ Z)/(G′ ∩ Z)| · |G′ ∩ Z|, which
yields (4.11). Now (2) follows from (4.11), since each cyclic group is a direct
product of cyclic p-groups.

(2) ⇒ (5) follows from Lemma 3.22.
(5) ⇔ (4) is Proposition 3.26.
(5) ⇒ (1): We will prove this by using Lemma 1.16 and Lemma A.2 together

with Lemma 2.1. First we have to introduce some notation. Let F be the field
GF(q2). By (A.24) of Appendix A, Section 1, we have a semidirect product of
U(n, q2) · {a ∗ 1n | a ∈ F ∗} with Aut F . For ϕ ∈ Aut F and a ∈ GL(n, q2), the

matrix aϕ has the entry (aij)
(ϕ−1) in row i, column j. We note that both H and

the subgroup Y of Z(H) are invariant under the action of Aut F . Hence we may
define the factor

A := (U(n, q2) · {a ∗ 1n | a ∈ F ∗} · Aut F )/Y.
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We proceed to show that A, N := G′, and G satisfy the assumptions of
Lemma 1.16. Let C := CA(N), Ā := A/C, and N̄ := (NC)/C. First we as-
sume n ≥ 3. Then Lemma A.7 and the Three Subgroup Lemma [Rob96, p.122,
5.1.10] yield C = {a ∗ 1n | a ∈ F ∗}/Y and that CĀ(N̄) is trivial. By Lemma A.2
and by the homomorphism theorem, the full automorphism group of N̄ is iso-
morphic to Ā.

The case n = 2 requires some extra consideration. Lemma A.7 and the Three
Subgroup Lemma [Rob96, p.122, 5.1.10] yield |C| = (q2 − 1) · 2/|Y | and that

CĀ(N̄) is trivial. By the definition of A, we then have |Ā| = |U(2,q2)|·(q−1)·|Aut F |
(q2−1)·2 .

By Lemma A.7, this yields |Ā| = q·(q2−1)·|Aut F |
2

. Since N̄ is isomorphic to PSL(2, q)
by [KL90, Proposition 2.9.1] and |Aut PSL(2, q)| = q · (q2 − 1) · |Aut GF(q)| by
Lemma A.2, we find |Ā| = |Aut N̄ |.

Hence, for all pairs (n, q) that satisfy the assumptions of the theorem, every
automorphisms of N̄ is induced by conjugation by some element of Ā. We note
that G is normal in A and N ⊆ G. Since G has property (A), we have Z(G) =
C ∩G. Thus all assumptions of Lemma 1.16 are satisfied.

We are now ready to prove (1) under the assumption of (5). Let α be an
automorphism of G. We will show α ∈ I(G). Since N = G′ is characteristic, we
have α(N) ⊆ N . By Lemma 1.16, there is a ∈ A and there is an endomorphism
ρ from G into Z(G) such that

α(x) = ρ(x) · xa for all x ∈ G.

By assumption (5), we have ρ ∈ I(G). It remains to prove that the automorphism
σa : G → G, x 7→ xa, is an element of I(G). To this end, we let b ∈ U(n, q2) and
ϕ ∈ Aut F such that a = bϕY . Let m ∈ Z such that uϕ = um for all u ∈ F . By
the definition of the action of Aut F on H, we obtain

za = zϕY = z−m for all z ∈ Z(G)

and

xa ≡ xϕY ≡ x−m mod N for all x ∈ G.

Hence the function f ∈ A(G) that is defined by

f(x) = xm · xa for all x ∈ G

maps G into N and satisfies f(z) = 1 for all z ∈ Z(G). Since, by definition, f
is a product of endomorphisms which map Z(G) into Z(G), we have f(xz) =
f(x) · f(z) for all x ∈ G, z ∈ Z(G). Now Lemma 2.1, (2) ⇒ (1), yields that f is
a polynomial function. From this we obtain σa ∈ I(G). Thus we have α ∈ I(G).
The proof of the theorem is complete. �

We give two straightforward specializations of Theorem 4.15.
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Corollary 4.16. Let n be a natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let G be a group such that
SU(n, q2) ⊆ G ⊆ U(n, q2), and let Y ⊆ Z(G).

Then we have I(G/Y ) = A(G/Y ).

Proof: We note that G/Y is a group with property (A) and cyclic cen-
ter. Furthermore, the factor of G/Y by its derived subgroup is cyclic. By
Lemma 3.23, all endomorphisms from G/Y into Z(G/Y ) are in I(G/Y ). Hence
Theorem 4.15, (5) ⇒ (1), yields I(G/Y ) = A(G/Y ). �

Corollary 4.17. Let n be a natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let G be a group such that
SU(n, q2) ⊆ G ⊆ U(n, q2) · {a ∗ 1n | a ∈ GF(q2)∗}.

Then we have I(G) = A(G).

Proof: We write U := U(n, q2), S := SU(n, q2), and Z := Z(G). By Theo-
rem 4.15, (3) ⇒ (1), it suffices to show that |G : (G′Z)| divides |G′∩Z|. We note
that |G : (G′Z)| divides |U : (S · Z(U))|. Since |U : S| = |Z(U)| by Lemma A.7
and Lemma A.9, this yields that |G : (G′Z)| divides |S ∩ Z(U)|. Now the result
follows from Theorem 4.15. �

The size of I(G) for the groups in Theorem 4.15 and Corollary 4.17 can be
easily obtained from Theorem 3.4. For the groups G/Y as in Corollary 4.16,
there is an explicit formula for |I(G/Y )| in Corollary 4.12.

Next we determine necessary and sufficient conditions such that all endomor-
phisms of a unitary group are polynomial functions. We note that the following
result generalizes Theorem 4.13 (2).

Theorem 4.18. Let n be a natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let G be a group such that
SU(n, q2) ⊆ G ⊆ U(n, q2) · {a ∗ 1n | a ∈ GF(q2)∗}, and let Y be a subgroup of
Z(G).

Then we have I(G/Y ) = E(G/Y ) if and only if |(G/Y ) : (G/Y )′| and
|Z(G/Y )| are relatively prime.

By (4.15) of the following proof, we find that both the center of G/Y and the
factor of G/Y by its derived subgroup are cyclic if I(G/Y ) = E(G/Y ). Hence
these extensions of unitary groups satisfy the assumptions of Corollary 3.18.

Proof of Theorem 4.18: By Lemma A.8, we have that G′ = SU(n, q2) and
that G has property (A). We note that G/G′ is not necessarily cyclic and that G′

has not necessarily a complement in G. Thus we cannot apply Proposition 3.21
right away as we did in the proof of Theorem 4.8. We need some preparation
first.
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We note that G = G ∩ (U(n, q2) · Z(G)) and that the latter is equal to
(G∩U(n, q2))·Z(G) by the modular law. Let G1 := G∩U(n, q2). Since |U(n, q2)∩
{a ∗ 1n | a ∈ GF(q2)∗}| = q + 1, we have that

(4.13) |G : G1| divides q − 1.

We assume I(G/Y ) = E(G/Y ). First we will prove

(4.14) G/Y = (G1Y )/Y.

This will then enable us to use Proposition 3.21 to finish the proof. Seeking a
contradiction, we suppose that a prime p divides |(G/Y ) : (G1Y )/Y |. Then p
divides q − 1 by (4.13).

First we assume that p > 2. As a divisor of q − 1, p divides |SU(n, q2)| by
Lemma A.7, and p does not divide |Z(SU(n, q2))| by Lemma A.9. Thus we have
an element s ∈ SU(n, q2) \ Z(SU(n, q2)) with ord s = p. Let c be a generator of
the cyclic group Z(G). We consider the endomorphism ρ : G/Y → 〈sY 〉 defined
by ρ(cY ) = sY and Ker(ρ) = (G1〈cp〉)/Y . Then Z(G/Y ) is not invariant under
ρ, which is contradicted by the assumption that ρ is in I(G/Y ).

Thus we have p = 2. This implies that q is odd. If n > 2, then we find that
s := diag(−1,−1, 1, . . . , 1) is an element of SU(n, q2) \ Z(SU(n, q2)). As in the
previous argument, we can construct an endomorphism that is not contained in
I(G/Y ). Hence we have n = 2. Since −12 is an involution in SU(2, q2) ⊆ G1 and
2 divides |G : G1|, the center of G contains an element b of order 4. Let s :=
( 0 −1

1 0 ). Then s ∈ SU(2, q2) and s2 = −12. Thus sb is an involution in G \ Z(G).
Since Z(G/Y ) is not invariant under the endomorphism ρ of G/Y defined by
ρ(cY ) = sbY and Ker(ρ) = (G1〈c2〉)/Y , we obtain a final contradiction. Thus
we have |G/Y | = |(G1Y )/Y | and (4.14) is proved.

Since we now have that G/Y is isomorphic to G1/(G1 ∩ Y ), we may assume
that G = G1 and that Y is a subgroup of Z(G1). For m := |G : SU(n, q2)|, let
d be a primitive m-th root of unity in GF(q2). Then H := 〈diag(d, 1, . . . , 1)〉 is
a complement for SU(n, q2) in G, and we have H ∩ Z(G) = {1n}. Also, Z(G)
is cyclic by Lemma A.9. Hence G satisfies the assumptions of Proposition 3.21,
which yields that |(G/Y ) : (G/Y )′| and |Z(G/Y )| are relatively prime.

For proving the converse implication, we assume that |(G/Y ) : (G/Y )′| and
|Z(G/Y )| are relatively prime. We will show that

(4.15) (G/Y )/(G/Y )′ is cyclic.

As above, we have that G = (G ∩ U(n, q2)) · Z(G) and that G′ = SU(n, q2)
has a cyclic complement H in G ∩ U(n, q2). Thus we obtain G = G′H · Z(G).
The assumption that |(G/Y ) : (G/Y )′| and |Z(G/Y )| are relatively prime, yields
Z(G/Y ) ⊆ (G/Y )′. Hence we have G′ · Z(G) = G′Y . By the homomorphism
theorem, (G/Y )/(G/Y )′ is isomorphic to G/(G′Y ). The latter is equal to (G′H ·
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Z(G))/(G′ · Z(G)). Hence (G/Y )/(G/Y )′ is isomorphic to H/(H ∩ (G′ · Z(G)))
and in particular cyclic. Thus (4.15) is proved. Now I(G/Y ) = E(G/Y ) follows
from Proposition 3.21. �

The next result follows from Theorem 4.18 and yields Theorem 4.13 (2).

Corollary 4.19. Let n be a natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let G be a group such that
SU(n, q2) ⊆ G ⊆ U(n, q2) · {a ∗ 1n | a ∈ GF(q2)∗}. Then we have I(G) = E(G)
if and only if G = SU(n, q2).

Proof: We assume I(G) = E(G). Then |G : SU(n, q2)| and |Z(G)| are
relatively prime by Theorem 4.18. In particular, we have Z(G) ⊆ SU(n, q2).
This yields G ⊆ U(n, q2). By Lemma A.9, we find gcd(|G : SU(n, q2)|, |Z(G)|) =
|G : SU(n, q2)|. Thus we have G = SU(n, q2).

The converse implication follows from Corollary 3.19 since SU(n, q2)′ =
SU(n, q2) and Z(SU(n, q2)) is cyclic. �

For groups of unitary semilinear transformations, we could give a result similar
to Theorem 4.11 but we abstain from doing so.

3. Symplectic groups

The structure of symplectic groups is less complex than that of linear or
unitary groups (see Appendix A). Consequently, the results in this section are
more easily obtained than those in the previous 2 sections.

Corollary 4.20. Let n be an even natural number with n ≥ 2, and let q be
a prime power such that (n, q) 6∈ {(2, 2), (2, 3)}. Let sp(n, q) := |Sp(n, q)|.

(1) If q is odd, then we have |I(Sp(n, q))| = 2 · sp(n, q)sp(n,q)/2−1.
(2) If q is even and (n, q) 6= (4, 2), then |I(Sp(n, q))| = sp(n, q)sp(n,q)−1.

(3) |I(Sp(4, 2))| = 2 ·
(

sp(4,2)
2

)sp(4,2)−1

.

We note that sp(n, q) = qn2/4
∏n/2

i=1(q
2i − 1) in the corollary above (see

Lemma A.13).

Proof: In Lemma A.13 the structure of symplectic groups is described as
follows: Sp(n, q) is quasisimple with center of size 2 for q odd, (n, q) 6= (2, 3).
For q even and (n, q) 6∈ {(2, 2), (4, 2)}, we have that Sp(n, q) is simple. Thus
Corollary 3.5 yields (1) and (2). Item (3) follows from the fact that Sp(4, 2) is
isomorphic to the symmetric group S6 (see Lemma A.13) and Theorem 3.4. �

Theorem 4.21. Let n be an even natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3)}. Let G = Sp(n, q) be a symplectic
group. Then we have I(G) = A(G) = E(G).
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Proof: By Lemma A.13, the symplectic group Sp(n, q) is quasisimple with
cyclic center for (n, q) 6= (4, 2), and Sp(4, 2) is isomorphic to the symmetric group
S6. Thus Theorem 4.21 is an immediate consequence of Corollary 3.18. �

We note that the proof of Theorem 4.21 did not require any information on
what the automorphisms of Sp(n, q) look like. By using the description of the
automorphisms of the projective symplectic group, we can generalize the previous
result to extensions of Sp(n, q).

Theorem 4.22. Let n be an even natural number with n ≥ 2, let q be a prime
power such that (n, q) 6∈ {(2, 2), (2, 3)}. Let w be a primitive element of GF(q).
Let G be a group such that Sp(n, q) ⊆ G ⊆ Sp(n, q) · 〈diag(w, 1, . . . , w, 1)〉, and
let Y be a subgroup of Z(G). Then we have:

(1) I(G/Y ) = A(G/Y );
(2) I(G/Y ) = E(G/Y ) if and only if (G/Y )′ = G/Y or Z(G/Y ) is trivial.

Proof: Let Z := Z(G). By Lemma A.13 and Lemma 2.2, (3) ⇒ (1), we have
that G and N := Sp(n, q) satisfy (C.1) and (C.2) in G. Since G′ = Sp(n, q),
Lemma 3.1 yields that G has property (A). We have that G/G′ is cyclic by
definition, and Z is cyclic by Lemma A.13.

First we will prove (1) for q even. For n = 4, q = 2, we have G = Sp(4, 2),
|G : G′| = 2, and that Z is trivial by Lemma A.13. Then the assertion follows
from Corollary 3.10. We now assume (n, q) 6= (4, 2) and q even. By (A.39) in
Appendix A, Section 8, we then have Sp(n, q) · 〈diag(w, 1, . . . , w, 1)〉 = Sp(n, q) ·
〈w ∗ 1n〉. Hence G = G′Z and G′ ∩ Z = {1n}. Since G′ is simple, non-abelian
and Z is cyclic, I(G) = A(G) then follows from Corollary 3.11.

For proving (1) under the assumption that q is odd, we will use Proposi-
tion 3.15. Let F be the field GF(q). For ϕ ∈ Aut F and a ∈ GL(n, q), the

matrix aϕ has the entry (aij)
(ϕ−1) in row i, column j. By (A.40) in Appendix A,

Section 8, this action of Aut F defines the semidirect product

A := (Sp(n, q) · 〈diag(w, 1, . . . , w, 1)〉) · Aut F.

Let C := CA(Sp(n, q)). By Lemma A.2, A/C is isomorphic to
Aut ((Sp(n, q)C)/C). Here we also use that Sp(2, q) = SL(2, q) (see
Lemma A.13).

Hence A and G satisfy the assumptions (1), (2), and (3) of Proposition 3.15.
For a ∈ A, we will now prove that σa : G → G, x 7→ xa, is an element of I(G).
To this end, we let b ∈ GL(n, q) and ϕ ∈ Aut F such that a = bϕ. Let m ∈ Z
such that uϕ = um for all u ∈ F . Then we have

za = zϕ = z−m for all z ∈ Z(G)

and
xa ≡ xϕ ≡ x−m mod Sp(n, q) for all x ∈ G.
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Hence the function f ∈ A(G) that is defined by

f(x) = xm · xa for all x ∈ G

maps G into Sp(n, q) and satisfies f(z) = 1 for all z ∈ Z(G). We also find
f(xz) = f(x) · f(z) for all x ∈ G, z ∈ Z(G). Lemma 2.1, (2) ⇒ (1), yields that f
is a polynomial function. From this we obtain σa ∈ I(G). Proposition 3.15 yields
I(G/Y ) = A(G/Y ).

Item (2) will follow from Proposition 3.21. We recall that Z is cyclic, and
we note that there exists d ∈ GF(q) such that H := 〈diag(d, 1, . . . , d, 1)〉 is a
complement for G′ in G. Since H ∩Z = {1n}, we have I(G/Y ) = E(G/Y ) if and
only if |(G/Y ) : (G/Y )′| and |Z(G/Y )| are relatively prime by Proposition 3.21.
We assume gcd(|(G/Y ) : (G/Y )′|, |Z(G/Y )|) = 1, and we show that

(4.16) (G/Y )′ = G/Y or Z(G/Y ) is trivial.

By the assumption, we have Z(G/Y ) ⊆ (G/Y )′. Then Z is contained in G′Y ,
which yields

(4.17) G′Z = G′Y.

Hence we have |Z|
|Z∩G′| = |Y |

|Y ∩G′| . By Z ∩G′ = 〈−1n〉, we then obtain that

(4.18) |Z/Y | divides 2.

Since 〈d ∗ 1n〉 ⊆ Z and Z ∩ G′ = 〈−1n〉, we have that |G : (G′Z)| divides 2.
By (4.17), this yields that

(4.19) |(G/Y ) : (G/Y )′| divides 2.

The assumption gcd(|(G/Y ) : (G/Y )′|, |Z(G/Y )|) = 1 together with (4.18) and
(4.19) yield (4.16).

For proving the converse, we assume that (4.16) holds. Since both
(G/Y )/(G/Y )′ and Z(G/Y ) are cyclic, Corollary 3.18 yields I(G/Y ) =
E(G/Y ). �

The size of I(G/Y ) for the groups in Theorem 4.22 can be obtained from
Theorem 3.4.

Corollary 4.23. Let n be an even natural number with n ≥ 2, let q be
a prime power such that (n, q) 6∈ {(2, 2), (2, 3), (4, 2)}. Let w be a primitive
element of GF(q), and let G be a group such that Sp(n, q) ⊆ G ⊆ Sp(n, q) ·
〈diag(w, 1, . . . , w, 1)〉. Then we have I(G) = E(G) if and only if G = Sp(n, q).

Proof: This is immediate from Theorem 4.22 (2). �
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4. Orthogonal groups

In Section 9 of Appendix A, we distinguish three types of orthogonal matrix
groups, O◦(n, q), O+(n, q), and O−(n, q) for odd prime powers q. While there are
some differences in the lattice of normal subgroups in these three cases, it turns
out that the polynomial functions behave quite similar.

Theorem 4.24. Let n be a natural number with n ≥ 5, let q be an odd prime
power, and let ε ∈ {◦, +,−}. Then we have:

(1) |I(Oε(n, q))| = |Ωε(n, q)|2·|Ωε(n,q)|−1 · 2;
(2) |A(Oε(n, q))| = 2 · |I(Oε(n, q))|.

Formulae for the size of Ωε(n, q) can be obtained from the Lemmas A.15, A.16,
and A.17.

Proof of Theorem 4.24: By Proposition A.14, G := Oε(n, q) has property
(A) and

G′ = Ωε(n, q) and Z(G) = 〈−1n〉.
Since G/G′ is elementary abelian of order 4 and |Z(G)| = 2, Lemma 2.12 yields

|(G′ : G)I(G)| = |G′||G|/2−1.

Now (1) follows from |I(G/G′)| = 2 and |I(G)| = |(G′ : G)I(G)| · |I(G/G′)|.
Next we prove (2). For f ∈ A(G), we let f̄ : G/G′ → G/G′, xG′ 7→ f(x)G′.

Then f̄ is well-defined, and

ϕ : A(G) → A(G/G′), f → f̄

is a homomorphism by Lemma 1.6. We show

(4.20) |ϕ(A(G))| = 4.

By Lemma A.18 we have a unique normal subgroup H of G with |H : G′| = 2
that is characteristic. Hence Aut G acts on G/G′ as {( 1 0

0 1 ) , ( 1 1
0 1 )} acts on the

vector-space (Z2)
2. Thus we obtain (4.20). We show that

(4.21) (G′ : G)A(G) = (G′ : G)I(G).

The inclusion “⊇” is obvious. For proving “⊆”, we let f ∈ A(G) such that
f(G) ⊆ G′. Then we have k ∈ N and α1, . . . , αk ∈ Aut G such that

f(x) = α1(x) · · ·αk(x) for all x ∈ G.

