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Vorwort

Ein berühmter Satz von Frobenius von 1901 zeigt, daß, wenn eine Gruppe G
eine echte nicht triviale Untergruppe H besitzt, sodaß für alle g ∈ G \ H gilt
H ∩ g−1Hg = {1G}, dann existiert eine normale Untergruppe N von G, sodaß G
das halbdirekte Produkt von N und H darstellt. Gruppen mit dieser Eigenschaft -
sogenannte Frobeniusgruppen - tauchen auf natürliche Art als transitive Permuta-
tionsgruppen auf, aber sie können auch als halbdirektes Produkt einer Gruppe N
und einer auf N operierenden Automorphismengruppe, die als einzigen Fixpunkt
das neutrale Element von N besitzt, betrachtet werden.

Nur wenig später, 1905, erhielt Dickson die ersten echten Fastkörper, indem
er die Multiplikation in endlichen Körpern “störte”. 1936 benutzte Zassenhaus
die Tatsache, daß für alle Elemente a eines Rechtsfastkörpers N die Abbildungen
λa : x 7→ ax mit der Fastkörpermultiplikation Automorphismen ohne nicht triv-
iale Fixpunkte von (N,+) darstellen. Dies ermöglichte ihm die Charakterisierung
aller endlichen Fastkörper bis auf 7 Ausnahmen als Dickson-Fastkörper. Während
die additive Gruppe eines endlichen Fastkörpers elementar abelsch ist, gelang es
Thompson 1959 zu zeigen, daß jede Gruppe, die einen fixpunktfreien Automor-
phismus von Primzahlordnung besitzt, nilpotent ist.

Planare Fastringe (N,+, ·) können als verallgemeinerte Fastkörper betrachtet
werden, und Ferrero’s Entdeckung, daß jeder planare Fastring aus einer addi-
tiven Gruppe und einer darauf operierenden fixpunktfreien Automorphismengruppe
erzeugt werden kann, kommt nicht überraschend.

Im endlichen Fall können Frobeniusgruppen, Fastkörper und planare Fastringe
als verschiedene Aspekte desselben gruppentheoretischen Konzepts interpretiert
werden: als eine nilpotente Gruppe mit einer fixpunktfreien Automorphismen-
gruppe. Diese Beziehungen werden in Kapitel 7 präsentiert.

Obwohl die Struktur von fixpunktfreien Automorphismengruppen bekannt ist,
ist die Bestimmung einer solchen Gruppe Φ für eine beliebige nilpotente Gruppe
G bei weitem nicht trivial. Das Ziel dieser Diplomarbeit ist es, den theoretischen
Hintergrund darzustellen, wie man fixpunktfreie Automorphismengruppen konstru-
ieren kann, und Funktionen zu bieten, um dies mit dem Computer auch wirklich zu
tun. Das hauptsächliche Werkzeug dazu ist die Erweiterung von Gruppen. Nach
Wiederholung der klassischen Resultate von Thompson und Zassenhaus in Kapi-
tel 3, wobei auch neue und großteils elementare Beweise für die Charakterisation
der auflösbaren fixpunktfreien Automorphismengruppen präsentiert werden, erfolgt
eine schrittweise Annäherung an das Problem: der einfache Fall einer zyklischen
Gruppe G ist in Kapitel 4 vollständig abgehandelt. Für elementar abelsche Grup-
pen erhalten wir ein Resultat von Ke und Kiechle aus 1993, das die zyklischen fix-
punktfreien Automorphismengruppen Φ bestimmt, doch unter Verwendung eines
anderen Zugangs. Dieser ermöglicht uns auch, den Fall der Quaternionengruppe
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ii VORWORT

zu lösen und sowohl für zyklische Φ als auch für Φ isomorph zu einer Quaternio-
nengruppe einer bestimmten Grösse die Anzahl bis auf Konjugiertheit anzugeben.
Weiters folgt eine zumindest teilweise Beschreibung der metazyklischen fixpunkt-
freien Automorphismengruppen, alles in Kapitel 5. Durch den Übergang von einer
abelschen Gruppe G zu elementar abelschen Faktorgruppen in Kapitel 6 können
alle vorhergehende Resultate verallgemeinert werden.

Schließlich stellt Kapitel 7 eine Implementation der ausgearbeiteten Ideen in
dem Computer Algebra Programm GAP vor, die passende Werkzeuge zur Berech-
nung fixpunktfreier Automorphismengruppen einer breiteren Öffentlichkeit zugäng-
lich machen soll. Beschreibungen von Funktionen und Beispiele schließen die Arbeit
ab.



Preface

A famous theorem by Frobenius in 1901 proves that if a group G contains a
proper non trivial subgroup H such that H ∩ g−1Hg = {1G} for all g ∈ G \ H,
then there exists a normal subgroup N such that G is the semidirect product of
N and H. Groups with this property - the so called Frobenius groups - arise in a
natural way as transitive permutation groups, but they can also be characterized
as semidirect product of a group N and a group of automorphisms H acting on N
with the identity of N as single fixed point.

Only a short time later in 1905, Dickson obtained the first proper nearfields,
when he “distorted” the multiplication in a finite field. In 1936, Zassenhaus made
advance of the fact that for all elements a in a right nearfield N the mappings
λa : x 7→ ax with nearfield multiplication are automorphisms without non trivial
fixed points on (N,+) and determined the structure of all finite fixed point free
automorphism groups. This enabled him to characterize all finite nearfields as
Dickson nearfields up to 7 exceptional cases. Whereas the additive group of a finite
nearfield is elementary abelian, Thompson managed to show that any group which
admits a fixed point free automorphism of prime order has to be nilpotent in 1959.

Planar nearrings (N,+, ·) can be regarded as generalized nearfields and Fer-
rero’s discovery that every planar nearring can be constructed from an additive
group (N,+) and a fixed point free automorphism group acting thereupon does not
come as a surprise at all.

In the finite case Frobenius groups, nearfields and planar nearrings can be
interpreted as different aspects of the same group theoretical concept: a nilpotent
group with a fixed point free automorphism group. We present these interrelations
in Chapter 7.