Since the automorphisms α1, . . . , αk fix H with |H : G′| = 2 and since f(H) ⊆ G′

by assumption, we obtain that k is even. By |Z(G)| = 2, we then have f(z) = 1
for all z ∈ Z(G). Since f is a product of automorphisms, we have f(xz) =
f(x) · f(z) for all x ∈ G, z ∈ Z(G). Lemma 2.1, (2) ⇒ (1), yields f ∈ I(G).
Hence (4.21) is proved. From |I(G/G′)| = 2 and (4.20) together with (4.21) we
obtain |A(G)| = 2 · |I(G)|. The proof is complete. �
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When determining |A(G)| for G := Oε(n, q) in the theorem above, we were
lucky that all elements of A(G) that map G into G′ are polynomial functions
(see (4.21)). We note that (G′ : G)I(G) < (G′ : G)E(G). Hence we are not able to

determine |E(G)|. However, we know that A(G) < E(G).
The next result describes relations between endomorphism near-rings for sub-

groups of Oε(n, q).

Theorem 4.25. Let n be a natural number with n ≥ 5, let q be an odd
prime power, and let ε ∈ {◦, +,−}. We assume that G is a group such that
Ωε(n, q) ⊆ G ⊆ Oε(n, q). Then we have:

(1) I(G) = A(G) if and only if G < Oε(n, q);
(2) I(G) = E(G) if and only if G = Ωε(n, q) or −1n 6∈ G;
(3) A(G) = E(G) if and only if I(G) = E(G).

As in the corresponding results for classical groups in the previous sections,
item (2) of the theorem above simply states that I(G) = E(G) if and only if
G = G′ or Z(G) = {1}.

We note that for groups G that satisfy the assumptions of the previous the-
orem, |I(G)| and |A(G)| are given in Theorem 4.24 or can be obtained from
Theorem 3.4.

Proof of Theorem 4.25: For ε ∈ {◦, +,−} fixed, we write O := Oε(n, q),
S := SOε(n, q), and Ω := Ωε(n, q). By Proposition A.14, G has property (A),
and we have

G′ = Ω and Z(G) = G ∩ 〈−1n〉.
For proving (1), we note that |G : G′| ≤ 2 and |Z(G)| ≤ 2 for G < O. Then
Corollary 3.14 yields I(G) = A(G). By Theorem 4.24, we have I(O) < A(O).
This completes the proof of (1).

Next we will show (2). If G = Ω or Z(G) = {1n}, then we have I(G) = E(G)
by Corollary 3.18. Since I(O) < E(O) by (1), it remains to prove that I(G) <
E(G) for G such that |G : Ω| = 2 and Z(G) = 〈−1n〉. First we assume that
−1n 6∈ Ω. Then G is the direct product of Ω and 〈−1n〉. Since Ω has even order
by Lemma A.15, A.16, A.17, respectively, there exists an involution i in Ω. We
have an endomorphism ρ of G such that ρ(−1n) = i and Ker(ρ) = Ω. Then Z(G)
is not invariant under ρ. Hence ρ is not in I(G), and we have I(G) < E(G).

Next we assume −1n ∈ Ω. By Proposition A.14, Ω has a complement H in
G. Since Z(G) and H intersect trivially by assumption and since |G : G′| =
|Z(G)| = 2, Theorem 3.20 yields I(G) < E(G). Item (2) is proved.

For (3), it suffices to show that A(O) < E(O). Since Ω has a complement in
O by Proposition A.14, the homomorphism theorem yields

|E(O)| = |(Ω : O)E(O)| · |E(O/Ω)|.
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We have |E(O/Ω)| = 16 and (Ω : O)I(O) ⊆ (Ω : O)E(O). Hence we have |E(O)| ≥
8 · |I(O)|. Theorem 4.24 yields (3). The lemma is proved. �

By Lemma A.19, we have that the orthogonal groups on vector spaces over
fields of even characteristic are extensions of a non-abelian simple groups by the
cyclic group of order 2. Furthermore, these groups are centerless. Due to this
very plain structure, our questions concerning endomorphism near-rings are easily
answered.

Theorem 4.26. Let V be a vector space of dimension at least 6 over a finite
field F of even characteristic, and let Q be a non-degenerate quadratic form on
V over F . We write O := I(V, F, Q) and Ω := Ω(V, F, Q). Then we have:

(1) |I(Ω)| = |Ω||Ω|−1 and |I(O)| = 2 · |Ω|2·|Ω|−1;
(2) I(Ω) = E(Ω) and I(O) = E(O).

The assertions on Ω in the previous theorem follow immediately from [Frö58]
since Ω is non-abelian and simple. By this work, all functions on Ω are polyno-
mial. Since Ω is the unique minimal normal subgroup in O, the results on I(O)
and E(O) are readily obtained by the methods of [FK95]. For completeness and
because of its brevity, we also give a proof using our own arguments.

Proof of Theorem 4.26: The group Ω is simple and non-abelian by
Lemma A.19. Hence Theorem 3.4 and Corollary 3.18 yield the assertions on
Ω. Since, by Lemma A.19, O is centerless and |O : Ω| = 2, Lemma 3.1 yields
that O has property (A). The results on O follow from Theorem 3.4 and Corol-
lary 3.18. �



CHAPTER 5

Polynomial functions on certain semidirect products

We shall determine the number of polynomial functions on all finite solvable
groups all of whose abelian subgroups are cyclic and on all Frobenius comple-
ments. Then the problem of computing |I(G)| for a Frobenius group G with
kernel N is reduced to that of computing the number of restrictions of functions
in I(G) to N . The starting point for all this is a description due to E. Aichinger
of the polynomial functions on certain semidirect products that have a Frobenius
group as quotient.

1. A characterization

We rewrite E. Aichinger’s original result on the number of polynomial func-
tions in such a way that we have a formula for |I(G)|.

Theorem 5.1 ([Aic02, Theorem 1.1]). Let G be a finite group. We assume
that G = AB is the semidirect product of a normal subgroup A and a subgroup B.
We let Z := CB(A), and we assume that the following conditions are satisfied:

(1) For all b ∈ B \ Z, we have CA(b) = {1};
(2) For all normal subgroups X, Y of B with X ≺B Y ⊆ Z, we have

CB(Y/X) 6⊆ Z.

Let the set S be defined by

S := {f |A | f ∈ I(G)}.

Then we have

|I(G)| = |I(B)| · |S||B:Z| · |A||B:Z|−1.

In the following we use the notation of the theorem above. We note that
I(A) ⊆ S ⊆ A(A), where the latter denotes the subgroup of M(A) that is
generated by all automorphisms of the group A. Hence we have bounds for the
size of S,

(5.1) |I(A)| ≤ |S| ≤ |A(A)|.

If A is abelian and every element of B acts on A as an automorphism of the form
a 7→ ar for some r ∈ Z, then the size of S is given by |S| = exp A. We will use
this fact for cyclic groups A in Section 3. See Section 7 for more information on

73
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S if A is abelian. In Section 8 we will determine S for a certain class of groups
AB with A non-abelian.

We have to add some comments on the hypotheses of Theorem 5.1. In (1),
the condition CA(b) = {1} is equivalent to

(5.2) ab 6= a for all a ∈ A, a 6= 1.

Some authors express (5.2) by saying that the map ϕb : A → A, a 7→ ab, is a
fixed-point-free automorphism on A with the understanding that 1 is the only
fixed point of ϕb in A.

In Lemma 5.4, we will show that for |B| > 1, condition (1) of Theorem 5.1 can
be replaced by the assumption that G/Z is a Frobenius group with complement
B/Z (see Appendix B for definitions).

Our condition (2) of Theorem 5.1 is weaker than the original formulation (2′)
in [Aic02] which is stated as:

(2′) For all normal subgroups X, Y of B with X ≺B Y ⊆ Z, we have
CB(Y/X) > Z.

The proof of Theorem 5.1 as given in [Aic02] actually uses only the weaker

statement (2). See the definition of the function i
(w)
2 in the proof of Lemma 2.1

in [Aic02, p.66].
As we did with the theorem above, we restate E. Aichinger’s description of

the elements of P (G) as a description of the elements of I(G). We will not use
this result in this thesis.

Corollary 5.2 ([Aic02, Corollary 2.3]). Let G = AB be a group satisfying
the assumptions of Theorem 5.1, let Z := CB(A), let k := |B : Z|, let b0 =
1, b1, . . . , bk−1 be a transversal for the cosets of Z in B. For a function f : G → A,
the following are equivalent:

(1) f ∈ I(G);
(2) We have f(1) = 1, and for every j ∈ {0, 1, . . . , k−1} there is pj ∈ P (G)

such that for all a ∈ A, z ∈ Z: f(abjz) = pj(a).

2. A description of groups that satisfy the assumptions of
Theorem 5.1

It is not difficult to see that Theorem 5.1 applies to Frobenius groups.

Lemma 5.3. Let G be a Frobenius group with Frobenius kernel A and Frobe-
nius complement B. Then G, A, and B satisfy conditions (1) and (2) of Theo-
rem 5.1.

Proof: We have CB(A) = {1} by the definition of Frobenius complement and
kernel. Thus CA(b) = {1} for all b ∈ B, b 6= 1. Hence we have condition (1) of
Theorem 5.1, and condition (2) is trivially satisfied. �
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Frobenius groups and polynomial functions have also been considered in a dif-
ferent context. J. Ecker characterized the Frobenius groups G with the property
that all compatible functions on G are polynomial functions [Eck03].

Let G = AB be a semidirect product. The assumptions of Theorem 5.1 are
certainly satisfied if |B| = 1. However the assertion of the theorem is trivial for
this case. For |B| > 1, condition (2) of Theorem 5.1 yields B > CB(A). Hence the
following lemma shows that Theorem 5.1 is of interest in the case of extensions
by Frobenius groups only.

Lemma 5.4. Let G = AB be the semidirect product of a normal subgroup A
and a subgroup B. Let Z := CB(A). Then the following are equivalent:

(1) B > Z and CA(b) = {1} for all b ∈ B \ Z;
(2) G/Z is a Frobenius group with Frobenius complement B/Z and Frobenius

kernel (AZ)/Z.

Proof: We write Ū := (UZ)/Z for subgroups U of G and x̄ := xZ for x ∈ G.
(1) ⇒ (2): We assume (1) and show that B̄ ∩ B̄ḡ = {1̄} for all ḡ ∈ Ḡ \ B̄. To

this end, let g ∈ G \B, b ∈ B such that bg ∈ B. By g 6∈ B, we have a ∈ A, a 6= 1,
c ∈ B such that g = ac. Then we obtain ba ∈ B, which yields [b, a] ∈ B. Since A
is normal in G, we have [b, a] ∈ A. From [b, a] ∈ A ∩ B = {1} we finally obtain
that a centralizes b. By (1), b is in Z. Thus B̄ ∩ B̄ḡ = {1̄}, and Ḡ is a Frobenius
group with complement B̄ 6= {1̄} and kernel Ā.

(2) ⇒ (1): We assume that Ḡ is a Frobenius group with complement B̄. Then
B > Z and we have B ∩ Ba ⊆ Z for all a ∈ A, a 6= 1. Thus if ba = b for some
a ∈ A, a 6= 1, then b ∈ Z. This proves (1). �

We note that as a Frobenius kernel the group A of Theorem 5.1 is nilpotent
(see Theorem B.4). For the structure of the Frobenius complement B/Z see
Appendix B.

By the next lemma, condition (2) of Theorem 5.1 is trivially fulfilled if B is
nilpotent and the product AB is not direct.

Lemma 5.5. Let G = AB be the semidirect product of a normal subgroup A
and a subgroup B. We assume that B is nilpotent and B > Z. Then we have:

(1) If CA(b) = {1} for all b ∈ B \ Z, then B/Z is either cyclic or the direct
product of a cyclic group of odd order and a generalized quaternion group;

(2) For all normal subgroups X, Y of B with X ≺B Y ⊆ Z, we have
CB(Y/X) 6⊆ Z.

Proof: For (1), we note that B/Z is nilpotent and a Frobenius complement by
Lemma 5.4. Hence B/Z is the direct product of its Sylow p-subgroups which are
cyclic for p odd, cyclic or generalized quaternion groups for p = 2 by Theorem B.4.
Thus we have (1). Item (2) is immediate from B > Z and the fact that B
centralizes Y/X for all normal subgroups X, Y of B with X ≺B Y ⊆ Z. �
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3. Extensions of cyclic groups

From the description of polynomial functions in Section 1, we will obtain
results on arbitrary semidirect products of a cyclic group and a group of coprime
order. One of our goals is to describe I(G) for metacyclic groups G where |G′|
and |G : G′| are relatively prime (see Corollary 5.9). We start with a more general
setting.

Theorem 5.6. Let G be a finite group, and let A be a cyclic normal subgroup
of G such that |A| and |G : A| are relatively prime. Let M be the set of Sylow
subgroups of A. Then we have

(5.3) |I(G)| = |I(G/A)| · |A| · (
∏

P∈M

|P ||G:CG(P )|−1)2.

We note that unlike for Theorem 5.1, we do not require any additional con-
ditions on the structure of G/A in the statement of Theorem 5.6. For its proof,
we will use the following auxiliary result.

Lemma 5.7. Let G be a finite group, let p be a prime, and let P be a Sylow
p-subgroup of G. We assume that P is cyclic and normal in G. Let N := {x ∈
P | xp = 1}, and let C := CG(P ). Then we have:

(1) C = CG(N), and G/C is a cyclic group whose order divides p− 1;
(2) For all b ∈ G \ C, we have CP (b) = {1};
(3) |I(G)| = |I(G/P )| · |P |2·|G:C|−1.

Proof: Let G, p, and P satisfy the assumptions of the lemma. For proving (1),
we let b ∈ G. We will show that

(5.4) CN(b) > {1} implies b ∈ C.

Let a ∈ CN(b), a 6= 1. Since P is cyclic, we have r ∈ N such that xb = xr

for all x ∈ P . Hence ab = a yields p|r − 1. Let f ∈ N such that |P | = pf .

Since (1 + dp)pf−1 ≡ 1 mod pf for all d ∈ N by [Hup67, p.83, Hilfssatz 13.18],

we have bpf−1 ∈ C. Then b is in C since P ⊆ C and, consequently, p does not
divide |G : C|. Thus (5.4) is proved. From this we obtain CG(N) ⊆ C. Since
the inclusion “⊇” is obviously true by the fact that P is a p-group, we have
CG(N) = C. The first part of (1) is proved. Now G/C can be embedded into
Aut N , which is a cyclic group of order p − 1. Hence we have the second part
of (1).

Item (2) follows from (5.4) since P is a p-group.
We use Theorem 5.1 to prove (3). By the Schur-Zassenhaus Theorem [Rob96,

9.1.2], we have a complement K for P in C. Since P is central in C, the subgroup
K is normal in C. Since the orders of P and K are relatively prime, K is
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characteristic in C. Hence K is normal in G. By Lemma 1.7, we then have

(5.5) |I(G)| = |I(G/P )| · |I(G/K)|
|I(G/(PK))|

.

By (2), G/K is a Frobenius group with a cyclic Frobenius kernel of order |P |
and a cyclic Frobenius complement of order |G : C|. Theorem 5.1 (cf. [Aic02,
Theorem 4.1]) yields

(5.6) |I(G/K)| = |G : C| · |P |2·|G:C|−1.

By |I(G/(PK))| = |G : C|, assertion (3) follows from (5.5) and (5.6). The lemma
is proved. �

Proof of Theorem 5.6: Let G and A satisfy the assumptions of the theorem.
We will prove (5.3) by induction on the number of prime divisors of |A|. For
|A| = 1 the theorem is trivially true. Now we assume |A| > 1. Let Q be a
non-trivial Sylow subgroup of A. From Lemma 5.7 (3) we obtain

(5.7) |I(G)| = |I(G/Q)| · |Q| · (|Q||G:CG(Q)|−1)2.

Let M denote the set of Sylow subgroups of A. Then the Sylow subgroups of
A/Q are given by (PQ)/Q for P ∈ M . Since the number of prime divisors of
|A : Q| is smaller than that of |A|, we may apply the induction assumption to
obtain

(5.8) |I(G/Q)| = |I(G/A)| · |A/Q| · (
∏

P∈M\{Q}

|P ||G:CG(P )|−1)2.

Here we have used that G/A is isomorphic to (G/Q)/(A/Q) and that
CG/Q((PQ)/Q) = CG(P )/Q for P ∈ M \ {Q}. From (5.7) and (5.8) we ob-
tain (5.3). The theorem is proved. �

For groups with a cyclic normal subgroup, whose order is coprime to its index,
it is easy to decide whether all endomorphism are polynomial functions. It is not
even necessary to use Corollary 5.2 for this case.

Theorem 5.8. Let G be a finite group, and let A be a cyclic normal subgroup
of G such that |A| and |G : A| are relatively prime. Then we have I(G) = E(G)
if and only if I(G/A) = E(G/A).

Proof: Since A is cyclic, we have I(A) = E(A). Now the result follows from
Proposition 1.14. �

From Theorem 5.6 we obtain a formula for the number of polynomial func-
tions on those groups all of whose Sylow subgroups are cyclic. By Theorem B.5,
these are exactly the groups G that have a presentation as given in the following
Corollary 5.9.
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Corollary 5.9. We let m, n, r ∈ N such that gcd(m,n(r − 1)) = 1 and
m|rn − 1. Let G be the group defined by

G := 〈a, b | am = bn = 1, ab = ar〉.
For a prime divisor p of m, let mp denote the maximal power of p that divides
m, and let tp denote the multiplicative order of r modulo p. Then we have

|I(G)| = mn · (
∏

p|m, p prime

mp
tp−1)2.

In [MM94, Theorem 3.11], the size of I(G) has been determined by a different
approach. We state the formula given there using the parameters of Corollary 5.9:

|I(G)| = mn · (
n∏

i=2

si)
2,

where si is the additive order of (r − 1)(r2 − 1) · · · (ri−1 − 1) modulo m.
We note that G is the semidirect product of 〈a〉 and 〈b〉 and that the orders

of a and b are relatively prime. In particular, G is metacyclic. A group H is said
to be metacyclic if it has a cyclic normal subgroup N such that H/N is cyclic.

Proof of Corollary 5.9: Let A := 〈a〉, B := 〈b〉. By assumption, |G : A| =
|B| = n and |A| = m are relatively prime. We apply Theorem 5.6.

Let p be a prime divisor of m, and let P be a Sylow p-subgroup of A. Then
P has order mp. Let tp be the smallest positive integer such that p|rtp − 1. Then
we have |G : CG({x ∈ P | xp = 1})| = tp, which yields |G : CG(P )| = tp by
Lemma 5.7 (1). From Theorem 5.6 we obtain

|I(G)| = |I(B)| ·m · (
∏

p|m, p prime

mp
tp−1)2.

Since B is cyclic, we have |I(B)| = n and the result follows. �

Corollary 5.10 ([MM94, Theorem 3.12], [LP95, Theorem 3.2]).
Let G be a group as defined in Corollary 5.9. Then we have I(G) = E(G).

We note that, by the previous result, all normal subgroups of G as in Corol-
lary 5.9 are fully invariant (see Proposition 1.9).

The non-abelian metacyclic groups G that satisfy I(G) = E(G) have been
characterized in 2 papers by G. L. Peterson. These groups are semidirect prod-
ucts of 2 cyclic groups (not necessarily of coprime order) [Pet95, Theorem
4.2], [Pet96].

Proof of Corollary 5.10: Let a ∈ G be as in Corollary 5.9, and let A :=
〈a〉. By the definition of G, we have that |A| and |G : A| are relatively prime.
Since G/A is cyclic, we have I(G/A) = E(G/A). Hence the result follows from
Theorem 5.8. �
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We mention that the previous Corollaries 5.9 and 5.10 apply to the dihedral
group D2m of order 2m for odd m. We have |I(D2m)| = 2m3 and I(D2m) =
E(D2m) (see [LM72]). In particular, we obtain |I(S3)| = 54 and I(S3) = E(S3).
For investigating polynomial functions on D2m for even m, a different approach
is necessary (see [LM73]).

4. Extensions of metacyclic groups

We consider groups G that have a normal subgroup N all of whose Sylow
subgroups are cyclic.

Theorem 5.11. Let G be a finite group, and let N be a normal subgroup of G
such that all Sylow subgroups of N are cyclic. We assume that |N | and |G : N |
are relatively prime. Let M1 denote the set of Sylow subgroups of N ′, and let M2

denote the set of Sylow subgroups of N/N ′. Then we have

|I(G)| = |I(G/N)| · |N | · (
∏

P∈M1

|P ||G:CG(P )|−1)2 · (
∏

P∈M2

|P ||G/N ′:CG/N′ (P )|−1)2.

We note that N ′ and N/N ′ are in fact cyclic of relatively prime orders and
that N has a presentation as given in Corollary 5.9. Hence the formula for |I(G)|
that is given in this corollary can be obtained from Theorem 5.11 for G = N and
the appropriate choice of the parameter m, n, r.

Proof of Theorem 5.11: We will obtain the result by applying Theorem 5.6
twice. By Theorem B.5, N ′ is cyclic and gcd(|N ′|, |N : N ′|) = 1. Hence |N ′| and
|G : N ′| are relatively prime. By Theorem 5.6, we obtain

(5.9) |I(G)| = |I(G/N ′)| · |N ′| · (
∏

P∈M1

|P ||G:CG(P )|−1)2.

Since N/N ′ is cyclic, Theorem 5.6 yields

(5.10) |I(G/N ′)| = |I(G/N)| · |N/N ′| · (
∏

P∈M2

|P ||G/N ′:CG/N′ (P )|−1)2.