Although a lot is known about the structure of fixed point free automorphism
groups in theory, the determination of such a group Φ for an arbitrary nilpotent
group G is not trivial at all. The objective of this thesis is to give a theoreti-
cal setting how to construct fixed point free automorphism groups and to provide
functions for actually doing this by computer. The main tool used in this compu-
tational context is extension. After revisiting the classical results from Thompson
and Zassenhaus in Chapter 3, where we also present new and rather elementary
proofs for the characterization of solvable fixed point free automorphism groups,
we work our way up: the easy case of G being cyclic is completely dealt with in
Chapter 4. For an elementary abelian group G we obtain a result from Ke and
Kiechle, 1993, using a slightly different approach to present the cyclic fixed point
free automorphism groups. This enables us to solve the quaternion case and to give
the numbers for both cyclic and quaternion fixed point free automorphism groups
Φ of a given size up to conjugation as well as a halfway description of metacyclic
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Φ, all in Chapter 5. The transfer from an abelian group G to elementary abelian
factor groups in Chapter 6 allows us to generalize all the preceding results.

Finally, Chapter 8 presents an implementation of the elaborated ideas in the
computer algebra program GAP which should make convenient means for compu-
tation of fixed point free automorphism groups available to a broader community.
Descriptions of functions and examples conclude the work.
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CHAPTER 1

Introduction: Group Theory

In this first chapter we introduce the concepts of group theory, which we are
concerned with. We will not give a complete account of basic group theory and we
will also not prove every result cited (see e.g. [Hup67], [Rob96] ) but just collect
properties we need in the following.

Throughout this thesis let all groups be finite.

1. Homomorphisms and Normal Subgroups

1.1. Definition. Let G and H be groups. A function α : G → H is called a
homomorphism if

α(xy) = α(x)α(y)

for all x, y ∈ G. The set of all homomorphisms from G to H is denoted by

Hom(G,H).

A homorphism α : G→ G is called an endomorphism of G and we write

End(G) = Hom(G,G).

Let 1G denote the identity of the group G and idG the identity function
idG : G → G, x 7→ x. Clearly idG and the function h : G → G, x 7→ 1G are
endomorphisms.

1.2. Definition. For a homomorphism α : G → H we define the image Imα and
the kernel Kerα as follows

Imα = {α(x) : x ∈ G} = α(G)

and

Kerα = {x ∈ G : α(x) = 1H}.

1.3. Definition. An injective ( or one-one ) homomorphism is called a mono-
morphism and a surjective ( or onto ) homomorphism an epimorphism : a bijective
homomorphism we call an isomorphism . For a group G an automorphism of G is
an isomorphism from G to G. The set of automorphisms of G is denoted by

Aut(G).

1.4. Definition. Let x, g ∈ G and write

xg = g−1xg.

This element is called the conjugate of x by g. The function τg : G → G with
τg : x 7→ xg is called the inner automorphism of G induced by g and we write

Inn(G)

1



2 1. INTRODUCTION: GROUP THEORY

for the set of all inner automorphisms on G .

Aut(G) is a group with respect to functional composition and Inn(G) is a
subgroup thereof.

1.5. Definition. A subgroup H of G, H ≤ G, is called:
(a) normal iff α(H) = H for all α ∈ Inn(G), written H �G;
(b) characteristic iff α(H) = H for all α ∈ Aut(G);
(c) fully-invariant iff α(H) ≤ H for all α ∈ End(G).

1.6. Theorem (First Isomorphism Theorem). Let α : G → H be a group
homomorphism. Then

G/Kerα ∼= Imα.

( ∼= means is isomorphic to. )

Proof. For n,m ∈ Kerα it holds that α(nm−1) = α(n)α(m)−1 = 1G and
thus Kerα is a subgroup of G. Furthermore, α(g−1ng) = α(g)−1α(n)α(g) = 1G for
any g ∈ G and Kerα�G.

We define a mapping

h : x ·Kerα 7→ α(x)

which is well-defined since α(xn) = α(x) for each n ∈ Kerα and it clearly is
an epimorphism. Now x · Kerα and y · Kerα are mapped to the same element
α(x) = α(y) if and only if α(xy−1) = 1H , which means x · Kerα = y · Kerα; thus
h is an isomorphism.

1.7. Definition. Let X be a nonempty subset of a group G.

CG(X) = {g ∈ G : xg = gx,∀x ∈ X}
is called the centralizer of X in G and for X = G we write C(G) for the center of
G.

NG(X) = {g ∈ G : g−1Xg = X}
is called the normalizer of X in G.

CG(X) and NG(X) are subgroups of G. If X ≤ G, then NG(X) is the largest
subgroup of G in which X is normal.

1.8. Proposition. Let H be a subgroup of a group G. Then

CG(H) �NG(H)

and NG(H)/CG(H) is isomorphic to a subgroup of Aut(H).

Proof. Clearly CG(H) ≤ NG(H). For g ∈ NG(H) let τg denote the function
h 7→ g−1hg. Evidently, τg is an automorphism on H and

τ : NG(H) → Aut(H),
g 7→ τg

is a homomorphism with kernel CG(H). Thus CG(H) is normal in NG(H) and
by the First Isomorphism Theorem 1.6, the factor group NG(H)/CG(H) can be
embedded into Aut(H).

We are not interested in Aut(G) as a whole but in subgroups Φ ≤ Aut(G),
which operate on G without non trivial fixed points.
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1.9. Definition. An automorphism α of a group G is said to have a fixed point g
in G if α(g) = g. If 1G is the only fixed point of α, then α is called fixed point free
on G. A subgroup Φ of Aut(G) is said to be fixed point free on G if every element
ϕ in Φ \ {idG} is fixed point free.