The result follows from (5.9) and (5.10). �

We give a criterion for I(G) = E(G) for the groups that are dealt with in
Theorem 5.11.

Theorem 5.12. Let G be a finite group, and let N be a normal subgroup of G
such that all Sylow subgroups of N are cyclic. We assume that |N | and |G : N | are
relatively prime. Then we have I(G) = E(G) if and only if I(G/N) = E(G/N).

Proof: By Corollary 5.10, we have I(N) = E(N). Proposition 1.14 yields
the result. �
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5. Solvable Frobenius complements

Let G be a finite solvable group all of whose abelian subgroups are cyclic.
We note that every solvable Frobenius complement satisfies this assumption (see
Theorem B.4 (2) in Appendix B). By Theorem B.6, the group G is some exten-
sion of a metacyclic group. The results that we have developed in this chapter so
far are almost sufficient to compute |I(G)|. What we still need is a description
of the polynomial functions on a certain quotient of G which is isomorphic to
one of the following: a generalized quaternion group (see [Mal73] and Exam-
ple 5.28), SL(2, 3) (see Proposition 5.24), or the binary octahedral group (see
Proposition 5.26).

In the following we consider groups of types I to IV according to the classi-
fication in Theorem B.6. Since for the groups of type I all Sylow subgroups are
cyclic, they are covered by Corollary 5.9. Next we apply Theorem 5.11 to the
groups of type II.

Theorem 5.13. Let G be a group of type II. Then G has a normal subgroup
N such that all Sylow subgroups of N are cyclic, |N | is odd, and G/N is a
generalized quaternion group of order 2t+1 with t ≥ 2. Let M1 denote the set of
Sylow subgroups of N ′, and let M2 denote the set of Sylow subgroups of N/N ′.
Then we have

|I(G)| = 23t−2 · |N | · (
∏

P∈M1

|P ||G:CG(P )|−1)2 · (
∏

P∈M2

|P ||G/N ′:CG/N′ (P )|−1)2.

We will prove Theorem 5.13 together with the following result.

Theorem 5.14. Let G be a group of type II. Then we have I(G) < E(G).

Proof of Theorem 5.13 and 5.14: Let a, b, q be generators of the group
G with relations as given in Theorem B.6. Then N := 〈a, b2t〉 satisfies the
assumptions of the theorem. The generalized quaternion group Q := 〈bn/2t

, q〉 of
order 2t+1 is a complement for N in G. The size of I(Q) is given as |I(Q)| = 23t−2

in [Mal73]. Then Theorem 5.13 follows from Theorem 5.11.
Since I(N) = E(N) by Corollary 5.10 and I(Q) < E(Q) by [Mal73], Propo-

sition 1.14, (1) ⇒ (2), yields I(NQ) < E(NQ). Theorem 5.14 is proved. �

In the case of groups of type III and IV, we make use of the existence of
normal subgroups of relatively prime order and of Lemma 1.7.

Theorem 5.15. Let G be a group of type III, and let Q be the normal Sylow
2-subgroup of G, which is isomorphic to the quaternion group of order 8. Then
all Sylow subgroups of G/Q are cyclic, and we have

|I(G)| = |I(G/Q)| · 222.
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Proof: Let a, b, p, q be generators of the group G with relations as given in
Theorem B.6. Then Q := 〈p, q〉 is the normal Sylow 2-subgroup of G, which is
isomorphic to the quaternion group of order 8. We note that 〈a, b〉 is a comple-
ment for Q in G and that all Sylow subgroups of 〈a, b〉 are cyclic. Let H := 〈a, b3〉.
Then H is normal in G, and H has odd order. By Lemma 1.7, we have

|I(G)| = |I(G/Q)| · |I(G/H)|
|I(G/(HQ))|

.

Since HQ has index 3 in G, we find |I(G/(HQ))| = 3. The quotient G/H is
isomorphic to SL(2, 3). Since we have |I(SL(2, 3))| = 3 · 222 by Proposition 5.24,
the result follows. �

Theorem 5.16. Let G be a group of type IV, and let Q := 〈p, q〉 be the normal
subgroup of G, which is isomorphic to the quaternion group of order 8. Then all
Sylow subgroups of G/Q are cyclic, |G : Q| is 2 times an odd number, and we
have

|I(G)| = |I(G/Q)| · 257.

Proof: Let a, b, p, q, z be generators of the group G with relations as given
in Theorem B.6. We use the same reasoning as in the case of Theorem 5.15. We
consider the normal subgroups Q := 〈p, q〉 and H := 〈a, b3〉 of G. Then Q is a
quaternion group of order 8, all Sylow subgroups of H are cyclic, and H has odd
order. By Lemma 1.7, we have

|I(G)| = |I(G/Q)| · |I(G/H)|
|I(G/(HQ))|

.

The quotient G/(HQ) is isomorphic to S3. By Corollary 5.9, we have |I(S3)| = 54.
The quotient G/H is an extension of SL(2, 3), the so called binary octahedral
group of order 48. By Proposition 5.26, we have |I(G/H)| = 33 · 258. Hence the
result follows. �

We note that for G/Q as in Theorems 5.15 and 5.16, the size of I(G/Q) can
be obtained from Corollary 5.9.

6. Non-solvable Frobenius complements

Let G be a non-solvable Frobenius complement. By Appendix B, Theo-
rem B.7, there is a normal subgroup H in G with |G : H| ≤ 2 such that H is
isomorphic to the direct product of SL(2, 5) and a group M with gcd(|M |, 30) = 1
such that all Sylow subgroups of M are cyclic. In particular, G has a normal
subgroup S that is isomorphic to SL(2, 5).

Hence |I(G)| follows immediately from our results on groups with prop-
erty (A) (see Theorem 3.4) and on metacyclic groups (see Corollary 5.9) together
with Lemma 1.7.
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Theorem 5.17. Let G be a Frobenius complement with a normal subgroup S
that is isomorphic to SL(2, 5).

(1) If |G : S| is odd, then |I(G)| = |I(G/S)| · 12059 · 2.
(2) If |G : S| is even, then |I(G)| = |I(G/S)| · 120119.

We note that all Sylow subgroups of G/S as in Theorem 5.17 are cyclic.
Hence |I(G/S)| can be obtained from Corollary 5.9. We will prove Theorem 5.17
together with the next result.

Theorem 5.18. Let G be a non-solvable Frobenius complement. Then we
have I(G) = E(G).

Proof of Theorem 5.17 and 5.18 : Let G be a non-solvable Frobenius
complement. By Theorem B.7, we have a unique normal subgroup S in G such
that S is isomorphic to SL(2, 5).

First we assume that G/S has odd order. Then S has a direct complement
M in G and gcd(|S|, |M |) = 1 by Theorem B.7. Hence |I(G)| = |I(S)| · |I(M)|
by Lemma 1.7 (1). By Corollary 4.4, we have |I(SL(2, 5))| = 12059 · 2. Thus
Theorem 5.17 (1) is proved.

We note that I(S) = E(S) by Theorem 4.5 (2) and that I(M) = E(M) by
Corollary 5.10. Since SM is the direct product of groups S, M of relatively
prime order, we then have I(SM) = E(SM) by Lemma 1.7 (3). This proves
Theorem 5.18 for the case that |G : S| is odd.

Next we assume that G/S has even order. By Theorem B.7, we have a normal
subgroup M of G such that gcd(|S|, |M |) = 1 and |G : SM | = 2. Lemma 1.7
yields

(5.11) |I(G)| = |I(G/S)| · |I(G/M)|
2

.

It remains to determine |I(G/M)|. We note that M has a complement H in G
with S ⊆ H. We show that H has property (A) (see Chapter 3) so that we can
apply Theorem 3.4 to obtain |I(H)|. To this end, we prove that S and Z := Z(S)
are the only non-trivial, proper normal subgroups of H.

Seeking a contradiction, we let N be a proper normal subgroup of H such
that N 6⊆ S. Then we have NS = H by |H : S| = 2. Thus

(5.12) H/N ∼= S/(N ∩ S).

Since S is quasisimple, we have N ∩ S ⊆ Z. Thus |N ∩ S| ≤ 2. First we assume
that N ∩ S = {1}. Then |N | = 2 by (5.12). Now NZ is an elementary abelian
group of order 4. This contradicts the fact that the Sylow 2-subgroups of H are
generalized quaternion groups of order 16 by Theorem B.4 (2).

Next we assume that N ∩ S = Z. By (5.12), we have |N | = 4 and that H/N
is isomorphic to S/Z, that is to A5. Since N ⊆ CH(N) and since H/CH(N) can
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be embedded into Aut N , we obtain H = CH(N). Then N is a central subgroup
of order 4 in H. Again we obtain a contradiction since the Sylow 2-subgroups
of H are generalized quaternion groups. Thus all proper normal subgroups of H
are contained in S.

The normal subgroups of S are given by {1}, Z, S. By Z = Z(H) and S =
H ′, all of them are normal in H, and H has property (A) (see Chapter 3).
Theorem 3.4 yields

|I(H)| = |S||H:Z|−1 · lcm(exp H/S, exp Z).

Thus |I(H)| = 120119 ·2. Since G/M is isomorphic to H, Theorem 5.17 (2) follows
from (5.11).

We will prove I(G) = E(G) by using Lemma 1.7 (3). We note that S and M
are fully invariant. The quotient G/M is isomorphic to H. We show

(5.13) I(H) = E(H).

We recall that the normal subgroups of H are given by {1}, Z(H), H ′, H, and
that we have |H : H ′| = |Z(H)| = 2. Let α be an endomorphism of H. If α is
an automorphism of H, then α ∈ I(H) by Corollary 3.14. If Ker(α) = Z(H),
then α(H) has index 2 in H. Hence α(H) is normal in H which yields the
contradiction α(H) = H ′. Next we assume Ker(α) ⊇ H ′. Then |α(H)| ≤ 2.
We note that central element of order 2 is the unique involution in H since the
Sylow 2-subgroups of H are generalized quaternion groups. Hence α(H) ⊆ Z. By
Lemma 3.23, we have α ∈ I(G). Thus all endomorphisms of H are polynomial
functions, and (5.13) is proved.

Since all Sylow subgroups of G/S are cyclic, Corollary 5.10 yields I(G/S) =
E(G/S). Clearly all endomorphisms of G/(SM) are polynomial functions. To-
gether with (5.13), Lemma 1.7 (3) yields I(G) = E(G). This completes the proof
of Theorem 5.18 �

7. Frobenius actions on abelian groups

Let G = AB be a group with A abelian such that the assumptions of The-
orem 5.1 are satisfied. We note that A is necessarily abelian if the order of
B/CB(A) is even (see Lemma B.3).

In [Aic02] it is already noted that an abelian group A is an R-module for the
group ring R := Ze[B/CB(A)] where e := exp A and B/CB(A) acts on A by

(bCB(A)) ∗ a := ab for all a ∈ A, b ∈ B.

See Appendix C for notation and basic results on modules over group rings. For
r ∈ R, we define a map rA : A → A, x 7→ r ∗ x. Then h : R → End(A), r 7→ rA,
is a ring homomorphism with kernel AnnR(A). We have

{f |A | f ∈ I(G)} = {rA | r ∈ R},
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that is S = h(R) and

(5.14) |{f |A | f ∈ I(G)}| = |R : AnnR(A)|.

By Lemma 5.4 and by Lemma B.2, the order of B/CB(A) and e are relatively
prime. In Appendix C we present a decomposition of the R-module A and show
that AnnR(A) is the intersection of certain powers of maximal ideals in R (see
Lemmas C.6, C.5). Thus we will obtain a formula for |R : AnnR(A)| in terms of
the indecomposable summands of A.

In the sequel we consider Frobenius groups with abelian kernel and comple-
ment which is either cyclic, the quaternion group of order 8, or SL(2, 3). For
these groups, the action of the complement on the kernel is easy to describe. See
Appendix C, Section 3.

Proposition 5.19. Let H be a Frobenius group with abelian Frobenius ker-
nel V of exponent e and cyclic Frobenius complement G. Let R := Ze[G],
and let M1, . . . ,Mn be pairwise non-isomorphic simple R-modules such that
V = M1(V ) u · · · u Mn(V ). For i ∈ {1, . . . , n}, let qi := exp Mi(V ), and let
fi be the rank of Mi as Ze-module. Then we have

|I(H)| = |G| · |V ||G|−1 · (
n∏

i=1

qfi

i )|G|.

We note that by Lemma C.6, every abelian Frobenius kernel V has a decom-
position as required in the proposition above.

Proof: The result follows from

(5.15) |R : AnnR(V )| =
n∏

i=1

qi
fi

by (5.14) and Theorem 5.1. By Lemma B.2, e and |G| are relatively prime.
Hence we may apply the results of Appendix C, Section 2. Let M be a simple
R-module of exponent p and rank f over Ze. We note that, since G is abelian, R
is a commutative ring. Then M(R/pR) is a field of order |M | by Theorem C.4.
Further R/AnnR(M) is isomorphic to GF(pf ). Let k ∈ N such that exp M(V ) =
pk. Lemma C.5 yields AnnR(M(V )) = (AnnR(M))k and |R : AnnR(M(V ))| =
pkf . By Lemma C.6, we then have (5.15). The proposition is proved. �

Example 5.20. As an application of Proposition 5.19, we determine the
number of polynomial functions on A4, the alternating group on 4 elements.
We note that A4 is a Frobenius group with an elementary abelian kernel K4 of
order 4 and a complement G of order 3. Obviously K4 is simple as Z2[G]-module
and has rank 2 over Z2. Proposition 5.19 yields

(5.16) |I(A4)| = 3 · 42 · 22·3 = 3072.
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Proposition 5.21. Let H be a Frobenius group with Frobenius kernel V and
Frobenius complement G.

(1) If G has order 2, then

|I(H)| = 2 · |V | · (exp V )2.

(2) If G is the quaternion group Q8 of order 8, then

|I(H)| = 24 · |V |7 · (exp V )32.

(3) If G is isomorphic to SL(2, 3), then

|I(H)| = 222 · 3 · |V |23 · (exp V )96.

Proof: For (1), we let i be the generator of G of order 2. Then we have
xi = x−1 for all x ∈ V by Lemma B.3. Hence {f |V | f ∈ I(H)} = I(V ). The
result now follows from Theorem 5.1.

We prove (2) and (3) together. Let e := exp G, and let G be isomorphic
to the quaternion group Q8 or to SL(2, 3). By Lemma B.3, V is abelian. By
Lemma B.2, e and |G| are relatively prime. Hence we may apply the results of
Appendix C, Section 2, to R := Ze[G]. We will show

(5.17) |R : AnnR(V )| = (exp V )4.

Let p be a prime divisor of e, and let Mp be a simple R-submodule of V such
that exp Mp = p. We show that

(5.18) Mp(V ) is the Sylow p-subgroup of V.

We note that MpG is a Frobenius group with kernel Mp and complement G. Let
R̄ := R/pR. Then Mp is a simple R̄-module by Lemma C.7. By Lemma C.9,
C.10, respectively, all simple R̄-modules that occur as kernels of Frobenius groups
with complement G are isomorphic to Mp. Further |R̄ : AnnR̄(Mp)| = p4. Hence
we have

(5.19) |R : AnnR(Mp)| = p4.

By Lemma C.7, all minimal R-submodules of V with exponent p are isomorphic
to Mp. Hence we have (5.18).

Let k be maximal such that pk divides exp V . Then Lemma C.5 together
with (5.19) yields |R : AnnR(Mp(V ))| = p4k. By Lemma C.6 and by (5.18), we
have |R : AnnR(V )| =

∏
p| exp V |R : AnnR(Mp(V ))|. Hence we obtain (5.17).

Now (2) follows from Theorem 5.1 with |I(Q8)| = 24 (see Example 5.28)
and (5.14). Item (3) is obtained with |I(SL(2, 3))| = 222 · 3 (see Proposi-
tion 5.24). �
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8. Frobenius actions on unitriangular matrix groups

We present an example of a Frobenius group with non-abelian kernel and
apply Theorem 5.1 to obtain the number of polynomial functions.

For a prime p and m,n ∈ N with m > 1, let

T(m, pn) := {a ∈ GL(m, pn) | aii = 1, aij = 0 for all i, j ∈ {1, . . . ,m}, j < i}.

The elements in T(m, pn) are matrices over GF(pn) with 1 on the diagonal and
0 below it and are called upper unitriangular matrices. We note that T(m, pn)
is a Sylow p-subgroup of GL(m, pn). The nilpotent class of T(m, pn) is m − 1
(see [Hup67, p.382, Satz 16.3 (b)]). These matrix groups occur as kernels of
Frobenius groups [Hup67, p.499, 8.6 (c)].

Proposition 5.22. For a prime p and n ∈ N, let u ∈ GF(pn) be of odd
order k with k > 1, and let e be the multiplicative order of p modulo k. Let
A := T(3, pn), let s := diag(1, u, u2), and let G := A · 〈s〉. We write S :=
{f |A | f ∈ I(G)}. Then we have:

(1) For all f ∈ S there are m1, . . . ,mk ∈ N and r ∈ A such that

f(g) =
k∏

i=1

(gmi)si · [g, r] for all g ∈ A.

(2) |S| = pe · |(Z(A) : A)S|.
(3) Let f : A → Z(A). Then f ∈ S iff there are a, b ∈ GF(pn), c ∈ GF(pe)

such that for all x, y, z ∈ GF(pn):

f(

 1 x z
0 1 y
0 0 1

) =

 1 0 2cz − cxy + bx− ay
0 1 0
0 0 1

 .

(4) |I(G)| = k · p2(n+e)k · p3n(k−1).

We note that

Z(T (3, pn)) = T (3, pn)′ = {a ∈ T (3, pn) | a12 = a23 = 0}.

In [Aic02, p. 78] an example of a semidirect product of A := T (3, pn) by
a certain non-abelian group B is considered but the restrictions of polynomial
functions of A · B to A are not determined. Since (A · B)/CB(A) is isomorphic
to some group G as in Proposition 5.22, our result yields a description of these
functions.

We will prove Proposition 5.22 by using Theorem 5.1 and the following aux-
iliary result.

Lemma 5.23. For a prime p and n ∈ N, we have the following:
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(1) Let f : T(3, pn) → T(3, pn). Then f ∈ I(T(3, pn)) iff there are m ∈ N,
a, b ∈ GF(pn) such that for all x, y, z ∈ GF(pn):

f(

 1 x z
0 1 y
0 0 1

) =

 1 mx mz + ( m
2 ) xy + bx− ay

0 1 my
0 0 1

 .

(2) |I(T(3, pn))| = p2n+1 for p odd.
(3) |I(T(3, 2n))| = 22n+2.

Proof: Let G := T(3, pn), and let f ∈ I(G). Since G is nilpotent of class 2,
we have m ∈ N and r ∈ G such that

(5.20) f(g) = gm · [g, r] for all g ∈ G

(see [Eck98, Theorem 1] or [Eck01, Proposition 1.7]). Now let x, y, z ∈ GF(pn).
By induction, we find that

(5.21)

 1 x z
0 1 y
0 0 1

m

=

 1 mx mz + ( m
2 ) xy

0 1 my
0 0 1


for m ∈ N. For a, b, c ∈ GF(pn), we have

(5.22) [

 1 x z
0 1 y
0 0 1

 ,

 1 a c
0 1 b
0 0 1

] =

 1 0 bx− ay
0 1 0
0 0 1

 .

Thus, by (5.20), we have (1). From this we obtain |I(G)| = exp G · p2n. Since
exp T(3, pn) = p for p odd and exp T(3, 2n) = 4 by (5.21), the assertions (2)
and (3) follow. �

Proof of Proposition 5.22: Since k is odd, G is a Frobenius group with
kernel A = T (3, pn) and complement B := 〈diag(1, u, u2)〉 (cf. [Hup67, p.499,
8.6 (c)]). By Theorem 5.1, we have

(5.23) |I(G)| = |I(B)| · |S||B| · |A||B|−1.

For (4) it remains to determine |S|.
First we prove (1). As a subgroup of the group M(A), S is generated by the

automorphisms of A that are induced by conjugation by an element of G. We
show that

(5.24) S is abelian.
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Let g :=

 1 x z
0 1 y
0 0 1

, r :=

 1 a c
0 1 b
0 0 1

 be elements of A, and let h :=

diag(1, d, d2) ∈ B. We compute

g · grh =

 1 x + dx z + d2(z + bx− ay) + dxy
0 1 y + dy
0 0 1

 = grh · g.

From this we obtain (5.24).
Let f ∈ I(G). We recall that s = diag(1, u, u2) is the generating element of

B. By (5.24), we have fi ∈ I(A) for i ∈ {1, . . . , k} such that

f(g) =
k∏

i=1

(fi(g))si

for all g ∈ A.

For i ∈ {1, . . . , k}, we have mi ∈ N and ri ∈ A such that

fi(g) = gmi · [g, ri] for all g ∈ A

by Lemma 5.23 (1). Since A′ is central in A, we find

f(g) =
k∏

i=1

(gmi)si ·
k∏

i=1

[g, ri]
si

for all g ∈ A.

From (5.22) we obtain that there are a, b ∈ GF(pn) such that

k∏
i=1

[

 1 x z
0 1 y
0 0 1

 , ri]
si

=

 1 0 bx− ay
0 1 0
0 0 1

 .

Hence (1) is proved. For (2), we use (5.21) to compute

k∏
i=1

(

 1 x z
0 1 y
0 0 1

mi

)si

=
k∏

i=1

 1 miu
ix miu

2iz + ( mi
2 ) u2ixy

0 1 miu
iy

0 0 1

 =

=

 1
∑k

i=1 miu
ix

∑k
i=1(miu

2iz + ( mi
2 ) u2ixy) +

∑
1≤i<j≤k mimju

i+jxy

0 1
∑k

i=1 miu
iy

0 0 1


where m1, . . . ,mk ∈ N. Consequently, by (1), the functions in S act on A/Z(A)
by multiplication with elements of the extension of GF(p) by u, that is, by mul-
tiplication with elements of GF(pe). Then Lemma 1.6 yields (2).
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Now we show (3). For the “only if”-direction, we let m1, . . . ,mk ∈ N, and let

f ∈ S be defined by f(g) :=
∏k

i=1(g
mi)si

for g ∈ A. For x ∈ GF(pn), we write

q(x) :=
∑k

i=1 mix
i and t(x) :=

∑k
i=1 ( mi

2 ) x2i +
∑

1≤i<j≤k mimjx
i+j. As in the

proof of (2) above, we have for all x, y, z ∈ GF(pn):

(5.25) f(

 1 x z
0 1 y
0 0 1

) =

 1 q(u)x q(u2)z + t(u)xy
0 1 q(u)y
0 0 1

 .

By f(A) ⊆ Z(A), we have q(u) = 0. If p is odd, then t(u) = 1
2
[q(u)2 − q(u2)].

If p = 2, then q(u2) = 0 since u and u2 have the same minimal polynomial over
GF(2). In any case it follows that all functions in (Z(A) : A)S are of the form
given in (3).

For the converse implication, it suffices to show that for each c ∈ GF(pe) the
function f : A → A defined by

(5.26) f(

 1 x z
0 1 y
0 0 1

) :=

 1 0 2cz − cxy
0 1 0
0 0 1


is in S. For p = 2, this follows from

(

 1 x z
0 1 y
0 0 1

2

)si

=

 1 0 u2ixy
0 1 0
0 0 1


for i ∈ N and the fact that every c ∈ GF(2e) is a sum of powers of u2. Next we
assume that p is odd. Let l(x) =

∑e
i=0 mix

i be the minimal polynomial of u over
GF(p). Then the function hi : A → A defined by

hi(

 1 x z
0 1 y
0 0 1

) :=

 1 0 u2i · l(u2) · (z − 1
2
xy)

0 1 0
0 0 1


is in (Z(A) : A)S for all i ∈ N. We note that l(u2) 6= 0 because p is odd.
The extension of GF(p) by u2 is GF(pe) because, by assumption, u has odd
order. Hence all elements in GF(pe) are of the form

∑e
i=1 miu

2il(u2) for some
m1, . . . ,me ∈ N. Thus, for each c ∈ GF(pe), f as in (5.26) is a product of
functions in {h1, . . . , he}. Finally f ∈ S and (3) is proved.

From (2) and (3), we obtain |S| = p2(e+f). Now (4) follows from (5.23). The
proof of the proposition is complete. �
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9. SL(2, 3), GL(2, 3), and the binary octahedral group

In this section we determine the polynomial functions on SL(2, 3) and on
2 of its extensions, namely GL(2, 3) and the binary octahedral group. These
groups already appeared in Section 5. Although the sizes of their endomorphism
near-rings can be obtained from the computer algebra package [ABE+99] un-
der [GAP02], we are not aware that proofs of the results given in the following
Propositions 5.24, 5.25, and 5.26 have been published. Hence we will present
the interpolation arguments that allow us to reduce the problems to A4 and S4,
respectively.

Proposition 5.24. For z := −12 in SL(2, 3) and Z := 〈z〉, we have the
following:

(1) Let f : SL(2, 3) → Z with f(12) = 12. Then f is in I(SL(2, 3)) iff
f(xz) = f(x)f(z) for all x ∈ SL(2, 3).

(2) |I(SL(2, 3))| = 222 · 3.
(3) A(SL(2, 3)) = E(SL(2, 3)) and |E(SL(2, 3))| = 228 · 3.

We note that SL(2, 3) is an example of a group such that all normal subgroups
are characteristic, even fully-invariant, but not all automorphisms are polynomial
functions. For all other finite special linear groups, all endomorphisms are poly-
nomial (see Theorem 4.5 and Corollary 5.10 for SL(2, 2)).

Proposition 5.25. For z := −12 in GL(2, 3) and Z := 〈z〉, we have the
following:

(1) Let f : GL(2, 3) → Z with f(12) = 12. Then f is in I(GL(2, 3)) iff
f(xz) = f(x) for all x ∈ GL(2, 3).

(2) |I(GL(2, 3))| = 258 · 33.
(3) I(GL(2, 3)) = A(GL(2, 3)).
(4) Let f : GL(2, 3) → Z with f(12) = 12. Then f is in E(GL(2, 3)) iff

f(xz) = f(x)f(z) for all x ∈ GL(2, 3).
(5) |E(GL(2, 3))| = 259 · 33.

The group

(5.27) G := 〈a, b, c, d | a4 = 1, b2 = a2, c3 = 1, d2 = a2, ab = a−1,

ac = b, bc = ab, ad = ba, bd = b−1, cd = c−1〉
is called the binary octahedral group. We note that G has a normal subgroup of
index 2 which is isomorphic to SL(2, 3) and that G is distinct from GL(2, 3). We
have Z(G) = 〈a2〉 and that G/Z(G) is isomorphic to S4. The binary octahedral
group is a Frobenius complement of type IV (see Theorem B.6).

Proposition 5.26. Let G be the binary octahedral group, and let Z := Z(G).
Then we have the following:
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(1) Let f : G → Z with f(1) = 1. Then f is in I(G) iff f(xz) = f(x) for
all x ∈ G and for all z ∈ Z.

(2) |I(G)| = 258 · 33.
(3) I(G) = A(G) = E(G).

We note that GL(2, 3) and the binary octahedral group have the same lattice
of normal subgroups and the same number of polynomial functions. Further all
their normal subgroups are fully invariant. Still GL(2, 3) has an endomorphism
that is not polynomial, while all endomorphisms of the binary octahedral group
are polynomial functions.

For the proof of the Propositions 5.24, 5.25, and 5.26, we use the following
criterion to decide whether a given function is polynomial.

Lemma 5.27. Let G be a finite group, let Q be a normal subgroup of G such
that Q is a quaternion group of order 8, and let Z := Q′. We assume that G/Z
is isomorphic to Z2×Z2, A4, or S4. Let λ := λ(G/Z) be the Scott-length of G/Z.
Then the following are equivalent for each function f : G → Z:

(1) The function f is in I(G);
(2) We have f(1) = 1, and there exists an integer µ such that

f(x · z) = f(x) · zλµ for all x ∈ G, z ∈ Z.

The assumptions of this lemma are satisfied for the quaternion group of order
8, SL(2, 3), GL(2, 3), and the binary octahedral group. We note that λ(Z2×Z2) =
2, λ(A4) = 3, and λ(S4) = 2.

Proof of Lemma 5.27: Since Z is characteristic in Q, we have that Z is
normal in G. Together with |Z| = 2, this yields that Z is central in G. Hence
the implication (1) ⇒ (2) is immediate (cf. proof of Lemma 2.1, (1) ⇒ (2)).

It remains to prove (2) ⇒ (1). To this end, we will show the exis-
tence of certain interpolation functions in (Z : G)I(G). As in the proof of
Lemma 2.1, (2) ⇒ (1), Step 1, we have a function i ∈ I(G) that satisfies

(5.28) i(G) ⊆ Z and i(z) = zλ for all z ∈ Z.

By assumption, Q/Z is the unique minimal normal subgroup of G/Z and
CG/Z(Q/Z) = Q/Z. Hence, by [FK95, Theorem 4.1 (2)], we have e ∈ I(G) such
that

(5.29) e(q) ∈ qZ for all q ∈ Q and e(G \Q) ⊆ Z.

Let a be an element of order 4 in Q. Then c := a2 generates Z. We define
p ∈ I(Q) by

p(x) = x · xa for all x ∈ Q.

Then p satisfies

(5.30) p(aZ) = {c} and p(Q \ aZ) = {1}.
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For t ∈ G \ Z, we define pt ∈ I(G) by

pt(x) = p(e(at−1x)) for all x ∈ G.

From (5.29) and (5.30), we obtain that

(5.31) pt(tZ) = {c} and pt(G \ tZ) = {1}.

We are ready for the interpolation argument. Let f be a function that satisfies (2)
with µ ∈ N. We consider the function g on G that is defined by

g(x) = f(x) · i(x)−µ for all x ∈ G.

Then g(G) ⊆ Z and g(xz) = g(x) for all x ∈ G, z ∈ Z by (5.28). Since g
is constant on each coset of Z in G, we have that g is the product of certain
functions pt for t ∈ G \ Z by (5.31). Hence g ∈ I(G). By i ∈ I(G), this implies
f ∈ I(G). The lemma is proved. �

The number of polynomial functions on the quaternion group of order 8 fol-
lows easily. For results on the generalized quaternion groups we have to refer
to [Mal73].

Example 5.28. Let Q be the quaternion group of order 8. Since Q/Q′ is
isomorphic to Z2×Z2, the Scott-length of Q/Q′ is 2. By Lemma 5.27, a function
f : Q → Q′ is in I(Q) iff f(1) = 1 and f is constant on the cosets of Q′ in Q.
Hence

|(Q′ : Q)I(Q)| = 23.

By |I(Q/Q′)| = 2 and Lemma 1.5, we obtain

|I(Q)| = 24.

We are now ready to prove our results on extensions of the quaternion group.

Proof of Proposition 5.24: Let G := SL(2, 3), let z := −12, and let
Z := 〈z〉. Then Z = Z(G). We note that

Q := 〈( 1 1
1 −1 ) , ( 0 −1

1 0 )〉

is a normal subgroup in G and that Q is isomorphic to the quaternion group
of order 8. Further Q′ = Z. Since G/Z is isomorphic to A4 and λ(A4) = 3,
Lemma 5.27 yields (1). Thus we have

(5.32) |(Z : G)I(G)| = 211 · 2.

Together with |I(A4)| = 210 · 3 (see Example 5.20 or [FK95, Example 2]), this
yields (2).

For (3), we note that each automorphism of A4 is induced by conjugation by
an element in S4 (see [Sco87, p.314 (11.4.8)]). Hence for every automorphism
α of G/Z there is a ∈ GL(2, 3)/Z such that α(x) = xa for all x ∈ G/Z. In
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particular, each automorphism of G/Z is induced by an automorphism of G.
From Lemma 1.6, we obtain

(5.33) |A(G)| = |(Z : G)A(G)| · |A(G/Z)|.

We proceed to show that

(5.34) (Z : G)I(G) = (Z : G)E(G).

The inclusion “⊆” is clear. The converse follows from (1) because Z is fully
invariant in G. Together with (5.32), (5.33), and |A(A4)| = 216 · 3 (see [FK95,
Example 2]), this yields

(5.35) |A(G)| = 228 · 3.

By Lemma 1.6, we have

|E(G)| ≤ |(Z : G)E(G)| · |E(G/Z)|.

From A(A4) = E(A4) (see [FK95, Example 2]) and (5.34) we obtain |E(G)| ≤
|A(G)|. Hence we have (3). The proposition is proved. �

Proof of Proposition 5.25: Let G := GL(2, 3), let z := −12, and let
Z := 〈z〉. Then Z = Z(G). The group

Q := 〈( 1 1
1 −1 ) , ( 0 −1

1 0 )〉

is normal in G and isomorphic to the quaternion group of order 8.

H := 〈
( −1 1
−1 0

)
, ( 0 1

1 0 )〉

is a complement for Q in G.
We note that G/Z is isomorphic to S4 and that the Scott-length of S4 is even

since |S4 : A4| = 2. Hence Lemma 5.27 yields (1). We have

(5.36) |(Z : G)I(G)| = 223.

Together with |I(S4)| = 235 · 33 (see [FK95, Example 3]), this yields (2).
Next we prove (3). By Lemma 1.6 and by I(S4) = A(S4) (see [Sco87, p.314

(11.4.8)] or [FK95, Example 3]), we have

(5.37) |A(G)| = |(Z : G)A(G)| · |I(G/Z)|.

It remains to show that

(5.38) (Z : G)I(G) = (Z : G)A(G).

The inclusion “⊆” is clear. For “⊇”, we let α1, . . . , αn be automorphisms of
G such that f ∈ A(G) defined by f(x) = α1(x) · · ·αn(x) for x ∈ G satisfies
f(G) ⊆ Z. Since Z ⊆ SL(2, 3) and SL(2, 3) is a characteristic subgroup of index
2 in G, we have that n is even. Hence f(z) = zn = 1. Item (1) yields f ∈ I(G).
Thus (5.38) is proved, and (3) follows from (5.37).
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Next we show (4). Since Z is fully invariant in G, every function f ∈ E(G)
satisfies f(xz) = f(x)f(z) for all x ∈ G. For the converse implication, by (1),
it suffices to show that there exists f ∈ (Z : G)E(G) such that f(z) = z. To
construct such a function, we recall that, by [FK95, Theorem 4.1 (2)], there are
a1, . . . , an ∈ G such that

e : G → G, x 7→
n∏

i=1

xai ,

induces the identity function on Q/Z and e(G\Q) ⊆ Z. Since G/Q is isomorphic
to S3, it has even Scott-length. Thus n is even, and we have e(z) = 1.

Now let π be the natural projection homomorphism from G onto the comple-
ment H of Q. We consider the map f ∈ E(G) defined by

f(x) = (xπ(x)−1)−1 · e(xπ(x)−1) for all x ∈ G.

Let q ∈ Q, h ∈ H. Then f(qh) = q−1 · e(q). Since e(q) ∈ qZ, we have f(G) ⊆ Z.
Further f(z) = z−1e(z) = z. Together with (1), this yields (4).

Since Z is fully invariant in G and I(S4) = E(S4) (see [FK95, Example 3]),
Lemma 1.6 yields

(5.39) |E(G)| = |(Z : G)E(G)| · |I(G/Z)|.

From (4), we obtain

|(Z : G)E(G)| = |(Z : G)I(G)| · 2.

Together with (5.39), this yields |E(G)| = |I(G)| · 2. Hence (5) follows from (2).
The proof of the proposition is complete. �

Proof of Proposition 5.26: Let G be the binary octahedral group with
generators a, b, c, d satisfying the relations given in (5.27). Then Q := 〈a, b〉 is a
quaternion group of order 8, and Q is normal in G. We note that Z := 〈a2〉 is
the center of G and that G/Z is isomorphic to S4. Since the Scott-length of S4

is even, Lemma 5.27 yields (1). Hence we have

(5.40) |(Z : G)I(G)| = 223.

Together with |I(S4)| = 235 · 33 (see [FK95, Example 3]), this yields (2).
Since Z is fully invariant in G and I(S4) = E(S4) (see [FK95, Example 3]),

Lemma 1.6 yields

(5.41) |E(G)| = |(Z : G)E(G)| · |I(G/Z)|.

Hence, for (3), it suffices to show that

(5.42) (Z : G)I(G) = (Z : G)E(G).
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The inclusion “⊆” is clear. For “⊇”, we let α1, . . . , αn be endomorphisms of G
such that f ∈ E(G) defined by

f(x) = α1(x) · · ·αn(x) for all x ∈ G

satisfies f(G) ⊆ Z. Since z := a2 is the unique involution in G, all endomorphisms
of G either are bijective or map into Z. Let k be number of automorphisms in
{α1, . . . , αn}. Then k is even since |G : G′| = 2 and Z ⊆ G′. Hence we obtain
f(xz) = f(x) · zk · 1n−k = f(x) for all x ∈ G. Item (1) yields f ∈ I(G). Thus we
have (5.42), and (3) follows from (5.41). The proposition is proved. �





APPENDIX A

Classical groups

We define finite classical groups as in [KL90]. The properties of these groups
of linear and semilinear transformations on vector spaces are heavily studied
and well documented. We only gather information on their normal subgroups
and automorphisms to the extent that is necessary for proving our results of
Chapter 4. For the vast majority of facts stated in this chapter, we refer to
proofs in textbooks that are widely available. In the rare case that we cannot
find the proof of a result in the literature, we supply one in the most elementary
terms and without the pretense of originality.

1. Linear and semilinear transformations

Let V be a vector space of finite dimension n over the finite field F := GF(q)
with q elements. We write GL(V, F ) for the general linear group of V over
F , which is the group of all invertible F -linear transformations of V . Let B =
(b1, . . . , bn) be a basis of V over F , and let g ∈ GL(V, F ). Then there are uniquely
determined coefficients aij ∈ F with i, j ∈ {1, . . . , n} such that g(bi) =

∑n
j=1 aijbj.

Let gB denote the n × n matrix with entry aij in row i and column j. We have
an isomorphism,

(A.1) hB : GL(V, F ) → GL(n, q), g 7→ gB,

where GL(n, q) is the group of invertible n×n matrices with entries in GF(q). We
define det g = det gB for all g ∈ G, and we note that this definition is independent
of the choice of the basis B. Let SL(n, q) := {x ∈ GL(n, q) | det x = 1}, and
let SL(V, F ) := {g ∈ GL(V, F ) | det g = 1} denote the special linear group of
V over F . We write F ∗ for the non-zero elements in F . For each λ ∈ F ∗, the
map from V to V given by v 7→ λv is called a scalar linear transformation or
simply a scalar. Thus we have an embedding of F ∗ into GL(V, F ). We will
abuse notation and write F ∗ ≤ GL(V, F ).

A map g from V to V is called an F -semilinear transformation of V if there
is a field automorphism σ(g) ∈ Aut F such that

g(v + w) = g(v) + g(w) for all v, w ∈ V,
g(λv) = λσ(g)g(v) for all λ ∈ F, v ∈ V.

97
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We define ΓL(V, F ) to be the set of all invertible F -semilinear transformations.
Then ΓL(V, F ) forms a group, called the general semilinear group of V over F ,
and the map σ from ΓL(V, F ) to Aut F is an epimorphism with kernel GL(V, F ).
We recall that F = GF(q). Let p be a prime, and let f be a natural number such
that q = pf . Let φ ∈ ΓL(V, F ) such that

(A.2) φ(λv) = λpv for all λ ∈ F, v ∈ V.

Then

(A.3) ΓL(V, F ) = GL(V, F ) · 〈φ〉

is a semidirect product and |ΓL(V, F ) : GL(V, F )| = f . We define a corresponding
action of Aut F on GL(n, q). An automorphism ϕ ∈ Aut F acts on a ∈ GL(n, q)

such that the matrix aϕ has the entry (aij)
(ϕ−1) in row i, column j. The semidirect

product GL(n, q) ·Aut F is defined accordingly. For a fixed basis B = (b1, . . . , bn)
of V over F , we now have an isomorphism,

(A.4) hB : ΓL(V, F ) → GL(n, q) · Aut F, g 7→ gB · σ(g)

where gB := a ∈ GL(n, q) such that g(bi) =
∑n

j=1 aijbj for all i ∈ {1, . . . , n}.
We note that the map x 7→ (x−1)t is an automorphism of GL(n, q). We can

extend this inverse-transpose automorphism to ΓL(V, F ) by defining

(A.5) i(g · φj) = h−1
B (((gB)−1)t) · φj for all g ∈ GL(V, F ), j ∈ Z,

where hB is as in (A.1). We note that i is independent of the choice of B and
that i is an involutory automorphism of ΓL(V, F ).

2. Bilinear and quadratic forms

A map f : V × V → F is called a bilinear form if for each v ∈ V the maps
from V to F given by x 7→ f(x, v) and x 7→ f(v, x) are linear. If x 7→ f(x, v) and
x 7→ f(v, x) are non-zero for all v ∈ V \ {0}, then f is non-degenerate. A bilinear
form f is said to be Hermitian if F has an involutory field automorphism α, and

f(v, w) = f(w, v)α for all v, w ∈ V.

We define f to be symplectic if

f(v, w) = −f(w, v) and f(v, v) = 0 for all v, w ∈ V.

Finally, f is symmetric if

f(v, w) = f(w, v) for all v, w ∈ V.

We call a map Q : V → F a quadratic form if Q(λv) = λ2Q(v) for all v ∈ V, λ ∈
F , and if

fQ : V × V → F, (v, w) 7→ Q(v + w)−Q(v)−Q(w)
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is a bilinear form. We note that fQ is symmetric by definition. A quadratic form
Q is said to be non-degenerate if fQ is non-degenerate.

3. Definition of classical groups

Let k be a bilinear form or a quadratic form on the vector space V over F
such that one of the following holds:

case L: k is identically 0;
case U: k = f is a non-degenerate Hermitian bilinear form;
case S: k = f is a non-degenerate symplectic bilinear form;
case O: k = Q is a non-degenerate quadratic form.