Obviously, every inner automorphism τx ∈ Inn(G) has a fixed point, namely x.
We are ready for our first example of a fixed point free automorphism group:

1.10. Example. Consider the additive group (Z7,+) and let i : Z7 → Z7 denote
the mapping x 7→ −x. Evidently, i(x+y) = −(x+y) = −y−x = −x−y = i(x)+i(y)
and i(x) = 0 implies x = 0. Thus i is an automorphism. Suppose there is x ∈ Z7

such that i(x) = x, that is, x = −x, then x = 0. So i is fixed point free.
The automorphism group generated by i is 〈i〉 = {id, i} and every non trivial

element therein is fixed point free way on Z7.

2. Sylow Theorems

1.11. Definition.
(a) If p is a prime, a finite group G is a p-group if |G| = pn for some n ≥ 1.
(b) H is a p-subgroup of a group G if H ≤ G and H is a p-group.
(c) Let G be an arbitrary finite group, p a prime and pn the highest power of p

dividing |G|. Then H is a p-Sylow subgroup of G if H ≤ G and |H| = pn.

1.12. Proposition. A non trivial finite p-group has a non trivial center.

Proof. This is a simple application of the class equation, see [Rob96], p.39.

1.13. Theorem (Sylow). Let G be a finite group and let p be a prime.
(a) G has a p-Sylow subgroup and furthermore every p-subgroup is contained

in some p-Sylow subgroup.
(b) The p-Sylow subgroups of G are mutually conjugate.
(c) The number of p-Sylow subgroups of G is congruent to 1 mod p and divides

G.

Proof. see [Rob96], p.39.

3. Products of Groups

1.14. Definition. Let N �G. If there is H ≤ G such that G = HN and H ∩N =
1G, then H is called a complement of N in G and G is said to be the semidirect
product of N and H, written as

G = H nN.

If H �G, then G is called the direct product of N and H, in symbols

G = H ×N

For direct products of additive groups we use the notation G = H ⊕N .

1.15. Proposition. ( [Hup67] (I. 9.4)) Let G = G1 × · · · × Gm be the direct
product of its pi-Sylow subgroups Gi with pi prime for 1 ≤ i ≤ m. Then

Aut(G) ∼= Aut(G1)× · · · ×Aut(Gm).
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Proof. For each prime pi, the direct factor Gi is the only pi-Sylow subgroup
of G and therefore characteristic. For every automorphism α ∈ Aut(G), we have
α(Gi) = Gi for i = 1, . . . ,m.

Let αi := α|Gi denote the restriction of α on Gi. Obviously, the mapping

h : Aut(G) → Aut(G1)× · · · ×Aut(Gm)
α 7→ (α1, . . . , αm)

is a monomorphism. On the other hand, each tuple (α1, . . . , αm) ∈ Aut(G1)×· · ·×
Aut(Gm) defines an automorphism α on G1 × · · · ×Gm via

α(g1, . . . , gm) := (α1(g1), . . . , αm(gm)),

where gi ∈ Gi for i = 1, . . . ,m. Thus Aut(G) ∼= Aut(G1)× · · · ×Aut(Gm).

4. Structure of Finite Abelian Groups

We go on to finite abelian groups which are characterized by the following:

1.16. Theorem (Main Theorem on Finite Abelian Groups). Let G be a fi-
nite abelian group. Then there are gi ∈ G such that G =

⊕m
i=1〈gi〉 with ord(gi) =

pdii and pi prime for i = 1, . . . ,m. The prime powers pdii are uniquely determined
by G and conversely they determine G up to isomorphism. The pdii are called the
abelian invariants of G.

Proof. see [Hup67], p. 80, [Rob96], p. 102.

5. Automorphism Group of Cyclic Groups

Z∗n denotes the multiplicative group of units of the ring (Zn,+, ·), i.e., the group
of all elements which have a multiplicative inverse in Zn.

1.17. Proposition. LetG be a cyclic group of finite order n. Then Aut(G) consists
of all automorphisms αl : g 7→ gl where 1 ≤ l ≤ n and gcd(l, n) = 1; moreover, the
mapping l+nZ 7→ αl is an isomorphism from Z∗n to Aut(G). In particular, Aut(G)
is abelian and has order φ(n), where φ denotes Euler’s function .

Proof. Let G = 〈x〉 and let α ∈ Aut(G). Since

α(xi) = α(x)i

for 1 ≤ i ≤ n, the automorphism α is completely determined by α(x) = xl. Evi-
dently,

n = ord(x) = ord(xl) = n/ gcd(n, l)

and l is relatively prime to n.
Conversely, for each integer l such that gcd(n, l) = 1 the mapping g 7→ gl for

g ∈ G is an automorphism. The rest is clear.

The investigation of these groups Z∗n in general will pay off later on.
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1.18. Proposition. ( [Hup67] (I. 13.19b))
(a) If n =

∏r
i=1 ni where gcd(ni, nj) = 1 for i 6= j, then

Z∗n =
r⊕
i=1

Z∗ni .

(b) Z∗pd with p an odd prime is cyclic.
(c) Z∗2d with d ≥ 2 is isomorphic to Z2d−2 ⊕ Z2.

Proof.

(a) Z∗n is isomorphic to Aut(G) where G is a cyclic group of order n by Propo-
sition 1.17. Theorem 1.16 provides a decomposition

G =
r⊕
i=1

Gi

with |Gi| = ni and gcd(ni, nj) = 1 for i 6= j. Thus

Aut(G) ∼=
r⊕
i=1

Aut(Gi)

by Proposition 1.15.
(b) The mapping

h : Z∗pd → Z∗p

x+ pdZ 7→ x+ pZ.

is an epimorphism with

Kerh = {x+ pdZ : x ≡ 1 mod p}
and |Kerh| = pd−1. We show Kerh to be cyclic by verifying that 1+p+pdZ
is of order pd−1 in Z∗pd .

For p > 2, t ≥ 0, there is some l ∈ Z such that

(1 + p)p
t

= 1 + pt+1 + lpt+2.

The hypothesis is true for t = 0, now assume it holds for t and we prove it
for t+ 1.

(1 + p)p
t+1

= ((1 + p)p
t

)p

= (1 + pt+1 + lpt+2)p

=
p∑
i=0

(
p

i

)
(pt+1 + lpt+2)i

= 1 + p(pt+1 + lpt+2) +
p∑
i=2

(
p

i

)
p(t+1)i(1 + lp)i.

Since p is a divisor of
(
p
i

)
for 0 < i < p, we obtain that pt+3 divides∑p

i=2

(
p
i

)
p(t+1)i(1 + lp)i and finally

(1 + p)p
t+1

= 1 + pt+2 + l′pt+3

for some integer l′ and the assertion is proven. Now

(1 + p)p
d−2

= 1 + pd−1 6= 1 mod pd,
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the order of 1 + p in Z∗pd is pd−1 indeed and Kerh is cyclic.
Z∗pd is abelian and thus the direct product of cyclic groups of prime

power order by Theorem 1.16. Let

Z∗pd = 〈g1〉 ⊕ · · · ⊕ 〈gr〉 ⊕Kerh

be a decomposition with gcd(〈gi〉, p) = 1 for 1 ≤ i ≤ r. Then

Z∗pd/Kerh ∼= 〈g1〉 ⊕ · · · ⊕ 〈gr〉 ∼= Imh = Z∗p .

Z∗p is cyclic since the prime remainders mod p form a field. Thus Z∗pd is the
direct product of cyclic groups of relatively prime orders p − 1 and pd−1.
Therefore Z∗pd is cyclic itself.

(c) The proof of (c) is an analog to the proof for (b) where we use a mapping

h : Z∗2d → Z∗4

x+ 2dZ 7→ x+ 4Z.

and verify that Kerh is cyclic.

6. Solvable Groups

1.19. Definition. A group G is said to be solvable if it has a series

{1G} = G0 �G1 � · · ·�Gn = G

in which each factor Gi+1/Gi is abelian.

Solvability can also be characterized by using a particular series which we in-
troduce now.

1.20. Definition. For a, b elements of the group G we call

[a, b] = a−1b−1ab

the commutator of a and b. The subgroup of G generated by all of the commutators
in G is denoted by

G′ = 〈[a, b] : a, b ∈ G〉,

and called the derived subgroup of G. By recursion, we define G(i+1) as the derived
subgroup of G(i) with G(0) = G,

G(i+1) = (G(i))′

We also write G(2) = G′′ and G(3) = G′′′.

Evidently, G ≥ G′ ≥ G′′ ≥ G′′′ ≥ . . . and all G(i) are characteristic subgroups
of G. Each factor Gi+1/Gi is abelian. A group G is solvable if and only if G(l) =
{1G} for some l.

1.21. Definition. A group G is called perfect if G = G′.
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7. Nilpotent Groups

1.22. Definition. A group G is called nilpotent if it has a series

{1G} = G0 �G1 � · · ·�Gn = G

such that Gi+1/Gi is contained in the center of G/Gi for all i.

Note that by definition a nilpotent group G has a non trivial center. Also, every
nilpotent group is solvable. There are several group theoretical properties which
are equivalent to nilpotence for finite groups. We give the formulations which are
most useful for our purposes.

1.23. Theorem. Let G be a finite group. Then the following are equivalent:
(a) G is nilpotent;
(b) every maximal subgroup of G is normal;
(c) G is the direct product of its Sylow subgroups.

Proof. see [Rob96], p. 130.

8. Special Types of Finite p-Groups

1.24. Theorem. A group of order pt+1 has a cyclic maximal subgroup of order pt

if and only if it is of one of the following types:
(a) a cyclic group of order pt+1;
(b) the direct product of a cyclic group of order pt and one of order p;
(c) 〈a, b : ap

n−1
= bp = 1, b−1ab = a1+pn−2〉 for t ≥ 2;

(d) the dihedral group D2t+1 = 〈a, b : a2t = b2 = 1, b−1ab = a−1〉 for t ≥ 2;
(e) the generalized quaternion group Q2t+1 = 〈a, b : a2t = 1, b2 = a2t−1

,
b−1ab = a−1〉 for t ≥ 2;

(f) the semidihedral group 〈a, b : a2t = b2 = 1, b−1ab = a−1+2t−1〉 for t ≥ 2.

Proof. see [Rob96], p. 141.

1.25. Theorem. A finite p-group has exactly one subgroup of order p if and only
if it is cyclic or a generalized quaternion group.

Proof. see [Rob96], p. 143.

9. Quaternion groups

Since the generalized quaternion groups occupy such a central position, we
investigate them in detail. The propositions given in this section are rather el-
ementary and can be found at least partly as exercises in books on basic group
theory, see e.g. [Hup67], p.93-94, or see [Wäh87], p.311-312, for a summary of
even more properties.

1.26. Proposition. Let Q2t+1 be the quaternion group of order 2t+1 with the
presentation

Q2t+1 = 〈a, b : a2t = 1, b2 = a2t−1
, b−1ab = a−1〉.

Then
(a) every element of Q2t+1 can be written uniquely in the form biaj with

0 ≤ i < 2 and 0 ≤ j < 2t;
(b) Q′2t+1 = 〈a2〉;
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(c) C(Q2t+1) = 〈b2〉 and b2 is the only element of order 2 in Q2t+1 .

Proof. This follows immediately from the relations for the generators ofQ2t+1 .

For the following, we have to distinguish between t = 2 and t > 2.

1.27. Proposition.

(a) Every proper subgroup of Q8 is cyclic and a normal subgroup.
(b) |Aut(Q8)| = 24.

Proof. (a) By Proposition 1.26, there is exactly one element b2 of order 2
in G and 〈b2〉 = C(Q8). The subgroups of order 4 are given by 〈a〉, 〈b〉, 〈ba〉.
Since each of them has index 2 in Q8, they are normal.

(b) Q8 has 6 elements of order 4, namely S = {a, a−1, b, b−1, ba, ba−1}. Any
two distinct elements x, y ∈ S with x 6= y−1 generate the whole group Q8

and also fulfill the relations x2 = y2 and xy = yx. Therefore the mapping
h : a 7→ x, b 7→ y is an automorphism. There are 6 possibilities to choose x
and once the image of a is fixed, 4 possibilities remain to choose y. Thus
|Aut(Q8)| = 24.