Then k is a map from V l to F , where l ∈ {1, 2}. Let v = (v1, . . . , vl) denote an
element in V l, and let g ∈ ΓL(V, F ). Then we write g(v) for (g(v1), . . . , g(vl)) in
V l. We will consider the following groups:

Γ(V, F, k) := {g ∈ ΓL(V, F ) | ∃λ ∈ F,∃α ∈ Aut F,∀v ∈ V l, k(g(v)) = λk(v)α},
∆(V, F, k) := {g ∈ GL(V, F ) | ∃λ ∈ F,∀v ∈ V l, k(g(v)) = λk(v)},
I(V, F, k) := {g ∈ GL(V, F ) | ∀v ∈ V l, k(g(v)) = k(v)},
S(V, F, k) := {g ∈ SL(V, F ) | ∀v ∈ V l, k(g(v)) = k(v)}.

We recall that, in case L, Γ(V, F, k) has an involutory automorphism i. Thus we
can define the semidirect product of ΓL(V, F ) with 〈i〉 where i acts on ΓL(V, F )
as in (A.5). We extend our list of groups by the following:

A(V, F, k) :=

{
Γ(V, F, k) · 〈i〉 in case L with n ≥ 3
Γ(V, F, k) otherwise

Ω(V, F, k) :=

{
S(V, F, k)′ in case O
S(V, F, k) otherwise

We note that the authors of [KL90] choose to define Ω(V, F, k) in case O differ-
ently. There Ω(V, F, k) is the unique subgroup of index 2 in S(V, F, k) (see [KL90,
p.14, (2.1.14), and p.29, Prop. 2.5.7]). However their definition and ours, which
follows [Die48], [Asc86], and other textbooks, describe the same group if the
dimension of V over F is at least 5. See Section 9 for more details.

Suppressing the (fixed) parameters V, F, k for notational convenience, we now
have a series,

Ω ≤ S ≤ I ≤ ∆ ≤ Γ ≤ A,

where each group is normal in A. We also note that F ∗ is normal in A. A finite
classical group is now defined (see [KL90, p. 14]) to be a group G such that
Ω ≤ G ≤ A or (Ω ·F ∗)/F ∗ ≤ G ≤ A/F ∗ in one of the cases L,U,S, or O. If G is
such a group, then G is called a linear, unitary, symplectic, or orthogonal group,
accordingly.
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4. Properties of classical groups

We state the following result on the structure of classical groups.

Proposition A.1 ([KL90, Proposition 2.9.2, Proposition 2.10.6]). Let V be
a vector space of dimension n > 1 over the field F with |F | =: q. Let k be as in
the cases L,U,S,O, and let Ω := Ω(V, F, k). Then we have the following:

(1) Ω is soluble if and only if Ω is isomorphic to one of the follow-
ing groups: SL(2, 2), SL(2, 3), Sp(2, 2), Sp(2, 3), SU(2, 2), SU(2, 3),
Ω±(2, q), SU(3, 2), Ω(3, 3), Ω+(4, 2), Ω+(4, 3).

(2) If Ω is insoluble, then one of the following holds:
(a) Ω/(Ω ∩ F ∗) is simple;
(b) Ω ∼= Sp(4, 2), that is, Ω is isomorphic to S6 and almost simple;
(c) Ω ∼= Ω+(4, q) with q ≥ 4 and Ω/(Ω∩F ∗) is isomorphic to PSL(2, q)2.

(3) CGL(V,F )(Ω) = F ∗ if and only if Ω 6∼= Ω±(2, q).

Proof: Assertions (1) and (2) are given in [KL90, Proposition 2.9.2]. Item (3)
follows from [KL90, Proposition 2.10.1, Proposition 2.10.6]. �

By Proposition A.1 (2), Ω is perfect if Ω is insoluble and Ω 6= Sp(4, 2).

Lemma A.2 ([KL90, Theorem 2.1.3, Theorem 2.1.4]). Let V be a vector space
of dimension n over the field F with |F | =: q. Let k be as in the cases L,U,S,O.
We assume that n ≥ 2 and (n, q) 6∈ {(2, 2), (2, 3)} in case L, that n ≥ 3 and
(n, q) 6∈ {(3, 2)} in case U, that n ≥ 4 and (n, q) 6= (4, 2) in case S, that n ≥ 7
in case O. Let Ω := Ω(V, F, k) and A := A(V, F, k). Then we have:

(1) CA(Ω) = F ∗;
(2) (Ω · F ∗)/F ∗ is non-abelian simple;
(3) A/F ∗ is isomorphic to the full automorphism group of (Ω ·F ∗)/F ∗ except

when Ω ∼= Sp(4, q) with q even or Ω ∼= O+(8, q).

For the proof of Lemma A.2 (3), the authors of [KL90] refer to [Die51] as
well as to [Car89].

5. Properties of linear groups

In this section we consider linear groups and their normal subgroups. The
following facts can be found in various textbooks on group theory.

Lemma A.3. Let n be a natural number with n ≥ 2, and let q be a prime
power such that (n, q) 6∈ {(2, 2), (2, 3)}. Then we have:

(1) |GL(n, q)| = qn(n−1)/2
∏n

i=1(q
i − 1);

(2) |SL(n, q)| = |GL(n, q)|/(q − 1);
(3) CGL(n,q)(SL(n, q)) = {a ∗ 1n | a ∈ GF(q)∗};
(4) SL(n, q)′ = SL(n, q);
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(5) SL(n, q)/Z(SL(n, q)) is simple.

Proof: The assertions (1) and (2) are given in [Rob96, p.74, 3.2.7, (i),(ii)].
Item (3) is [Rob96, p.73, 3.2.5] and also follows from Lemma A.5. By [Sco87,
p.292, 10.8.2] (or [Hup67, p.181, Satz 6.10]), we have (4). Assertion (5) is proved
in [Rob96, p.74, 3.2.9]. �

We proceed to describe certain quotients of subgroups of general linear groups.

Lemma A.4. Let n be a natural number with n ≥ 2, and let q be a prime
power such that (n, q) 6∈ {(2, 2), (2, 3)}. Let G be a group such that SL(n, q) ⊆
G ⊆ GL(n, q), let Z := {a ∗ 1n | a ∈ GF(q)∗}, and let Y be a subgroup of Z ∩G.
Let k := |Y | and m := |G : SL(n, q)|. Then we have:

(1) Z(G/Y ) = (Z ∩G)/Y ;

(2) |Z(G/Y )| = gcd(mn,q−1)
k

;
(3) (G/Y )′ = (SL(n, q) · Y )/Y ;

(4) |(G/Y )′| = |SL(n,q)|
gcd(n,k)

;

(5) All normal subgroups of G/Y are central or contain the derived subgroup;
(6) G/Y has property (A).

Proof: Properties (3), (4), (5) of Lemma A.3 yield that SL(n, q) satisfies (3)
of Lemma 2.2. Thus GL(n, q) has property (C) (see Chapter 2, Section 2). Since
GL(n, q)/SL(n, q) is abelian, Lemma 3.1 yields that

(A.6) GL(n, q) has property (A).

(see Chapter 3, Section 1). Since SL(n, q) is quasisimple by Lemma A.3 (5),
Lemma 3.3 applies to show

(A.7) Z(G) = Z ∩G and G′ = SL(n, q)

and that

(A.8) G has property (A).

Together with (A.7) and (A.8), Lemma 3.2 yields (1), (3), and (6). Item (5)
follows from (6).

It remains to prove (2) and (4). We note that G is given by G =
{x ∈ GL(n, q) | (det x)m = 1}. By (A.7), we have Z(G) = {a ∗ 1n | a ∈
GF(q)∗ and (det(a ∗ 1n))m = 1}, which implies

Z(G) = {a ∗ 1n | a ∈ GF(q)∗, amn = 1}.

Since the subgroup {a ∈ GF(q)∗ | amn = 1} of the cyclic group GF(q)∗ has exactly
gcd(mn, |GF(q)∗|) elements, we obtain |Z(G)| = gcd(mn, q − 1). Now (1) and
|Y | = k yield (2).
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For proving (4), we note that Y = {a ∗ 1n | a ∈ GF(q)∗ and ak = 1}. Hence

Y ∩ SL(n, q) = {a ∗ 1n | a ∈ GF(q)∗, ak = 1 and an = 1}.

This yields |Y ∩ SL(n, q)| = gcd(n, k). Thus, with (3), we obtain |(G/Y )′| =
|SL(n,q)|
gcd(n,k)

. The proof of the lemma is complete. �

Lemma A.5. Let V be a vector space of dimension n over a field F .

(1) For n = 2 and |F | > 3, we have CΓL(V,F )(SL(V, F )) = F ∗;
(2) For n > 2, we have CΓL(V,F )·〈i〉(SL(V, F )) = F ∗.

Here i acts on ΓL(V, F ) as defined in (A.5).

Proof: Let |F | =: q. Let p be a prime, and let f be an integer such that
pf = q. Let B be a basis for V over F , and let hB as defined in (A.4), that is,

hB : ΓL(V, F ) → GL(n, q) · Aut F, g 7→ gB · σ(g).

An automorphism ϕ ∈ Aut F acts on a ∈ GL(n, q) such that the matrix aϕ has

the entry (aij)
(ϕ−1) in row i, column j. First we prove

(A.9) CGL(2,q)·Aut F (SL(2, q)) = {a ∗ 12 | a ∈ GF(q)∗}.

Let g ∈ GL(2, q), and let ϕ ∈ Aut F such that g · ϕ centralizes SL(2, q). For
a primitive element w of GF(q), we consider s := diag(w, w−1), which is in

SL(2, q). By sg = s(ϕ−1), the eigenvalues of s and of s(ϕ−1) are equal. But then

s(ϕ−1) = diag(wϕ, (wϕ)−1) yields w = wϕ. Hence ϕ is trivial. Let a, b, c, d ∈ F
such that g = ( a b

c d ). Then we have

gs =
(

w 0
0 w−1

)−1 · ( a b
c d ) ·

(
w 0
0 w−1

)
=

(
a bw−2

cw2 d

)
= g.

By the assumption that q > 3, we have w2 6= 1 and b = c = 0. Conjugating
g = diag(a, d) by ( 0 −1

1 0 ) ∈ SL(2, q) yields

( 0 −1
1 0 )

−1 · ( a 0
0 d ) · ( 0 −1

1 0 ) = ( 0 1
−1 0 ) · ( 0 −a

d 0 ) = ( d 0
0 a ) .

Thus we have a = d. This proves (A.9) and (1) of Lemma A.5.
Next we assume n > 2. From the definition of the action of i on ΓL(V, F )

in (A.5), we observe that ΓL(V, F ) · 〈i〉 is isomorphic to the semidirect product

(GL(n, q) · Aut F ) · 〈̂i〉 where î is the involutory automorphism defined by

(x · ϕ)î = (x−1)t · ϕ for all x ∈ GL(n, q), ϕ ∈ Aut F.

As a first step we prove

(A.10) CGL(n,q)·Aut F ·〈̂i〉(SL(n, q)) ⊆ GL(n, q) · Aut F.

We suppose that g · ϕ · î with g ∈ GL(n, q), ϕ ∈ Aut F centralizes SL(n, q). For
a primitive element w of F , we consider s := diag(w1−n, w, . . . , w), which is in

SL(n, q). Then we have sg = (s−1)(ϕ−1). By comparing the eigenvalues of s and
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(s−1)(ϕ−1) with their respective multiplicities, we obtain w = (w−1)ϕ. Since w is
primitive in F , this yields xϕ = x−1 for all x ∈ F ∗. Then ϕ is an automorphism
only if |F | = 2 and ϕ is the identity map. Thus we are left with

(A.11) yg = (y−1)t for all x ∈ SL(n, 2).

We consider the matrices

r :=


0 1

1
. . .

...
. . . 0 1

1 0

 and r−1 =


1 1
... 0 1

1
. . . . . .

0 0 1
1 0


in SL(n, 2). The characteristic polynomial cr of r (in the variable x) is equal to
xn + xn−2 + · · · + x + 1, and the characteristic polynomial cr−1 of r−1 is equal
to xn + xn−1 + · · · + x2 + 1 (see [AW92, p.237, Proposition (4.14)]). We have
c(r−1)t = cr−1 and, by n > 3, cr−1 6= cr. Hence r and (r−1)t are not conjugate in
GL(n, 2), which contradicts (A.11). Assertion (A.10) is proved. Next we show

(A.12) CGL(n,q)·Aut F (SL(n, q)) ⊆ GL(n, q).

Let g ∈ GL(n, q), ϕ ∈ Aut F such that g · ϕ centralizes SL(n, q). For a primitive
element w of F , we consider s := diag(w1−n, w, . . . , w), which is in SL(n, q). Then

we have sg = s(ϕ−1). Comparing the eigenvalues of s and s(ϕ−1) yields w = wϕ.
Thus ϕ is the identity map, and (A.12) is proved. Finally,

(A.13) CGL(n,q)·Aut F ·〈̂i〉(SL(n, q)) = {a ∗ 1n | a ∈ GF∗}

follows from (A.10), (A.12) and Lemma A.6. From this we immediately obtain
(2) of Lemma A.5. �

Let F be a field. For i ∈ {2, . . . , n}, we define a matrix ei ∈ GL(n, |F |) with
−1 in the (1, i)-th position, 1 in the (i, 1)-th position, 1 in the diagonal except
in positions (1, 1) and (i, i), and 0 everywhere else. Then we have det ei = 1,
e−1

i = et
i, and eϕ

i = ei for all ϕ ∈ Aut F .

Lemma A.6. Let F be a field, and let n be a natural number, n ≥ 3. Then
we have

CGL(n,|F |)(〈e2, . . . , en〉) = {a ∗ 1n | a ∈ F ∗}.

Proof: Let a ∈ CGL(n,|F |)(〈e2, . . . , en〉). For a fixed index k ∈ {2, . . . , n}, we
then have

(A.14) a · ek = ek · a.

We note that the matrix a · ek is obtained from a by multiplying the first column
by −1 and by changing the first and the k-th column after that. Similarly, ek · a



104 A. CLASSICAL GROUPS

is obtained from a by multiplying the k-th row by −1 and then changing the first
and the k-th row. Let i, j ∈ {1, . . . , n} \ {1, k}. We compare the entries in the
first row of (A.14) and obtain

(A.15) −a11 = −akk,

(A.16) a1k = −ak1,

(A.17) a1j = −akj.

From the k-th row we find

(A.18) akk = a11,

(A.19) −ak1 = a1k,

(A.20) akj = a1j.

The remaining entries of the first column yield

(A.21) aik = ai1,

and from the k-th column we have

(A.22) −ai1 = aik.

By (A.15), (A.18), we have a11 = akk. By (A.17), (A.20), we obtain a1j = akj = 0
and, by (A.21), (A.22), ai1 = aik = 0 for all i, j ∈ {1, . . . , n} \ {1, k}. Since this
holds for all k ∈ {2, . . . , n}, we have that a is a scalar matrix. �

Since the matrices e2, . . . , en are in SL(n, |F |), the above lemma yields for
n ≥ 3 that

CGL(n,|F |)(SL(n, |F |) = {a ∗ 1n | a ∈ F ∗}.

6. Properties of unitary groups

Let V be a vector space of dimension n over a field F with a non-degenerate
Hermitian bilinear form f (see Section 2). Then F has an automorphism of order
2, that is, there is a prime power q such that F = GF(q2). By [KL90, Proposition
2.3.1] or [Hup67, p.237, Bemerkung 10.5 b)], we have a basis B = {b1, . . . , bn}
of V such that

f(bi, bj) = δij for all i, j ∈ {1, . . . , n}.
Under the homomorphism hB : ΓL(V, F ) → GL(n, q2) of (A.1) for this basis B,
the unitary group I(V, F, f) is isomorphic to the matrix group

U(n, q2) := {a ∈ GL(n, q2) | at · ā = 1n}.
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For a ∈ GL(n, q2), the matrix ā is defined by āij = (aij)
q for all i, j ∈ {1, . . . , n}.

We call U(n, q2) the unitary group of n× n matrices over GF(q2). Let

SU(n, q2) := {a ∈ U(n, q2) | det a = 1}

denote the special unitary group. We also observe

(A.23) hB(∆(V, F, f)) = U(n, q2) · 〈w ∗ 1n〉,

where w is a primitive element of GF(q2), and

(A.24) hB(Γ(V, F, f)) = (U(n, q2) · 〈w ∗ 1n〉) · Aut F,

where we have the usual action of Aut F on a matrix group.

Lemma A.7. Let n be a natural number with n ≥ 2, and let q be a prime
power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Then we have:

(1) |U(n, q2)| = qn(n−1)/2
∏n

i=1(q
i − (−1)i);

(2) |SU(n, q2)| = |U(n, q2)|/(q + 1);
(3) CGL(2,q2)·AutGF(q2)(SU(2, q2)) = {a ∗ 12 | a ∈ GF(q2)∗} · 〈( 0 −1

1 0 ) ·α〉 where
α(x) = x̄ for all x ∈ SU(2, q2);

(4) CGL(n,q2)·AutGF(q2)(SU(n, q2)) = {a ∗ 1n | a ∈ GF(q2)∗} for n > 2;
(5) SU(n, q2)′ = SU(n, q2);
(6) SU(n, q2)/Z(SU(n, q2)) is simple.

Lemma A.7 (3) and (4) immediately yield that for (n, q) 6∈ {(2, 2), (2, 3),
(3, 2)} the centralizer of U(n, q2) in GL(n, q2) · Aut GF(q2) comprises of scalar
matrices only.

Proof: Item (1) is [KL90, Proposition 2.3.3]. By definition, we have
(det x)q+1 = 1 for all x ∈ U(n, q2). Let F := GF(q2), and let w be a primi-
tive element of F . Then a := diag(wq−1, 1, . . . , 1) is in U(n, q2). By det a = w,
we now obtain that | det U(n, q2)| = q + 1. Since SU(n, q2) is the kernel of det on
U(n, q2), this yields (2). For the proof of (3), we observe

SU(2, q2) = {
(

a b
−bq aq

)
| a, b ∈ F, aq+1 + bq+1 = 1}.

Let g ∈ GL(2, q2) and ϕ ∈ Aut F such that g · ϕ centralizes SU(2, q2). For a
primitive element w of F , we have that s := diag(w, w−1)q−1 is in SU(2, q2).

Since sg = s(ϕ−1), the eigenvalues of s and of s(ϕ−1) are equal. But then s(ϕ−1) =
diag(wϕ, (wϕ)−1)q−1 yields either (wq−1)ϕ = wq−1 or (wq−1)ϕ = w1−q. Hence ϕ is
trivial or wϕ = wq.

First we assume that ϕ is trivial. Let a, b, c, d ∈ F such that g = ( a b
c d ). Then

we have

gs =
(

w 0
0 w−1

)−(q−1) · ( a b
c d ) ·

(
w 0
0 w−1

)q−1
=

(
a bw−2(q−1)

cw2(q−1) d

)
= g.
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By the assumption that q > 3, we have w2(q−1) 6= 1 and b = c = 0. Conjugating
g = diag(a, d) by ( 0 −1

1 0 ) ∈ SU(2, q2) yields

( 0 −1
1 0 )

−1 · ( a 0
0 d ) · ( 0 −1

1 0 ) = ( 0 1
−1 0 ) · ( 0 −a

d 0 ) = ( d 0
0 a ) .

Thus we have a = d, and g is in {a ∗ 12 | a ∈ F ∗}.
Next we consider the case that

xg = x̄ for all x ∈ SU(2, q2).

Let a, b, c, d ∈ F such that g = ( a b
c d ). Then we have sg = s−1, which yields

sgs =
(

w 0
0 w−1

)q−1 · ( a b
c d ) ·

(
w 0
0 w−1

)q−1
=

(
aw2(q−1) b

c dw−2(q−1)

)
= g.

By w2(q−1) 6= 1, we obtain a = d = 0. Since wq+1 ∈ GF(q)∗, there is v ∈ GF(q2)∗

such that vq+1 = 1 − wq+1. Then the matrix x := ( w v
−vq wq ) is in SU(2, q2). We

consider the conjugate of x by g,

xg = ( 0 b
c 0 )

−1 · ( w v
−vq wq ) · ( 0 b

c 0 ) =
(

0 c−1

b−1 0

)
·
(

vc wb
wqc −vqb

)
=

(
wq −vqbc−1

vcb−1 w

)
.

Now xg = x̄ yields c = −b. Thus g is a scalar multiple of ( 0 −1
1 0 ). The proof of (3)

is complete.
For proving (4), we let g ∈ GL(n, q2) and ϕ ∈ Aut F such that g ·ϕ centralizes

all elements of SU(n, q2). For a primitive element w of F , we consider s :=

diag(w1−n, w, . . . , w)q−1. By s ∈ SU(n, q2), we have sg = s(ϕ−1). The comparison

of the eigenvalues of s and of s(ϕ−1) with their respective multiplicities yields
(wq−1)ϕ = wq−1. Hence ϕ is trivial, and we have

CGL(n,q2)·AutGF(q2)(SU(n, q2)) ⊆ GL(n, q2).

We observe that the matrices ei ∈ GL(n, q2) for i ∈ {2, . . . , n} of Lemma A.6 are
elements of SU(n, q2). Thus we obtain (4).

By [Die48, p.70, Theorem 5], all proper normal subgroups of SU(n, q2) are
central. Hence we have (6). Since SU(n, q2)/Z(SU(n, q2)) is not abelian, we
obtain (5). �

Based on Lemma A.7, we now study certain quotients of subgroups of unitary
groups.