1.28. Proposition. Let Q2t+1 = 〈a, b : a2t = 1, b2 = a2t−1
, b−1ab = a−1〉 for

t ≥ 3.

(a) Every element in Q2t+1 \ 〈a〉 is of order 4.
(b) 〈a〉 is the only cyclic subgroup of index 2 in Q2t+1 .
(c) Every proper subgroup of Q2t+1 is cyclic or a quaternion group.
(d) Aut(Q2t+1) is a 2-group.

Proof. (a) The elements of Q2t+1 \ 〈a〉 are precisely of the form bai for
0 ≤ i < 2t. Since ab = ba−1, we have

(bai)2 = baibai = bba−iai = b2

and bai is of order 4.
(b) By (a).
(c) Let H be a subgroup of Q2t+1 . If H ≤ 〈a〉, then H is cyclic. If baj ∈ H \ 〈a〉

and 〈ai〉 = H ∩ 〈a〉, then 〈a,H〉 = Q2t+1 and

|H|
|〈a〉 ∩H|

=
|〈a,H〉|
|〈a〉|

= 2

〈ai, baj〉 is of order 2 · |〈a〉 ∩H| and thus equal to H. Now H is either cyclic
of order 4 if ai = b2 or H is a quaternion group if ai 6= b2.

(d) Q2t+1 has 2t−1 elements of order 2t, namely ai for gcd(i, 2) = 1 and 0 < i <
2t and there are 2t elements baj ∈ Q2t+1 \ 〈a〉 of order 4 for 0 ≤ j < 2t. Any
pair x = ai, y = baj generates the whole group Q2t+1 and fulfills the relations
x2t−1

= y2 as well as as y−1xy = x−1. Thus the mapping h : a 7→ x, b 7→ y
is an automorphism of the group and there are |Aut(Q2t+1)| = 2t−1 ∗ 2t

automorphisms in total.
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10. Frattini Subgroup

1.29. Definition. The Frattini subgroup of an arbitrary finite group G is defined
to be the intersection of all the maximal subgroups and denoted by F (G).

This subgroup F (G) is characteristic and it has the remarkable property that
every element f ∈ F (G) can be canceled from each set of generators of G:

1.30. Theorem. For any group G, an element f ∈ G is in F (G), if and only if
G = 〈g,X〉 always implies that G = 〈X〉, where X ⊆ G.

Proof. see [Rob96], p.135.

11. Linear Groups

Groups of matrices provide a variety of interesting examples.
Let F be a field and let GL(n, F ) denote the set of all n × n matrices with

coefficients in F which have inverses. Taking matrix multiplication as the group
operation it can be seen that GL(n, F ) is a group with identity element I, the n×n
identity matrix.

Let SL(n, F ) denote the set of all n×n matrices over F with determinant equal
to 1 ∈ F . Because of the multiplicativity of det, this is a subgroup of GL(n, F ).

1.31. Definition. GL(n, F ) is called the general linear group of degree n over F .
SL(n, F ) is called the special linear group of degree n over F .

If F is a finite field of order |F | = pf , then we also write GL(n, pf ) and
SL(n, pf ), respectively. While we do not want to deal with linear groups in general,
we have to stress a particular example.

1.32. Theorem. Let G = SL(2, 5). Then G has the following properties:
(a) |G| = 120.
(b) There is exactly 1 element of order 2 in G, namely −I, the negative identity

matrix, and C(G) = 〈−I〉.
(c) G′ = G, and in particular G is not solvable.
(d) 〈−I〉 is the only nontrivial normal subgroup of G.
(e) G ' 〈a, b, c : a3 = b5 = c2 = 1, c−1ac = a, c−1bc = b, (ab)2 = c〉

Proof. see [Wäh87], p.317.

12. The Schur Zassenhaus Theorem

Another fundamental group theoretical result will be used by us later on.

1.33. Theorem (Schur, Zassenhaus ). Let N be a normal subgroup of a finite
group G. Assume that |N | and |G/N | are relatively prime. Then G contains
subgroups of order |G/N | and any two of them are conjugate in G.

Proof. see [Rob96], p. 253.

13. Applications of the Transfer

Since we do not want to present the transfer homomorphism, we choose formu-
lations which avoid its special terminology. However, it is the underlying technique
for the proof of the following two theorems. To get acquainted with the transfer
and other theorems depending on it, we recommend [Rob96].



10 1. INTRODUCTION: GROUP THEORY

1.34. Theorem (Burnside). Let P be a p-Sylow subgroup of G and NG(P ) =
CG(P ). Then there is a normal subgroup N of G with G/N ∼= P .

Proof. see [Hup67], p.419, [Rob96], p.289.

1.35. Theorem (Grüns First Theorem). Let G be a finite group and let P be
a p-Sylow subgroup of G. If N = NG(P ), then

P ∩G′ = 〈P ∩N ′, P ∩ g−1P ′g : g ∈ G〉.

Proof. see [Rob96], p.292.



CHAPTER 2

Introduction: Modules and Vector Spaces

Regular linear transformations on vector spaces occur quite naturally in the
subject as they correspond to automorphisms on elementary abelian groups. More-
over, they are particularly accessible since there exist various normal forms in which
they can be expressed. Our objective is to obtain the rational canonical form for
linear transformations, which we will need later on in Chapter 5. It is only for its
development that we use module theory and here we concentrate on selected results
without giving proofs. For a detailed account of the matter in its own, we refer to
[AW92].

The properties of finite fields and polynomials thereupon have been taken from
[LN84].

1. Linear Transformations

2.1. Definition. Let R be ring ( not necessarily commutative ) with identity 1. A
left R-module is an abelian group M together with a scalar multiplication map

· : R×M →M

that satisfy the following axioms ( as is customary, we let M be an additive group
with operation + and write am for the scalar multiplication of m ∈M by a ∈ R ).
Let a, b ∈ R and m,n ∈M .

(a) a(m+ n) = am+ an.
(b) (a+ b)m = am+ bm.
(c) (ab)m = a(bm).
(d) 1m = m.

We can define a right module by making the obvious modifications.

2.2. Definition. Let R be a ring and let M and N be R-modules. A function
f : M → N is an R-module homomorphism if for all m1,m2 ∈M and a ∈ R

(a) f(m1 +m2) = f(m1) + f(m2),
(b) f(am) = af(m).

The set of all R-module homomorphisms from M to N will be denoted by
HomR(M,N). In case M = N we write EndR(M).

2.3. Definition. If R is a ring, M is an R-module, and X is a subset of M , then
the annihilator of X, denoted Ann(X) is defined by

Ann(X) = {a ∈ R : ax = 0 for all x ∈ X}

2.4. Definition. Let R be an integral domain and let M be an R-module. An
element x ∈ M is called a torsion element if Ann(x) 6= {0}. If all elements of M
are torsion, then M is said to be torsion .

11
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2.5. Definition.

(a) Let F be a field. Then an F -module V is called a vector space over F .
(b) If V and W are vector spaces over the field F , then a linear transformation

from V to W is an F -module homomorphism from V to W .

2.6. Proposition. Let (G,+) be an elementary abelian group of order pn and let
Fp denote the field of order p. Then G is a vector space over Fp with the scalar
multiplication

ag =
{
g + . . .+ g (a terms) if a 6= 0F
0G if a = 0F

and the endomorphisms of G are Fp-module endomorphisms.

Proof. Since G is abelian, this is easily seen by checking the Fp-module ax-
ioms.

2.7. Definition. Let V be an n-dimensional vector space over the field F and let
B = {v1, . . . , vn} be a basis of V , i.e., each element v ∈ V has a representation
v = a1v1 + · · · + anvn, where the ai ∈ F for 1 ≤ i ≤ n are uniquely determined.
For each T ∈ EndF (V ) we define the matrix of T with respect to B by

[T ]B = A

with A = (aij) and T (vj) = a1jv1 + · · ·+ anjvn.

It is clear from the construction that for a fixed basis B every n× n matrix A
over F is the matrix [T ]B for a unique T ∈ EndF (V ).

Let AutF (V ) denote the set of bijective F -homomorphisms from the vector
space V over F into V . Then AutF (V ) is a group.

2.8. Proposition. Let V be an n-dimensional vector space over the field F . Then
AutF (V ) and GL(n, F ) are isomorphic as groups.

Proof. Let B be a basis of V . The mapping h :

AutF (V ) → GL(n, F )
T 7→ [T ]B

is a bijection. Let S, T ∈ AutF (V ) with [S]B = A and [T ]B = B. Since

S(T (v)) = ABv

implies [ST ]B = AB, we identify h as an isomorphism.

Now we transfer the concept of being fixed point free from automorphisms on
groups to regular linear transformations of vector spaces.

2.9. Definition. Let T be a linear transformation on the vector space V over the
field F . A nonzero vector v ∈ V is called an eigenvector of T if Tv = av for some
α ∈ F . The element a ∈ F is called an eigenvalue of T .

2.10. Remark. A linear transformation T has no fixed point if and only if 1 is
not an eigenvalue of T . In accordance with Definition 1.9 a group of linear trans-
formations Φ is fixed point free if and only if no element T in Φ \ {I} has 1 as
eigenvalue.
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2. Rational Canonical Form

We need some canonical form for linear transformations, so that we can handle
the fixed point free automorphisms on elementary abelian groups. The rational
canonical form has proven to be useful, and for a better understanding we develop
it in general, following the outline of [AW92].

Let V be a vector space over a field F and let T ∈ EndF (V ) be a fixed linear
transformation.

EndF (V ) is a ring using composition of linear transformations as multiplication.
Define a function φ : F [x]→ EndF (V ) by sending x to T and a ∈ F to a ∗ I. Thus,
if

f = a0 + a1x+ . . .+ anx
n,

then

φ(f) = a0I + a1T + . . .+ anT
n.

φ is a ring homorphism. We will denote φ(f) by the symbol f(T ) and Im(φ) = F [T ].
That is, F [T ] is the subring of EndF (V ) consisting of polynomials in T . Then V is
an F [T ] module by means of the multiplication

f(T )v = f(T )(v).

Using the homomorphism φ : F [x] → F [T ], we see that V is an F [x] module with
the scalar multiplication

fv = f(T )(v).

Let VT denote V with the F [x]-module structure determined by T .

2.11. Proposition. Let V be a vector space over the field F of dimension n <∞.
If T ∈ EndF (V ), then the R-module (R = F [x]) VT is a finitely generated torsion
R-module.

Proof. see [AW92], p. 234.

2.12. Theorem. Let M be a non trivial finitely generated module over the prin-
cipal ideal domain R. If the rank of M is n, then M is isomorphic to a direct sum
of cyclic submodules

M ∼= Rv1 ⊕ · · · ⊕Rvn
such that

R 6= Ann(v1) ⊇ Ann(v2) ⊇ · · · ⊇ Ann(vn) = Ann(M).

Proof. see [AW92], p. 156.

According to Theorem 2.12, the R-module VT can be written as a direct sum
of cyclic R-submodules

VT ∼= Rv1 ⊕ · · · ⊕Rvk
such that Ann(vi) = 〈fi〉, fi ∈ F [x] for 1 ≤ i ≤ k, fi monic, and

fi|fi+1 for 1 ≤ i ≤ k.

The polynomials f1, . . . , fk are uniquely determined.
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2.13. Definition ( [AW92](4.4.6)).

(a) The monic polynomials f1, . . . , fk above are called the invariant factors of
the linear transformation T .

(b) The invariant factor fk of T is called the minimal polynomial mT of T .
(c) The characteristic polynomial cT of T is the product of all the invariant

factors of T , i.e., cT = f1f2 · · · fk.