Lemma A.8. Let n be a natural number with n ≥ 2, and let q be a prime
power such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let H be a group with SU(n, q2) ⊆
H ⊆ U(n, q2) · 〈w ∗ 1n〉 where w is a primitive element in GF(q2). Let Y be a
subgroup of Z(H), and let G := H/Y . Then we have:

(1) G has property (A);
(2) G′ = (SU(n, q2) · Y )/Y and Z(G) = (H ∩ 〈w ∗ 1n〉)/Y ;
(3) The Sylow p-subgroup of G/G′ is cyclic for all odd primes p;
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(4) If the Sylow 2-subgroup of G/G′ is not cyclic, then there is a group L
with G′ ⊆ L ⊆ G ∩ (U(n, q2) · Y )/Y such that L/G′ is a cyclic 2-group
with a cyclic direct complement in G/G′.

Proof: For proving (1) and (2), we first show that D := U(n, q2) · 〈w∗1n〉 has
property (A) (see Chapter 3, Section 1). Let Z := 〈w∗1n〉, and let N := SU(n, q2).
Then N is a normal subgroup of D. By (3), (4), (5), and (6) of Lemma A.7, N
satisfies condition (3) of Lemma 2.2. Thus N satisfies (C.1) and (C.2) in D (see
Chapter 2, Section 2). We note that D/N is abelian. Hence

(A.25) U(n, q2) · 〈w ∗ 1n〉 has property (A).

by Lemma 3.1. Since SU(n, q2) is quasisimple by Lemma A.7 (6), Lemma 3.3
yields

(A.26) Z(H) = Z ∩H and H ′ = SU(n, q2)

and that

(A.27) H has property (A).

For G := H/Y , Lemma 3.2 yields (1) and (2).
For the remainder of the proof, we write x̄ := x ·G′ for x ∈ G, and we write

Ā := (A · G′)/G′ for subgroups A of G. Let G1 := G ∩ (U(n, q2) · Y )/Y . Then
Ḡ1 can be embedded into U(n, q2)/SU(n, q2) and is cyclic. Let g ∈ G1 such that
ḡ generates Ḡ1, and let z be a generator of Z(G). Then the abelian group Ḡ is
generated by ḡ and z̄. We have that ord ḡ divides q + 1 and that |Ḡ : Ḡ1| divides
q − 1.

Let p be a prime. The Sylow p-subgroup P of Ḡ is cyclic if and only if the
Sylow p-subgroup of 〈ḡ〉 is contained in the Sylow p-subgroup of 〈z̄〉 or vice versa.
Hence P is cyclic iff either p does not divide |Ḡ : 〈ḡ〉| or p does not divide |Ḡ : 〈z̄〉|.
We have that

|Ḡ : 〈ḡ〉| divides q − 1,

and

|Ḡ : 〈z̄〉| divides |U(n, q2) : SU(n, q2)|, which is q + 1.

Hence gcd(|Ḡ : 〈ḡ〉|, |Ḡ : 〈z̄〉|) divides 2. Thus the Sylow p-subgroup of Ḡ is
cyclic, when p is odd. This proves (3).

Now we assume that the Sylow 2-subgroup of Ḡ is not cyclic. Then we have
gcd(|Ḡ : 〈ḡ〉|, |Ḡ : 〈z̄〉|) = 2, and q is odd. Let a, c ∈ G such that ā is a generator
for the Sylow 2-subgroup of 〈ḡ〉 and c̄ is a generator for the Sylow 2-subgroup of
〈z̄〉. Let L := G′ · 〈a〉. We will show that

(A.28) L̄ has a cyclic direct complement in Ḡ.

If ord ā = 2, then ā 6∈ 〈c̄〉 yields that 〈ā〉 · 〈c̄〉 is a direct product. Since the Sylow
2-subgroup of Ḡ is generated by ā and c̄, we then obtain (A.28) from (3).
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Next we assume that 4 divides ord ā. Then 4 divides q + 1, and (q − 1)/2 is
odd. Hence c2 is in G1, that is, c̄2 is in 〈ā〉. By the assumption that 〈ā, c̄〉 is not
cyclic, we obtain ord ā ≥ ord c̄. As a maximal cyclic subgroup of the abelian 2-
group 〈ā, c̄〉, the group 〈ā〉 has a direct complement in 〈ā, c̄〉 (see [Rob96, p.102,
4.2.7]). Then (3) yields (A.28). Thus we have (4). The proof of the lemma is
complete. �

We determine some additional parameters for certain groups that are de-
scribed in Lemma A.8.

Lemma A.9. Let n be a natural number with n ≥ 2, and let q be a prime power
such that (n, q) 6∈ {(2, 2), (2, 3), (3, 2)}. Let G be a group such that SU(n, q2) ⊆
G ⊆ U(n, q2), let Z := {a ∗ 1n | a ∈ GF(q2)∗, aq+1 = 1}, and let Y be a subgroup
of Z ∩G. Let k := |Y | and m := |G : SU(n, q2)|. Then we have:

(1) Z(G/Y ) = (Z ∩G)/Y ;

(2) |Z(G/Y )| = gcd(mn,q+1)
k

;
(3) (G/Y )′ = (SU(n, q2) · Y )/Y ;

(4) |(G/Y )′| = |SU(n,q2)|
gcd(n,k)

.

Proof: The assertions (1) and (3) follow immediately from Lemma A.8 (2).
We note that G is given by G = {x ∈ U(n, q2) | (det x)m = 1} and Z ∩ G =
{a ∗ 1n | a ∈ GF(q2)∗, aq+1 = 1, and (det(a ∗ 1n))m = 1}. Thus we have

Z(G) = {a ∗ 1n | a ∈ GF(q2)∗, agcd(q+1,mn) = 1},

which implies |Z(G)| = gcd(mn, q + 1). Hence (1) and |Y | = k yield (2).
To compute the size of the derived subgroup of G/Y , we note Y = {a∗1n | a ∈

GF(q2)∗ and ak = 1}. Hence

Y ∩ SU(n, q2) = {a ∗ 1n | a ∈ GF(q2)∗, ak = 1, and an = 1}.

This yields |Y ∩ SU(n, q2)| = gcd(n, k). Now (4) follows from (3). �

7. Endomorphisms of linear and unitary groups

Since the structure of linear and unitary groups is very similar (see Sections 5
and 6), we will be able to deal with the endomorphisms of these groups using
the same methods. For many of our applications, it suffices to know that the
automorphisms of linear and unitary groups have the following property:

Lemma A.10. Let n be a natural number with n ≥ 2, and let q be a prime
power. Let G be a group such that SL(n, q) ⊆ G ⊆ GL(n, q) or SU(n, q2) ⊆ G ⊆
U(n, q2). Let α be an endomorphism of G with Ker(α) ⊆ Z(G). Then there is
a ∈ N such that α(z) = za for all z ∈ Z(G) and

(A.29) det α(x) = (det x)a for all x ∈ G.
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We will prove this lemma from first principles, without making use of the
description of automorphisms of finite simple groups as given in [Die51] or
in [Car89, Chapter 12]. Before we can do the actual proof, we have to state
a few auxiliary results.

We recall the definition of ei ∈ SL(n, q) ∩ SU(n, q2) from Lemma A.6: For
i ∈ {2, . . . , n}, the matrix ei has −1 in the (1, i)-th position, 1 in the (i, 1)-th
position, 1 in the diagonal except in positions (1, 1) and (i, i), and 0 everywhere
else.

Lemma A.11. Let n be a natural number with n ≥ 2, and let q be a prime
power. Let v1, . . . , vn, w1, . . . , wn ∈ GF(q2)∗, and let v := diag(v1, . . . , vn), w :=
diag(w1, . . . , wn). Then the following are equivalent:

(1) There is a bijection π : {1, . . . , n} → {1, . . . , n} such that vi = wπ(i) for
all i ∈ {1, . . . , n};

(2) There is g ∈ 〈e2, . . . , en〉 with v = wg;
(3) There is g ∈ GL(n, q) with v = wg;
(4) There is g ∈ GL(n, q2) with v = wg.

Proof: (1) ⇒ (2): For i ∈ {2, . . . , n}, let (1, i) denote the transposition
on the set {1, . . . , n} that interchanges 1 and i. The permutation π can be

written as a product π =
∏k

j=1

∏n
i=2(1, i)

li,j for some natural number k and

li,j ∈ {0, 1}. We note that we write functions to the left of the argument. With

g :=
∏k

j=1

∏n
i=2 e

li,j
i , we then have v = g−1 · w · g.

(2) ⇒ (3) and (3) ⇒ (4) are obvious.
(4) ⇒ (1): The characteristic polynomial cv of v (in the variable x) is equal to∏n

i=1(x− vi), and the characteristic polynomial cw of w is equal to
∏n

i=1(x−wi).
By (4), we have cv = cw, which implies (1). �

Lemma A.12. Let n be a natural number with n ≥ 2, and let q be a prime
power. Let v ∈ GL(n, q2) be a diagonal matrix and assume that v has s distinct
eigenvalues of respective multiplicities n1 ≥ n2 ≥ · · · ≥ ns. Let G be a group such
that SL(n, q) ⊆ G ⊆ GL(n, q) or SU(n, q2) ⊆ G ⊆ U(n, q2).

Then q
1
2
·
∑s

i=1 ni(ni−1) is the largest power of q that divides CG(v).

Proof: Let v1, . . . , vs be the distinct eigenvalues of v with multiplicities n1 ≥
n2 ≥ · · · ≥ ns. By Lemma A.11, we have g ∈ 〈e2, . . . , en〉 ⊆ G such that

vg = diag(v1, . . . , v1, v2, . . . , v2, . . . , vs, . . . , vs).
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Let w := vg, and let a ∈ G such that aw = wa. Then the matrix a is a block-
diagonal matrix,

a =


a1 0

a2

. . .

0 as

 ,

where ai is an ni × ni matrix for i ∈ {1, . . . , s}. We now distinguish the cases
that G is a linear or a unitary group. First we assume that SL(n, q) ⊆ G ⊆
GL(n, q). Then the matrices ai are elements of GL(ni, q) for i ∈ {1, . . . , s}.
Thus we have an embedding of CG(w) into H :=

∏s
i=1 GL(ni, q). We note that

|H| =
∏s

i=1

∏ni

j=1(q
ni − qj). Hence r := q

1
2
·
∑s

i=1 ni(ni−1) is the largest q-power that

divides |H|. Let m := |G : SL(n, q)|. Then CG(w) is isomorphic to the kernel of
the homomorphism h : H → GF(q)∗, x 7→ (det x)m. Now, |Im(h)| divides q − 1,
and |Im(h)| is therefore coprime to q. By the homomorphism theorem, we then
have that r divides |Ker(h)|. By CG(v) = g · CG(w) · g−1, we finally obtain that
r divides |CG(v)|.

Next we consider the case SU(n, q2) ⊆ G ⊆ U(n, q2). Then we have ai ∈
U(ni, q

2) for i ∈ {1, . . . , s}, and we can embed CG(w) into H :=
∏s

i=1 U(ni, q
2).

Lemma A.7 (1) tells that |H| =
∏s

i=1 qni(ni−1)/2
∏ni

j=1(q
j − (−1)j). Hence r :=

q
1
2
·
∑s

i=1 ni(ni−1) is the largest p-power that divides |H|. With m := |G : SU(n, q2)|,
the centralizer CG(w) is isomorphic to the kernel of h : H → GF(q2)∗, x 7→
(det x)m. Now |Im(h)| is coprime to q because |Im(h)| divides q + 1. Thus, by
the homomorphism theorem, r divides |Ker(h)|. By CG(v) = g · CG(w) · g−1, we
finally obtain that r divides |CG(v)|. The lemma is proved. �

Now we are able to prove Lemma A.10.

Proof of Lemma A.10: We write I = GL(n, q), F = GF(q) if SL(n, q) ⊆
G ⊆ GL(n, q), and I = GL(n, q2), F = GF(q2) else. Let α be an endomorphism
of G with Ker(α) ⊆ Z(G). We note that G/Z(G) is centerless because G has
property (A) by the Lemmas A.4, A.8. Then α(Z(G)) ⊆ Z(G) by Lemma 2.8.
Since Z(G) is cyclic, we have an element a ∈ N such that α(z) = za for all
z ∈ Z(G). We will now show that (A.29) holds for this a. To this end, we let
m := |G : G′|. Since (A.29) is obvious if m = 1, we will assume m > 1 in the
sequel. Let w be a primitive m-th root of unity in F . For i ∈ {1, 2, . . . , n}, we
define a matrix di by

di = diag(1, . . . , 1, w, 1, . . . , 1),

where w stands at the i-th place. Let H denote the subgroup of G generated by
d1, . . . , dn. Then the restriction α|H : H → I is a representation of H over the
field F . Let (Zm, ·) be the cyclic group with m elements. Then H is isomorphic to
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(Zm)n. Since m divides |F |−1, m and q are relatively prime. Hence by Maschke’s
Theorem [Rob96, p.216], α|H is equivalent to a representation β : H → I such
that β is a sum of irreducible representations of H over F . By the definition of
equivalence [Rob96, p.215], we have t ∈ I such that

(A.30) α(h) = t−1 · β(h) · t for all h ∈ H.

We will now prove

(A.31) β(H) ⊆ H.

Since (F ∗, ·) is cyclic, and since m divides |F | − 1, the polynomial xm − 1 has
precisely m roots in F . Hence conditions (1) and (2) in [AW92, p. 439, Defini-
tion (1.3)] are satisfied, and so, by [AW92, p.451, Theorem 2.1] all irreducible
representations of the abelian group H over F are of degree 1. Therefore, β is
a sum of representations of degree 1, and so for each h ∈ H, β(h) is a diagonal
matrix. Furthermore, H has exponent m. Hence every representation ρ of H of
degree 1 maps H into a subgroup of (F ∗, ·) of exponent dividing m. This shows
that for every h ∈ H, we have (ρ(h))m = 1, and hence ρ(h) is a power of w. This

implies (A.31). We define a mapping β̃ : G → I by

(A.32) β̃(g) := t · α(g) · t−1 for all g ∈ G.

We will now investigate the diagonal matrix β̃(d1). We assume that β̃(d1) has s
distinct eigenvalues of multiplicities n1, . . . , ns. Let r be the largest power of q
which divides |CG(d1)|. Since β̃(CG(d1) ⊆ Cβ̃(G)(β̃(d1)) and |Ker(β̃)| is coprime

to q, we have that r divides |Cβ̃(G)(β̃(d1))|. By Cβ̃(G)(β̃(d1)) ⊆ CG(β̃(d1)) and

Lemma A.12, we then obtain that r = q
1
2
(n−1)(n−2) divides q

1
2
·
∑s

i=1 ni(ni−1). Hence

(A.33) (n− 1)(n− 2) ≤
s∑

i=1

ni(ni − 1)

with
∑s

i=1 ni = n. We first assume that ni ≤ n − 2 for all i = 1, . . . , s. Then∑s
i=1 ni(ni − 1) ≤

∑s
i=1 ni(n− 3) = n(n− 3), and n(n− 3) < n− 3n + 2 = (n−

1)(n−2) contradicts (A.33). Now we assume that s = 1 and n1 = n. Then β̃(d1)

is in Z(β(G)), which yields the contradiction that [d1, g] ∈ Ker(β̃) ⊆ Z(G) for all
g ∈ G. Thus we have s = 2 and n1 = n−1, n2 = 1. There is k, l ∈ {0, 1, . . . ,m−1}
with k 6= l, and there is i ∈ {1, . . . , n} such that

(A.34) β̃(d1) = diag(wk, wk, . . . , wk, wl, wk, . . . , wk),

where wl stands at the i-th place. We denote the matrix on the right hand side
of (A.34) by e(i, k, l). By Lemma A.11, the elements d1, . . . , dn ∈ H are pairwise

conjugate in G. So β̃(d1), . . . , β̃(dn) ∈ β̃(H) are pairwise conjugate in β̃(G). By

β̃(H) ⊆ H and by Lemma A.11, we have

(A.35) β̃({d1, d2, . . . , dn}) ⊆ {e(1, k, l), e(2, k, l), . . . , e(n, k, l)}.
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Since β̃(d1), . . . , β̃(dn) are pairwise distinct, equality holds in (A.35). Next we
show that

(A.36) for all x ∈ G : det α(x) = (det x)k+l(n−1)

To prove (A.36), we fix x ∈ G. Then there is r with 0 ≤ r ≤ m − 1 such that

det x = wr. For s := (d1)
−r · x, we have det s = 1 and x = (d1)

r · s. Now det β̃(x)

can be computed by det β̃(x) = det(β̃((d1)
r · s)) = det β̃((d1)

r) · det β̃(s). Since s

is in G′, which is fully-invariant in G, we also have det β̃(s) = 1. Hence we obtain

det β̃((d1)
r) · det β̃(s) = det β̃((d1)

r) = w(k+l(n−1))·r = (det x)k+l(n−1). By (A.32),

we have det α(x) = det β̃(x), which implies (A.36). Now we show that

(A.37) m divides a− (k + l(n− 1)).

Let c :=
∏n

i=1 di. Then β̃(c) =
∏n

i=1 e(i, k, l) = diag(wk+l(n−1), . . . , wk+l(n−1)).

Since c ∈ Z(G), the choice of a yields β̃(c) = t · α(c) · t−1 = t · diag(wa, . . . , wa) ·
t−1 = diag(wa, . . . , wa). Thus we have wa = wk+l(n−1), which implies (A.37).

Finally we will prove (A.29). We fix x ∈ G. Then (det x)m = 1, and thus
by (A.37) we have (det x)k+l(n−1) = (det x)a. With (A.36) we obtain det α(x) =
(det x)a, which proves (A.29) and completes the proof of Lemma A.10. �

8. Properties of symplectic groups

Let V be a vector space over a field F with a non-degenerate symplectic
bilinear form f (see Section 2). By [KL90, Proposition 2.4.1] or [Hup67, p.217,
Satz 9.6, Definition 9.7)], the dimension n of V over F is even, and we have a
basis B = {b1, c1, . . . , bn/2, cn/2} of V such that

f(bi, bj) = f(ci, cj) = 0 and f(bi, cj) = δij for all i, j ∈ {1, . . . , n/2}.
Under the homomorphism hB : ΓL(V, F ) → GL(n, q) of (A.1) for this basis B,
the symplectic group I(V, F, f) is isomorphic to the matrix group

Sp(n, q) := {a ∈ GL(n, q) | xt · a · x = a}
with

a :=



0 −1
1 0

0 −1
1 0

. . .
0 −1
1 0


.

We call Sp(n, q) the symplectic group of n × n matrices over GF(q). For w a
primitive element of GF(q), we observe

(A.38) hB(∆(V, F, f)) = Sp(n, q) · 〈diag(w, 1, . . . , w, 1)〉.
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If q is even, then Sp(n, q) ∩ 〈w ∗ 1n〉 is trivial, which yields

(A.39) Sp(n, q) · 〈diag(w, 1, . . . , w, 1)〉 = Sp(n, q) · 〈w ∗ 1n〉.

In any case we have

(A.40) hB(Γ(V, F, f)) = (Sp(n, q) · 〈diag(w, 1, . . . , w, 1)〉) · Aut F,

where Aut F acts on the matrix group as usual.

Lemma A.13. Let n be an even natural number with n ≥ 2, and let q be a
prime power such that (n, q) 6∈ {(2, 2), (2, 3), (4, 2)}. Then we have:

(1) |Sp(n, q)| = qn2/4
∏n/2

i=1(q
2i − 1);

(2) Sp(n, q) ⊆ SL(n, q);
(3) Sp(2, q) = SL(2, q);
(4) Sp(4, 2) is isomorphic to the symmetric group S6;
(5) CGL(n,q)·AutGF(q)(Sp(n, q)) = {a ∗ 1n | a ∈ GF(q)∗};
(6) Z(Sp(n, q)) = 〈−1n〉;
(7) Sp(n, q)′ = Sp(n, q);
(8) Sp(n, q)/〈−1n〉 is simple.

Proof: Assertion (1) is [Hup67, p.220, Satz 9.13 b] or [KL90, Prop. 2.4.2],
and (2) is [Hup67, p.224, Satz 9.19] For proving (3), we let g := ( a b

c d ) be an
element of SL(n, q). By

( a b
c d )

t · ( 0 −1
1 0 ) · ( a b

c d ) = ( a c
b d ) ·

(
−c −d
a b

)
=

(
0 −(ad−bc)

ad−bc 0

)
= ( 0 −1

1 0 ) ,

we have g ∈ Sp(2, q). Thus SL(2, q) ⊆ Sp(2, q). The converse inclusion is given
by (2). Assertion (4) is proved in [Hup67, p.227, Satz 9.21].

Next we show (5). Let g ∈ GL(n, q), and let ϕ ∈ Aut GF(q) such that g · ϕ
centralizes all elements in Sp(n, q). For a primitive element w ∈ GF(q), we

consider s := diag(w,w−1, 1, . . . , 1) in Sp(n, q). Now sg = s(ϕ−1) yields that ϕ is
trivial. Thus we have

CGL(n,q)·AutGF(q)(Sp(n, q)) ⊆ GL(n, q).

Since CGL(n,q)(Sp(n, q)) = {a ∗ 1n | a ∈ GF(q)∗} by [KL90, p. 51, (2.10.2)], we
then have (5).

Now (6) follows immediately from (5). Finally (7) and (8) are [Hup67, p.224,
Satz 9.20, p.227 Hauptsatz 9.22]. �
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9. Properties of orthogonal groups

Let V be a vector space over a finite field F with a non-degenerate quadratic
form Q. For vectors v, w ∈ V , let (v, w) := Q(v + w) − Q(v) − Q(w) be the
bilinear form corresponding to Q (cf. Section 2). For v ∈ V such that Q(v) 6= 0,
we define the reflection in v (cf. [KL90, p. 29, (2.5.7)]) by

(A.41) rv : V → V, x 7→ x− (v, x)

Q(v)
v.

We note that rv ∈ I(V, F, Q), det rv = −1, and that rv is an involution.
By [KL90, Prop. 2.5.6], we have I(V, F, Q) = 〈{rv | Q(v) 6= 0}〉. Hence we
may define the spinor norm θ as a map from G to F ∗/(F ∗)2 given by

θ(
k∏

i=1

vi) =
k∏

i=1

(vi, vi) · (F ∗)2.

By [Asc86, 22.11], θ is well-defined and a homomorphism.

Proposition A.14. Let V be a vector space of dimension at least 5 over a
finite field F of odd characteristic, and let Q be a non-degenerate quadratic form
on V over F . We write O := I(V, F, Q), S := S(V, F, Q), and Ω := Ω(V, F, Q).
Let G be a group such that Ω ⊆ G ⊆ O. Then we have:

(1) Z(O) = 〈α〉 for α : V → V, x 7→ −x;
(2) Ω = Ker(θ) ∩ S;
(3) |O : S| = 2 and |S : Ω| = 2;
(4) Ω has an elementary abelian complement in O;
(5) N ⊆ F ∗ or Ω ⊆ N for all normal subgroups N of G;
(6) Z(G) = G ∩ F ∗ and G′ = Ω.

Proof: Item (1) is straightforward by considering the isometries of V that
commute with all reflections rv for v ∈ V as defined above. Item (2) is part
of [Asc86, p.102, Exercise 6.1]. Since the determinant of an element in O is 1
or −1, the homomorphism theorem yields the first part of (3). We will prove
the second together with (4). Since V has dimension at least 5, there exists a
basis B of V with distinct vectors e1, e2, f1, f2 ∈ B such that Q(ei) = Q(fi) = 0
and (ei, fi) = δij for all i, j ∈ {1, 2} by [KL90, Prop. 2.5.3]. Let k ∈ F ∗ be not
a square, and let v = e1 + f1, w = ke2 + f2. Since v and w are orthogonal by
definition, the reflections rv and rw commute. Hence

(A.42) H := 〈rv, rw〉 is an elementary abelian group of order 4.

Now we will prove

(A.43) H ∩ Ω = {1}.



9. PROPERTIES OF ORTHOGONAL GROUPS 115

The elements of H are 1, rv, rw, and rv · rw. By det rv = det rw = −1, we have
rv, rw ∈ O \ S and rv · rw ∈ S. We compute

θ(rv · rw) = (v, v) · (w,w) · (F ∗)2 = 2 · 2k · (F ∗)2.

Since k is not a square, this yields rv · rw 6∈ Ω by (2). Hence we have (A.43)
and |S : (S ∩ Ker(θ))| ≥ 2. By the homomorphism theorem, we have |S :
(S ∩Ker(θ))| ≤ 2. Together with (2), we then obtain |S : Ω| = 2. This completes
the proof of (3). Now O = Ω ·H follows from (A.42) and (3). Thus (4) is proved.
Assertion (5) is [Die48, p. 34, Proposition 13]. For proving (6), we suppose
Z(G) 6= G ∩ F ∗. Then (5) yields that Ω ⊆ Z(G) and that Ω/(Ω ∩ F ∗) is an
abelian, simple group. This contradicts that Ω/(Ω ∩ F ∗) has not prime order by
the formulae for |Ω| obtained from Lemmas A.15, A.16, A.17. Hence we have
Z(G) = G ∩ F ∗. Next we suppose G′ 6= Ω. Since G′ ⊆ Ω, assertion (5) yields
that G′ ⊆ F ∗. Furthermore, by (5), Ω/(Ω ∩ F ∗) is an abelian, simple group,
which yields a contradiction as above. Hence we have G′ = Ω. The proof of the
proposition is complete. �

We note that, by Proposition A.14 (3), the index of Ω in S is 2. Under the
assumptions of this proposition, I(V, F, Q)′ is thus equal to the group Ω(V, F, Q)
as defined in [KL90] (see the related remark in Section 3).

We will now present matrix representations of the orthogonal groups. Let
V be a vector space of dimension n over the field GF(q) with a non-degenerate
quadratic form Q and the associated bilinear form fQ (see Section 2).

First we assume that q and n are odd. By [Hup67, p.237, Satz 10.9] or
by [KL90, Prop. 2.5.3 (iii)], there is a basis B such that hB is an isomorphism
from I(V, F, Q) to

O◦(n, q) := {x ∈ GL(n, q) | xt · a◦ · x = a◦}

with

a◦ :=



0 1
1 0

. . .
0 1
1 0

1

 .

For q odd and n even, there are two non-equivalent quadratic forms, denoted Q+

and Q−. We write vB to denote the coordinates of a vector v ∈ V with respect to
a basis B. Let ε ∈ {+,−}. By [Hup67, p.237, Satz 10.9] (or by [KL90, Prop.
2.5.3 (i),(ii)] with some manipulations), there are bases B+, B− of V such that

(A.44) fQε(v, w) = vt
Bε · aε · wBε for all v, w ∈ V
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with

a+ :=



0 1
1 0

0 1
1 0

. . .
0 1
1 0


and a− :=



0 1
1 0

. . .
0 1
1 0

1 0
0 −k


for a fixed element k ∈ GF(q) such that k is not a square. Corresponding to
the two non-equivalent quadratic forms for ε ∈ {+,−}, we then obtain two non-
isomorphic matrix groups, denoted

Oε(n, q) := {x ∈ GL(n, q) | xt · aε · x = aε}.

Let ε ∈ {◦, +,−}. The elements of Oε(n, q) have determinant 1 or −1; the
elements of determinant 1 form a subgroup of Oε(n, q), which is denoted SOε(n, q).
Let Ωε(n, q) denote the derived subgroup of Oε(n, q).

Lemma A.15. Let n be an odd natural number with n ≥ 3, and let q be an
odd prime power such that (n, q) 6= (3, 3). Then we have:

(1) |O◦(n, q)| = 2q(n−1)2/4
∏(n−1)/2

i=1 (q2i − 1);
(2) O◦(n, q) = SO◦(n, q) · 〈−1〉 is a direct product.

Proof: For (1) see [KL90, Prop. 2.5.5]. Item (2) follows immediately from
Proposition A.14 (3) since −1n 6∈ SO◦(n, q). �

Lemma A.16. Let n be an even natural number with n ≥ 6, and let q be an
odd prime power. Then we have:

(1) |O+(n, q)| = 2qn(n−2)/4
∏n/2

i=1(q
2i − 1);

(2) −1n ∈ Ω+(n, q) if and only if n(q − 1)/4 is even;

Lemma A.17. Let n be an even natural number with n ≥ 4, and let q be an
odd prime power. Then we have:

(1) |O−(n, q)| = 2qn(n−2)/4(qn/2 + 1) ·
∏n/2−1

i=1 (q2i − 1);
(2) −1n ∈ Ω−(n, q) if and only if n(q − 1)/4 is odd;

Proof of Lemma A.16 and A.17: Item (1) is in [KL90, Prop. 2.5.5],
and (2) follows from [KL90, Prop. 2.5.13]. �

Lemma A.18. Let V be a vector space of dimension at least 5 over a finite
field F of odd characteristic, and let Q be a non-degenerate quadratic form on V .
Then I(V, F, Q) has exactly one normal subgroup of index that is characteristic.
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Proof: We write O := I(V, F, Q), S := S(V, F, Q), and Ω := Ω(V, F, Q).
By Proposition A.14, the factor O/Ω is an elementary abelian group of order 4.
Hence O has 3 normal subgroups of index 2. The result is proved by establishing
the following:

(1) There exists a normal subgroup N of index 2 in O that is invariant under
Aut O;

(2) There exists a normal subgroup H of index 2 in O that is not invariant
under Aut O.

First we will show (1) under the assumption Ω ∩ Z(O) = {1}. Since |Z(O)| = 2
by Proposition A.14 (1), we then have that N := Ω · Z(O) has index 2 in O.
Proposition A.14 (6) yields O′ = Ω. As the product of 2 characteristic subgroups,
N is characteristic in O.

Next we assume Ω ∩ Z(O) 6= {1}, that is Z(O) ⊆ Ω. We will show that
N := S is characteristic in O by using the description of automorphisms of O
in [Die51, p.51, Theorem 15]. By this result, all automorphisms of O are of the
form

α : O → O, x 7→ ρ(x) · xa,

where ρ is some endomorphism from O to Z(O) and a ∈ A(V, F, Q) is some
semilinear transformation of E. Since S is normal in A(V, F, Q) and Z(O) ⊆ S
by assumption, we then obtain that α(S) ⊆ S for all α ∈ Aut O. The proof of (1)
is complete.

For proving (2), we first assume that n is odd. Let i : V → V, x 7→ −x.
Then we have Z(O) = 〈i〉 by Proposition A.14 (1). Since Z(O) 6⊆ Ω, Proposi-
tion A.14 (4) yields that 〈−1n〉 has a direct complement H in O. By Proposi-
tion A.14 (3), Ω has index 2 in H. Let h ∈ H \ Ω. We define an endomorphism
ρ from O to Z(O) by

ρ(h) = i and Ker(ρ) = Ω · 〈i〉.

Then the normal subgroup H of O is not invariant under ρ. By ρ(O) ⊆ Z(O),
the map

α : O → O, x 7→ ρ(x) · x,

is an endomorphism of O. Since ρ(O) ⊆ Ker(ρ), we also have that α is bijective.
Hence α is an automorphism of O that does not fix H because ρ(H) 6⊆ H. This
proves the result for odd n.

Next we assume that n is even. Let w be primitive element in F . As mentioned
above, there are 2 non-equivalent quadratic forms. First we consider the case that
ε = +. Let B+ = {e1, f1, . . . , en/2, fn/2} be the basis of V mentioned in (A.44).
We define a linear map δ on V by

δ(ei) = wei, δ(fi) = fi for all i ∈ {1, . . . , n/2}.
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Let d := hB+(δ). Then d = diag(w, 1, . . . , w, 1), and we have dt · a+d = w ∗ a+.
We note that d 6∈ O+(n, q) and hence δ 6∈ O. Still we have O+(n, q)d = O+(n, q)
and Oδ = O. We may now define

α : O → O, x 7→ xδ.

Obviously α is an automorphism of O.
For ε = −, the construction of an appropriate automorphism of O is a bit

tedious. We start by constructing an element d ∈ GL(n, q) that normalizes
O−(n, q). Let k ∈ GF(q)∗ be the fixed non-square used in the definition of a−

and O−(n, q) above. Let r, s ∈ GF(q) such that r2 − s2k = w. The existence
of such elements can be seen as follows: If −k is not a square, then there exists
s ∈ GF (q) such that −s2k = w. We may choose r = 0. If −k is a square,
then such r, s exist since each element of GF(q) can be written as sum of 2
squares [Hup67, p.237, Hilfssatz 10.6]. We compute

( r sk
s r )t · ( 1 0

0 −k ) · ( r sk
s r ) = ( r s

sk r ) ·
(

r sk
−sk −rk

)
=

(
r2−s2k 0

0 s2k2−r2k

)
= w ∗ ( 1 0

0 −k ) .

We let

d :=



w
1

. . .
w

1
r sk
s r


.

Then we have dt · a−d = w ∗ a−, and consequently d normalizes O−(n, q). Let
B− = {e1, f1, . . . , en/2, fn/2} be the basis of V mentioned in (A.44). We define a
linear map δ on V by

δ(ei) = wei, δ(fi) = fi for all i ∈ {1, . . . , n/2− 1},

and δ(en/2) = ren/2 + sfn/2, δ(fn/2) = sken/2 + rfn/2. Then δ normalizes O. We
have an automorphism α of O given by

α : O → O, x 7→ xδ.

We will now show that α defined according to ε = + or ε = − is not in I(O).
Let B := Bε, and let h ∈ O be defined by

h(e1) = f1, h(f1) = e1 and h(b) = b for all b ∈ B \ {e1, f1}.

Then det h = −1. Hence H := Ω · 〈h〉 is a subgroup of index 2 in O, and we have
H 6= S. In order to show α(H) 6⊆ H, we consider hδ. We have

hδ(e1) = w−1f1, h
δ(f1) = we1, and h(b) = b for all b ∈ B \ {e1, f1}.



9. PROPERTIES OF ORTHOGONAL GROUPS 119

Now g := h−1 · hδ satisfies

g(e1) = w−1e1, g(f1) = wf1, and g(b) = b for all b ∈ B \ {e1, f1}.

Hence we have det g = 1 and g ∈ S. We proceed to show g ∈ S \ H, that is,
we show g 6∈ Ω by using the characterization of Ω as kernel of the spinor norm
(see Proposition A.14 (2)). For this, we need a representation of g as product of
reflections (cf. (A.41)).

For u, v ∈ V , we let (u, v) denote the bilinear form corresponding to the
quadratic form Q on V . Since n ≥ 6 by assumption, we have (e1, e1) = (f1, f1) = 0
and (e1, f1) = 1 by the definition of a+, a−. For t ∈ GF(q)∗ and v := te1 + f1, we
now consider the reflection

rv : V → V, x 7→ x− (v, x)

Q(v)
v.

Since the characteristic of F is odd by assumption, we have Q(v) = 1
2
(v, v). We

compute
(A.45)

Q(te1 + f1) =
1

2
[(te1, te1) + (te1, f1) + (f1, te1) + (f1, f1)] =

1

2
· 2 · t(e1, f1) = t.

Here we used that the bilinear form is symmetric. Now we find that

rv(e1) = e1 − 1
t
(te1 + f1) = −t−1f1,

rv(f1) = f1 − t
t
(te1 + f1) = −te1,

rv(b) = b for all b ∈ B \ {e1, f1}.
Let v1 := e1+f1, and let v2 := we1+f1. By comparing the images of the elements
of B, we obtain g = rv1 · rv2 . Then the spinor norm of g is

θ(g) = (v1, v1) · (v2, v2) · (F ∗)2.

By (A.45), we have (v1, v1) = 2 and (v2, v2) = 2w. Hence θ(g) = w · (F ∗)2, and
g 6∈ Ker(θ) since w is a primitive element in a field of odd characteristic, and
hence w is not a square. Thus we have g ∈ S \ Ω by Proposition A.14 (2). In
particular, g = h−1 · hδ is not contained in H, which yields hδ 6∈ H. Hence the
normal subgroup H of O is not invariant under the automorphism α of O. This
proves (2). Thus the lemma is proved. �

Until now we only considered orthogonal groups for fields in odd characteristic
q. We will now turn our attention to groups I(V, F, Q) for which |F | is even.

Lemma A.19. Let V be a vector space of dimension at least 6 over a finite
field F of even characteristic, and let Q be a non-degenerate quadratic form on V
over F . We write O := I(V, F, Q), S := S(V, F, Q), and Ω := Ω(V, F, Q). Then
we have:

(1) dimF V is even;
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(2) O is centerless;
(3) S = O and |O : Ω| = 2;
(4) Ω is non-abelian simple.

Proof: Item (1) is [KL90, p. 26, Proposition 2.5.1], and the first part
of (3) is [KL90, p. 31, (2.5.11)]. The second part of (3) follows from [Die48,
p.45, Proposition 15]. A straightforward investigation of the isometries of V
that commute with all reflections rv for v ∈ V yields (2). Finally, we have (4)
by [Asc86, p.222, (43.12) (4)]. �

Let V be a vector space of even dimension n over the field F of even char-
acteristic q. We note that, by Lemma A.19 (3), the index of Ω in S is 2. For
dimF V ≥ 6, we then have that I(V, F, Q)′ is equal to Ω(V, F, Q) as defined
in [KL90]. We have already shown this equality for F with odd characteristic
and dimF V ≥ 5 (see the related remark in Section 3).

We also note that there exist 2 non-equivalent quadratic forms on V . The
orders of the corresponding orthogonal groups are given by the formulae in
Lemma A.16, A.17, respectively (See [KL90, Prop. 2.5.5]).



APPENDIX B

Frobenius groups

We collect the properties of Frobenius groups that are used in Chapter 5.

1. Definitions and general results

Let G be a group with a subgroup H such that {1} < H < G. Then we say
that H is a Frobenius complement in G if

(B.1) H ∩Hg = {1} for all g ∈ G \H.

More general, we call a group H is a Frobenius complement if there exists a group
G and an embedding ϕ from H into G such that ϕ(H) is a Frobenius complement
in G.

A group G is a Frobenius group if there is a subgroup H of G with {1} <
H < G that satisfies (B.1).

Theorem B.1 (Frobenius). Let G be a finite group, and let H be a Frobenius
complement in G. Then N := G \

⋃
x∈G(H \ {1})x is a normal subgroup of G

such that G = NH and N ∩H = {1}.

Proof: [Rob96, 8.5.5]. �

Let H be a Frobenius complement in the finite group G. Then

N := G \
⋃
x∈G

(H \ {1})x

is called the Frobenius kernel of G.

Lemma B.2 ([Hup67, p. 497, Satz 8.3]). Let G be a finite Frobenius group
with kernel N and complement H. Then |H| divides |N | − 1.

Lemma B.3 ([Hup67, p. 506, Satz 8.18]). Let G be a finite Frobenius group
with kernel N and complement H. We assume that |H| is even. Then we have:

(1) There is exactly one involution in H, say i. We have xi = x−1 for all
x ∈ N .

(2) N is abelian.

Theorem B.4 ([Rob96, 10.5.6]). Let G be a finite Frobenius group with
kernel N and complement H. Then we have:

(1) (Thompson). N is nilpotent.

121
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(2) (Burnside). The Sylow p-subgroups of H are cyclic for odd p and cyclic
or generalized quaternion groups for p = 2.

2. The structure of Frobenius complements

The groups all of whose Sylow subgroups are cyclic are characterized as the
semidirect products of cyclic groups of coprime order in the following theorem.
In particular, these groups are metacyclic. We note that not all of the groups
described in Theorem B.5 are Frobenius complements. See the remark below
Theorem B.6.

Theorem B.5 ([Hup67, p.420, Satz 2.11]). Let G be a finite group such that
all Sylow subgroups of G are cyclic. Then there are m,n, r ∈ N with gcd(m, n(r−
1)) = 1 and m|rn − 1 such that

(1) G ∼= 〈a, b | am = bn = 1, ab = ar〉;
(2) G′ is cyclic of order m, and G/G′ is cyclic of order n.

By Theorem B.4 (2), all abelian subgroups of a Frobenius complement are
cyclic. The next result provides presentations for all such groups that are solvable.

Theorem B.6 ([Wol67, 6.1.11]). Let G be a finite solvable group. Then
every abelian subgroup of G is cyclic if and only if G has one of the following
four presentations:

Type Generators Relations Conditions

I a, b am = bn = 1, gcd(m, n(r − 1)) = 1,
ab = ar rn ≡ 1 mod m

II a, b, q as in I; also as in I; also
bn/2 = q2, n = 2tu, t ≥ 2, u odd,
aq = ak, l ≡ −1 mod 2t,
bq = bl l2 ≡ 1 mod u,

rl−1 ≡ k2 ≡ 1 mod m

III a, b, p, q as in I; also as in I; also
p4 = 1, p2 = q2, m,n odd,
pq = p−1, n ≡ 0 mod 3
pa = p, qa = q,
pb = q, qb = pq

IV a, b, p, q, z as in III; also as in III; also
p2 = z2, pz = qp, rl−1 ≡ k2 ≡ 1 mod m,
qz = q−1, l2 ≡ 1 mod n,
az = ak, bz = bl l ≡ 2 mod 3
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We assume that G satisfies one of four presentations given in Theorem B.6
with fixed parameter m, r, n. Let d be the smallest natural number such that
rd ≡ 1 mod m. Then G is a Frobenius complement if and only if n/d is divisible
by all prime divisors of d (see [Wol67, 6.1.11]).

We note that the groups of type I are exactly the groups characterized in
Theorem B.5.

The structure of non-solvable Frobenius complements can be described as
follows.

Theorem B.7 ([Pas68, Theorem 18.6], [Wol67, 6.3.1]). Let G be a non-
solvable Frobenius complement. Then G has a normal subgroup H with |G :
H| ≤ 2 such that H is isomorphic to the direct product of SL(2, 5) and a group
M with gcd(|M |, 30) = 1 all of whose Sylow subgroups are cyclic.

For completeness, we add yet another classification of Frobenius complements
as certain extensions of metacyclic groups.