2.14. Corollary. mT is the unique monic polynomial of lowest degree such with

mT (T ) = 0.

Proof. see [AW92], p. 235.

There is another decomposition of a torsion R-module M into a direct sum of
cyclic submodules which takes advantage of the prime factorization of any generator
of Ann(M). To describe this decomposition we need the following definition.

2.15. Definition. Let M be a module over the principal ideal domain R and let
p ∈ R be a prime, i.e., if p|ab implies that p|a or p|b for a, b ∈ R. Define the
p-component Mp of M by

Mp = {x ∈M : Ann(x) = 〈pn〉 for some natural number n}

If M = Mp, then M is said to be p-primary, and M is primary if it is p-primary
for some prime p ∈ R.

2.16. Theorem. Any finitely generated torsion module M over a principal ideal
domain R is a direct sum of primary cyclic submodules.

Proof. see [AW92], p. 163.

According to Theorem 2.16 VT , can be further decomposed as a direct sum
of primary cyclic R-submodules. Let h1, . . . , hl be the set of distinct irreducible
polynomials that occur as a divisor of some invariant factor of T . Then

f1 = he11
1 · · ·he1ll

...
fk = hek1

1 · · ·hekll
where the divisibility conditions imply that

0 ≤ e1j ≤ e2j ≤ · · · ≤ ekj for 1 ≤ j ≤ l.

Let Vi = Rvi with Ann(vi) = 〈fi〉 for 1 ≤ i ≤ k as above. Then

Vi ∼= Rwi1 ⊕ · · · ⊕Rwil

such that Ann(wij) = 〈heijj 〉 for 1 ≤ j ≤ l.

2.17. Definition. The polynomials {heijj : eij > 0, 1 ≤ j ≤ l} are called the
elementary divisors of T .

There is a connection between polynomials and matrices, which we are going
to use extensively.
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2.18. Definition. Let f = xn + an−1x
n−1 + . . . + a1x + a0 ∈ F [x] be a monic

polynomial. Then the companion matrix C(f) ∈Mn(F ) of f is the n× n matrix

C(f) =



0 0 · · · 0 0 −a0

1 0 · · · 0 0 −a1

0 1 · · · 0 0 −a2

· · · · ·
· · · · ·
· · · · ·
0 0 · · · 1 0 −an−2

0 0 · · · 0 1 −an−1


We introduce the notation of partitioned matrices: suppose that A is an m×n

matrix over F . If m =
∑r
i=1 and n =

∑s
j=1, then we may think of A as an r × s

block matrix

A =

 A11 · · · A1s

...
. . .

...
Ar1 · · · Ars


where each block Aij is a matrix of size mi × nj with entries in F . If r = s and if
Aij = 0 whenever i 6= j, then we call A a block diagonal matrix and denote A by

A = A11 ⊕ · · · ⊕Arr =
r⊕
i=1

Aii.

All these preliminaries now enable us to give a canonical form for every linear
transformation.

2.19. Theorem (Rational canonical form, variant [AW92](4.4.17)). Let V
be a vector space of dimension n over a field F and let T ∈ EndF (V ) be a linear
transformation. If E = {heijj : eij > 0, 1 ≤ j ≤ l} is the set of elementary divisors
of the F [x]-module VT , then V has a basis B such that

[T ]B =
⊕
g∈E

C(g).

Proof. Let

VT ∼=
k⊕
i=1

(Rwi1 ⊕ · · · ⊕Rwil),

where R = F [x] and Ann(wil) = 〈heijj 〉 with the stipulation that if eij = 0, then
Rwij = R0, the trivial subspace of dimension 0 of V .

Suppose eij > 0. Let deg(heijj ) = nij . Then

Bij = {wij , T (wij), . . . , Tnij−1(wij)}

is a set of nij linearly independent vectors, thus a basis for the cyclic submodule
Rwij . Since submodules of VT are precisely the T -invariant subspaces of V , it
follows that T |Rwij ∈ EndF (Rwij) and

[T |Rwij ]Bij = C(heijj ).
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Since
∑
i,j:eij>0 nij = n and B =

⋃
i,j:eij>0Bij is a basis of V , we find

[T ]B =
⊕

i,j:eij>0

C(heijj )

and the theorem is proven.

2.20. Corollary ( [AW92](4.4.34)). Let V be a finite-dimensional vector space
over a field F and let T : V → V be a linear transformation such that T k = I.
Suppose that F is a field in which the equation zk = 1 has k distinct solutions.
Then T is diagonalizable, i.e., there V has a basis B such that [T ]B is a diagonal
matrix.

Proof. This is an equivalent formulation of Theorem 2.19 for the case of mT

being a product of distinct linear factors.

We like to take a closer look on irreducible polynomials and finite fields now.

3. Polynomials over Finite Fields

2.21. Definition. Let f ∈ F [x] be irreducible of degree greater than 0. Then the
smallest natural number k with the property that f |(xk − 1) is called the order of
the polynomial f .

2.22. Theorem. If f is an irreducible polynomial in Fp[x] of degree e, then f has
a root α in the extension field Fpe of Fp. Furthermore, all the roots are simple and
are given by the e distinct elements α, αp, αp

2
, . . . , αp

e−1
of Fpe .

Proof. see [LN84], p. 52.

2.23. Lemma. Let f ∈ Fp[x] be an irreducible polynomial of order k and degree
e. Then k|pe − 1 and k - pm − 1 for m < e.

Proof. Since f has degree e, all its roots can be found within Fpe by the
theorem above. Thus f |xpe − 1 and by definition, the order k is a divisor of pe− 1.

Suppose the e roots α, αp, αp
2
, . . . , αp

e−1
of f are elements of Fmp for m < e.

Then αp
m

= 1 and f(1) = 0, which implies a contradiction to f being irreducible.



CHAPTER 3

Structure of Fixed Point Free Automorphism
Groups

The structure of fixed point free automorphism groups was determined by
Zassenhaus in [Zas36] and [Zas85]. We basically follow the development of Robin-
son in [Rob96] and cite results from [HB82] and [Wäh87].