Theorem B.8 ([Bro01, Theorem 1.4]). Every Frobenius complement G has
a unique normal subgroup N such that all Sylow subgroups of N are cyclic and
G/N is isomorphic to one of the following 6 groups:

1, Z2 × Z2, A4, S4, A5, S5.





APPENDIX C

Group rings and modules

We recall and develop results on group rings Ze[G] to the extent that is
necessary for dealing with Frobenius groups with abelian kernel in Chapter 5.

1. Definitions

Let R be a ring with 1, let (M, +) be an abelian group, and let ∗ be a function
from R × M to M that maps (r, m) to r ∗ m such that for all r, s ∈ R, for all
x, y ∈ M the following are satisfied:

(1) r ∗ (x + y) = r ∗ x + r ∗ y;
(2) (r + s) ∗ x = r ∗ x + s ∗ x;
(3) (rs) ∗ x = r ∗ (s ∗ x);
(4) 1 ∗ x = x.

Then M is an R-module. We note that the ring R itself can be considered as an
R-module by

r ∗ x = rx for all r, x ∈ R.

To make notation easier, in the following, we will write rm instead of r ∗m for
r ∈ R and m ∈ M where M is an R-module.

We say that a non-trivial R-module M is simple if {0} and M are the only
R-submodules of M . Let U, V be submodules of an R-module M . If U∩V = {0},
then we write U u V for U + V and say that the sum is direct. We say that M
is indecomposable if M = U u V yields U = {0} or V = {0}. The annihilator of
an R-module M is defined as the set

AnnR(M) := {r ∈ R | rM = {0}}.

For a ring R and a finite group G, we consider the set of formal sums, R[G] :=
{
∑

g∈G agg | ag ∈ R}. For elements of R[G], we define∑
g∈G

agg +
∑
g∈G

bgg :=
∑
g∈G

(ag + bg)g,

∑
g∈G

agg ·
∑
g∈G

bgg :=
∑
g∈G

(
∑
xy=g

axby)g.

Then (R[G], +, ·) is a ring called the group ring of G with coefficients from R.
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2. The structure of Ze[G]

Convention: Throughout this section, G is a finite group, e is a natural
number (not necessarily prime) such that gcd(e, |G|) = 1, and R := Ze[G].

In the following we will adjust some ideas that have been used for investigating
F [G]-modules (F a field) in [Isa94, Chapter 1] to the case of Ze[G]-modules.

Lemma C.1 (Maschke). Let V be a finite R-module, let N be an R-submodule
of V , and let H be subgroup of V such that V = N + H and N ∩H = {0}. Then
there exists an R-submodule L of V such that V = N u L.

Proof: [Hup67, p.122, Satz 17.6] �

Lemma C.2. Let N be a finite, indecomposable R-module. Then there exists
a prime p, and there exist integers k, d such that the following hold:

(1) N is isomorphic to (Zpk)d as a group;
(2) N = Rn for all n ∈ N \ pN ;
(3) N is isomorphic to some direct summand of R/pkR as an R-module;
(4) For all R-submodules U of N there is l ∈ N such that U = plN ;
(5) For all l ∈ {0, . . . , k − 1} the R-modules N/pN and plN/pl+1N are

isomorphic and simple.

Proof: Let N be a finite, indecomposable R-module. Since N is the direct
sum of its Sylow subgroups, which are R-submodules as well, N is a p-group. Let
k ∈ N such that exp N = pk. From Lemma C.1, we obtain that N = U u V for
some R-submodules U, V of N with U ∼= (Zpk)d for some d ∈ N and exp V < pk

(cf. [Hup67, p.125, Aufgabe 68], a full proof is given in [May98, Lemma 6.4]).
Since N is indecomposable, we have V = {0} and (1) is proved. For the rest of
the proof, we let p, k, d be fixed.

Next we show (2). For n ∈ N \pN , we consider the R-module homomorphism

h : R → N, r 7→ rn.

Then h(R) = Rn is an R-module of exponent pk. As in the proof of (1), we have
R-submodules U, V of Rn such that U ∼= (Zpk)f for some f ∈ N, exp V < pk, and
Rn = U u V . Every subgroup isomorphic to (Zpk)f has a complement in (Zpk)d

[Fuc60, p. 53, Exercise 23], [Sze49]. Hence there exists a complement for U in
N , and we have an R-submodule L such that N = U u L by Lemma C.1. Thus
L = {0} and N = Rn. Item (2) is proved.

For (3), we consider h as defined above. Let K := Ker(h). We have pkR ⊆ K.
So K/pkR is a subgroup of R/pkR. From R/K ∼= (Zpk)d and R/pkR ∼= (Zpk)|G|

we obtain K/pkR ∼= (Zpk)|G|−d. Hence K/pkR has a complement in R/pkR
by [Fuc60, p. 53, exercise 23]. By Lemma C.1, there exists an R-submodule L
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of R/pkR such that R/pkR = K/pkR u L. Then R/K is isomorphic to L by the
homomorphism theorem. Item (3) is proved.

Next we show (4). Let U be a non-trivial R-submodule of N . Then we have
l ∈ N0 such that pl+1N ⊂ U ⊆ plN . Let n ∈ N \ pN such that pln ∈ U \ pl+1N .
By (2), we obtain R(pln) = plRn = plN ⊆ U . Hence U = plN .

It remains to prove (5). For l ∈ {1, . . . , k − 1}, the map

h : N/pN → plN/pl+1N, x + pN 7→ plx + pl+1N.

is well-defined and an R-module isomorphism. The module N/pN is simple since
R(n + pN) = N/pN for all n ∈ N \ pN by (2). Hence plN/pl+1N is simple. The
lemma is proved. �

By Lemma C.2, a finite indecomposable R-module is simple if and only if it
has prime exponent. Furthermore each finite indecomposable R-module N has a
unique minimal R-submodule, which we will denote by Nmin.

For an R-module V and a simple R-module M , we define

M(V ) :=
∑

{N ≤ V | N indecomposable, Nmin
∼= M}.

Here isomorphism is understood as isomorphism between R-modules.

Lemma C.3. Let V be a finite R-module, and let M be a finite simple R-
module. Then all minimal R-submodules of M(V ) are isomorphic to M .

Proof: Let U be a minimal R-submodule of M(V ), and let l be the smallest
positive integer such that there exist indecomposable submodules N1, . . . , Nl of V
with their respective minimal submodules isomorphic to M and U ⊆ N1+· · ·+Nl.
Such an integer l exists by the finiteness of M(V ). Let W := N1 + · · ·+Nl−1, and
let W := {0} if l = 1. Then U 6⊆ W and hence U ∩W = {0}. Since (W + U)/W
is a submodule of (W +Nl)/W , U can then be embedded into Nl/(W ∩Nl) by the
homomorphism theorem. By Lemma C.2, the minimal submodule of Nl/(W ∩Nl)
is isomorphic to M . Thus U is isomorphic to M . The lemma is proved. �

Let p be a prime divisor of e. Then pR is an ideal of R, and R/pR is isomorphic
to the group ring Zp[G]. By the next theorem, R/pR is a direct product of simple
rings.

Theorem C.4 (Wedderburn). Let p be a prime divisor of e. We write R̄ :=
R/pR. Then there exists n ∈ N and there exist simple R-submodules M1, . . . ,Mn

of R̄ such that the following hold:

(1) Every finite simple R-module of exponent p is isomorphic to exactly one
of the R-modules M1, . . . ,Mn;

(2) R̄ = M1(R̄) u · · ·u Mn(R̄);
(3) Mi(R̄) is a minimal ideal of R̄ for all i ∈ {1, . . . , n};
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(4) For all i ∈ {1, . . . , n} there exists a finite field F of characteristic p and
there exists d ∈ N such that Mi(R̄) is isomorphic to the matrix ring F d

d .

Proof: By Lemma C.2 (3), every finite simple R-module of exponent p is
isomorphic to some R-submodule of R̄. Since R̄ is finite, the number of isomor-
phism classes of simple R-modules of exponent p is finite, say n. Let M1, . . . ,Mn

be representatives for these isomorphism classes. Then we have (1).
Next we show (2). Clearly R̄ is the sum of indecomposable modules.

Since each indecomposable module contains a unique minimal submodule by
Lemma C.2, we have R̄ = M1(R̄) + · · · + Mn(R̄). By Lemma C.3, this sum is
direct.

For proving (3), we let r ∈ R and consider the map t : R̄ → R̄, x 7→ x(r+pR).
Let M be a minimal R-submodule of R̄. Since t is an R-module homomorphism,
t(M) is either trivial or isomorphic to M . Then we have M(R̄)(r+pR) ⊆ M(R̄),
and M(R̄) is a right ideal. As an R-module, M(R̄) is also a left ideal of R̄. Hence

(C.1) Mi(R̄) is an ideal for all i ∈ {1, . . . , n}.

Let i ∈ {1, . . . , n}. To show that Mi(R̄) is minimal, we let I be an ideal of R̄
with I < Mi(R̄). Then we have an R-submodule L of Mi(R̄) such that L ∼= Mi

and L 6⊆ I. Since L is simple, we have I ∩ L = {0}. So IL ⊆ I ∩ L yields
IL = {0}. Consequently I annihilates Mi(R̄). From (C.1) and (2) we obtain
IMj(R̄) = I ∩ Mj(R̄) = {0} for all j ∈ {1, . . . , n}, j 6= i. Hence I = IR̄ = {0}
by (2). Thus Mi(R̄) is a minimal ideal. Item (3) is proved.

It remains to show (4). Let i ∈ {1, . . . , n}. From (2) and (3), we obtain
AnnR̄(Mi) =

∑n
j=1,j 6=i Mj(R̄). By [Isa94, Theorem (1.16)], R̄/AnnR̄(Mi) is iso-

morphic to EndF (Mi) where F = EndR̄(Mi) is a division ring. Consequently
Mi(R̄) is isomorphic to some d × d matrix ring over F . Since a finite division
ring is a field [Sco87, (14.1.4)], we have (4). The theorem is proved. �

Lemma C.5. Let V be a finite R-module, let M be a simple R-submodule of
V with exp M = p, and let A := AnnR(M). Then there exists k ∈ N such that
the following hold:

(1) A is a maximal ideal of R and pR ⊆ A;
(2) exp M(V ) = pk and AnnR(M(V )) = Ak;
(3) |R : Ak| = |R : A|k.

Proof: Since exp M = p, we have pR ⊆ A. By Theorem C.4, R/A is
isomorphic to M(R/pR), which is a simple ring. Hence A is maximal. We
have (1).

For (2), we note that M(V ) is a sum of p-groups by Lemma C.2. Hence we
have k ∈ N such that exp M(V ) = pk. For an indecomposable R-submodule N
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of M(V ), we show

(C.2) AlN = plN for all l ∈ N.

By Lemmas C.2, C.3, N/pN is isomorphic to M . Then AnnR(N/pN) = A yields
AN ⊆ pN . The converse inclusion follows from (1). Now AN = pN yields (C.2).

By exp M(V ) = pk, we have an indecomposable R-submodule L of M(V )
with exp L = pk. From (C.2) we then obtain AnnR(L) = Ak. Consequently
AnnR(M(V )) ⊆ Ak. The converse inclusion is obviously true. Item (2) is proved.

For (3), we note that

(C.3) |R : Ak| = |R : A| · |A : A2| · · · |Ak−1 : Ak|.

Let l ∈ {1, . . . , k − 1}, and let A0 := R. We consider the map

h : Al−1/Al → Al/Al+1, x + Al 7→ px + Al+1.

Then h is well-defined and a homomorphism between groups. We shall prove that
h is an isomorphism. Let x ∈ Ker(h). Then px ∈ Al+1 yields x(pN) ⊆ pl+1N
by (C.2). Hence x ∈ AnnR(pN/pl+1N). From (2) we obtain AnnR(pN/pl+1N) =
Al. Thus h is injective.

To show that h is surjective, we observe that A/pR is a direct sum of simple
rings with 1 by Theorem C.4. Then we have (A/pR)2 = A/pR, that is

A2 + pR = A.

From this we obtain Al+1 + pAl−1 = Al. Hence h is surjective. Consequently (3)
follows from (C.3). The lemma is proved. �

For an R-module V and for r ∈ R, we define a map rV : V → V by x 7→ rx.
We give a direct decomposition of V and of R/AnnR(V ).

Lemma C.6. Let V be a finite R-module. Then there are pairwise non-
isomorphic simple R-modules M1, . . . ,Mn such that the following hold:

(1) V = M1(V ) u · · ·u Mn(V );
(2) R/AnnR(V ) ∼= R/AnnR(M1(V ))× · · · ×R/AnnR(Mn(V )).

Proof: Since every module is the sum of indecomposable modules, the Lem-
mas C.2 and C.3 yield (1). For proving (2), we assume that the summands in the
decomposition given in (1) are non-trivial and that n > 1. For i ∈ {1, . . . , n} and
Ai := AnnR(Mi), we have ki ∈ N such that AnnR(Mi(V )) = Aki

i by Lemma C.5.
From (1) we obtain AnnR(V ) =

⋂n
i=1 Ai

ki . We consider the ring homomorphism

f : R → R/Ak1
1 × · · · ×R/Akn

n , r 7→ (r + Ak1
1 , . . . , r + Akn

n ).

Then Ker(f) = AnnR(V ). We show that f is surjective. Let i ∈ {1, . . . , n} be
fixed. For j ∈ {1, . . . , n}, i 6= j, we let aj ∈ Aj \ Ai. We note that such an
element aj exists since Ai, Aj are distinct maximal ideals in R by Theorem C.4.
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Let s :=
∏n

j=1,j 6=i a
kj

j . Then s annihilates Mj(V ) for j 6= i. Since ajMi = Mi for
j 6= i, we have sMi = Mi. Hence the map sMi

is bijective on the finite module
Mi. By Lemma C.3, we have Ker(sMi(V )) = {0}. Thus sMi(V ) is bijective on
Mi(V ). Some power of sMi(V ) is equal to the identity map 1Mi(V ). Hence we have

(0 + Ak1
1 , . . . , 0 + A

ki−1

i−1 , 1 + Aki
i , 0 + A

ki+1

i+1 , . . . , 0 + Akn
n ) ∈ f(R)

for all i ∈ {1, . . . , n}. Consequently f is surjective. By the homomorphism
theorem we have (2). The lemma is proved. �

We conclude this section with some relations between R-modules of prime
exponent p and Zp[G]-modules.

Lemma C.7. Let p be a prime divisor of e, and let R̄ := R/pR. For R-modules
U, V of exponent p, we have the following:

(1) V is an R̄-module by (r + pR)x = rx for all r ∈ R, x ∈ V ;
(2) R/AnnR(V ) ∼= R̄/AnnR̄(V );
(3) V is a simple R-module if and only if V is a simple R̄-module;
(4) U and V are isomorphic as R-modules if and only if U and V are iso-

morphic as R̄-modules.

Proof: Since pR ⊆ AnnR(V ), the action of R̄ on V is well-defined. Hence V
is an R̄-module. The proofs of the remaining assertions are straightforward. �

3. Frobenius groups and representations

Let F be a field, and let G a group. For d ∈ N, let GL(d, F ) denote the group
of invertible d× d matrices with entries in F . Let ϕ : G → GL(d, F ) be a group
homomorphism. Then ϕ is called a representation of G over F of degree d. Let
V := F d. We define an action of G on V by

(C.4) vg := ϕ(g)v for all g ∈ G, v ∈ V.

Here an d × d matrix r with entry rij in row i, column j acts on a vector v =
(v1, . . . , vn) by multiplication, rv := (

∑n
j=1 r1jvj, . . . ,

∑n
j=1 rnjvj). We let V ·ϕ G

denote the semidirect product of V and G that is defined by (C.4). We may view
V as an F [G]-module by

(
∑
g∈G

agg) ∗ v :=
∑
g∈G

agϕ(g)v for all v ∈ V.

Then we say that V is the F [G]-module that is associated to ϕ.
Conversely, let V be any F [G]-module. Then we obtain a representation of

G over F from the matrix representations (with respect to a fixed basis) of the
linear transformations gV : V → V, x 7→ g ∗ x for g ∈ G.
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Representations with isomorphic associated F [G]-modules are said to be
equivalent. A representation of G over F is irreducible if its associated F [G]-
module V is simple.

A representation ϕ of a group G over the field F is fixed-point-free if we have
for all g ∈ G \ {1} that 1 is not an eigenvalue of ϕ(g). The following connection
between fixed-point-free representations and Frobenius groups is quite obvious.

Lemma C.8. Let G be a finite group, |G| > 1, and let F be a finite field. For
a representation ϕ of G over F of degree d, the following are equivalent:

(1) ϕ is fixed-point-free;
(2) F d ·ϕ G is a Frobenius group with complement G and kernel F d.

Proof: Straightforward. �

Fixed-point-free representations have been investigated over the complex
numbers in [Wol67] and over fields of prime characteristic in [May00]. We give
the irreducible fixed-point-free representations of Q8 over GF(p) in Lemma C.9
and of SL(2, 3) in Lemma C.10.

Lemma C.9 ([May98, cf. Proposition 5.19]). Let Q8 be the quaternion group
of order 8,

Q8 = 〈a, b | a4 = 1, a2 = b2, ab = a−1〉.
Let p be an odd prime, and let u, v ∈ GF(p) such that u2 + v2 = −1. Then
ρ : Q8 → GL(2, p) defined by

ρ(a) = ( u v
v −u ) , ρ(b) = ( 0 −1

1 0 )

is an irreducible fixed-point-free representation of Q8. All irreducible fixed-point-
free representations of Q8 over GF(p) are equivalent to ρ.

We note that every element of GF(p) is the sum of 2 squares. Hence elements
u, v as in the lemma above exist.

Proof of Lemma C.9: It is straightforward to check that ρ is irreducible
and fixed-point-free. To prove the uniqueness of ρ, let R := Zp[Q8]. We note that
p and |Q8| are relatively prime by assumption. Since Q8 is not abelian, we have
a simple R-submodule M of R such that R/AnnR(M) is not a field. Let d be the

dimension of M over Zp. Then we have d ≥ 2 and |R/AnnR(M)| ≥ pd2
. From

|R| = p8 we obtain d = 2. Theorem C.4 yields that R ∼= Zp×Zp×Zp×Zp×(Zp)
2
2.

Hence all simple R-modules whose dimension is greater than 1 are isomorphic
to M . Because of this, all irreducible representations of Q8 whose degree is
greater than 1 are equivalent. The representations of Q8 of degree 1 are not
fixed-point-free since they are not injective. Thus all irreducible fixed-point-free
representations are equivalent to ρ. �
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Lemma C.10 ([May00, cf. Proposition 7]). Let

G = 〈a, b, c | a4 = 1, a2 = b2, ab = a−1, ac = b, bc = ab, c3 = 1〉.
Let p be a prime, p 6∈ {2, 3}, and let u, v ∈ GF(p) such that u2 + v2 = −1. Then
τ : G → GL(2, p) defined by

τ(a) = ( u v
v −u ) , τ(b) = ( 0 −1

1 0 ) , τ(c) =
1

2

( −1+u+v −1−u+v
1−u+v −1−u−v

)
is an irreducible fixed-point-free representation of G. All irreducible fixed-point-
free representations of G over GF(p) are equivalent to τ .

Proof: Let F be the algebraic closure of GF(p). We note that p and |G| =
24 are relatively prime by assumption. The squares of the degrees of the non-
equivalent irreducible F -representations of G/Z(G) sum up to 12 (see [Isa94,
Corollary 1.17 (d)]). Certainly none of the representations of G that are lifted
from these are fixed-point-free. The sum of the squares of the degrees of the non-
equivalent irreducible F -representations that do not have Z(G) in their kernel is
12 as well. One of them is τ . We shall define the others explicitly. Let f be a
primitive third root of unity in F̄ . For i ∈ {1, 2}, we define τi : G → GL(2, F )
such that

τi(a) := τ(a), τi(b) := τ(b), and τi(c) := f i ∗ τ(c).

The order of τ(c) is 3 and det τ(c) = 1. Thus τ(c) has eigenvalues f, f2. Conse-
quently the eigenvalues of τ1(c) are given by f 2, 1; those of τ2(c) by 1, f . Hence
τ, τ1, τ2 are pairwise non-equivalent. Since 3 · 22 = 12, every irreducible represen-
tation ϕ of G with Z(G) 6⊆ Ker(ϕ) is equivalent to τ, τ1, or τ2. Neither τ1 nor τ2

is fixed-point-free. If an irreducible fixed-point-free representation of G over F
exists, then it is equivalent to τ .

It remains to prove that τ is fixed-point-free. We have that 〈a, b〉 is isomorphic
to Q8 and τ |〈a,b〉 = ρ with ρ as in Lemma C.9. Hence the restriction of τ to 〈a, b〉
is fixed-point-free. We note that every element of G \ 〈a, b〉 has order 3 or 6. By
Sylow’s theorem, all elements of order 3 in G are conjugate to c or c−1. Hence
τ(x) has eigenvalues f, f2 for all x ∈ G with ord x = 3. Since a2 is the unique
involution in G, all elements of order 6 in G are conjugate to a2c or a2c−1. Hence
τ(x) has eigenvalues −f,−f 2 for all x ∈ G with ord x = 6. Thus τ is fixed-point-
free. The lemma is proved. �
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