We serve the relations between a group G and a fixed point free automorphism
group Φ on G as a starter.

1. Necessary Conditions on G and Φ

3.1. Proposition. Let Φ be a fixed point free automorphism group on a group G.
Then |Φ| divides |G| − 1.

Proof. Since all automorphisms of Φ are fixed point free, the orbit of each
x ∈ G, x 6= 1G, under Φ is of size |Φ|. Thus G \ {1G} has a partition into sets of
size |Φ| and |Φ| is a divisor of |G| − 1.

3.2. Lemma ( [Rob96](10.5.1)). Let α be a fixed point free automorphism of
order n on the group G.

(a) If gcd(i, n) = 1, then αi is also fixed point free.
(b) The mapping µ with µ : g 7→ g−1α(g) is a permutation of G.
(c) g and α(g) are conjugate if and only if g = 1G.
(d) gα(g)α2(g) · · ·αn−1(g) = 1G for all g ∈ G.
(e) If n = 2, then α(g) = g−1 for all g ∈ G and G is abelian.

Proof.

(a) Any fixed point of αi would also be a fixed point for α because α is a power
of αi.

(b) Suppose there are g, h ∈ G such that g−1α(g) = h−1α(h), then α(gh−1) =
gh−1 and g = h. Since G is finite, µ is a permutation.

(c) Suppose α(g) = gx for some g, x ∈ G. By (b) there is some y ∈ G such that
x = y−1α(y). Thus

α(g) = gx = α(y)−1ygy−1α(y)

and

α(ygy−1) = ygy−1.

Therefore ygy−1 = 1G and g = 1G.
(d) Let h = gα(g)α2(g) · · ·αn−1(g). Since αn = idG, we have

α(h) = α(g)α2(g) · · ·αn−1(g)g = g−1hg

and h = 1G by (c).

17
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(e) According to (b), every g ∈ G has a unique representation h−1α(h) for some
h ∈ G and

α(g) = α(h−1α(h)) = α(h)−1h = g−1.

Thus α(g) = g−1 for all g ∈ G and G has to be abelian since

g−1
2 g−1

1 = α(g1g2) = α(g1)α(g2) = g−1
1 g−1

2

for all g1, g2 ∈ G.

3.3. Proposition. Let G be a finite group with fixed point free automorphism
group Φ.

(a) For each Φ-invariant non trivial subgroup U < G, the restriction Φ|U is
isomorphic to Φ.

(b) For G = G1 ×G2, a direct product, Φi fixed point free on Gi, i = 1, 2, and
a : Φ1 7→ Φ2, an isomorphism, Φ := {(ϕ, a(ϕ)) : ϕ ∈ Φ1} operates on G
without non trivial fixed points.

(c) ( [Hup67] (V. 8.10)) For each Φ-invariant proper normal subgroup N �G,
the canonical Φ̄ acts on the factor group G/N as fixed point free automor-
phism group and is isomorphic to Φ.

Proof.

(a) Let ΦU := Φ|U and suppose ΦU is not isomorphic to Φ. As ΦU is a ho-
momorphic image of Φ, there has to be some idG 6= ϕ ∈ Φ that acts as
identity mapping on U , i.e., all elements of U are fixed points of ϕ which is
a contradiction to Φ being fixed point free on the whole group G.

(b) Suppose there is some ϕ ∈ Φ and (g1, g2) ∈ G1 × G2 such that ϕ(g1) = g1

and a(ϕ)(g2) = g2. Either ϕ = idG1 and a(ϕ) = idG2 , thus (ϕ, a(ϕ)) is the
identity mapping on G1 ×G2 or (g1, g2) is the identity of G1 ×G2.

(c) Suppose there is

ϕ̄(gN) = ϕ(g)N = gN

for some g ∈ G,ϕ ∈ Φ. Then g−1ϕ(g) ∈ N and since ϕ is fixed point free
on N , Proposition 3.2 gives n ∈ N such that

g−1ϕ(g) = n−1ϕ(n).

Now ϕ(gn−1) = gn−1 and either ϕ = idG or g = n. Thus Φ̄ is both
isomorphic to Φ and fixed point free on G/N .

While some kind of converse for Proposition 3.3 can be used to derive all fixed
point free automorphism groups on an abelian group G from fixed point free auto-
morphism groups on elementary abelian factor groups of G, as we will see later on,
the existence of isomorphic fixed point free automorphism groups on all invariant
normal subgroups and factors generally does not imply the existence of a fixed point
free automorphism group on the whole group in the non abelian case.

The smallest examples for this fact are the 2 non abelian groups G1, G2 of
order 27. All nontrivial subgroups and factor groups are abelian of order 3 or 9
and therefore admit a fixed point free automorphism group of order 2 with the one
fixed point free automorphism i : x 7→ x−1 ( see Proposition 3.3 (a), (c) ). But by
Lemma 3.2 (e) there is a fixed point free automorphism of order 2 on a group if and
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only if the group is abelian. Therefore there is no fixed point free automorphism
group on G1 or G2 at all.

3.4. Lemma ( [Rob96](10.5.2)). If α is a fixed point free automorphism on a
finite group G, then for each prime p there is a p-Sylow subgroup P such that
α(P ) = P .

Proof. Let P0 be any p-Sylow subgroup. Then α(P0) = P g0 for some g ∈ G
since all p-Sylow subgroups are conjugate. Applying Proposition 3.2 (b), we write
g = h−1α(h) for the suitable h. Let P = Ph

−1

0 . Then

α(P ) = α(hP0h
−1) = hgα(P0)g−1h−1 = Ph

−1

0 = P

and the assertion is true for P .

3.5. Lemma. Let H be a group of automorphisms of a finite abelian group A.
Suppose that H is the semidirect product 〈σ〉nM where σβ is fixed point free of
prime order p for every β ∈M . Then M = 〈idA〉.

Proof. see [Rob96], p.305.

The following theorem by Thompson is fundamental for our future develop-
ment.

3.6. Theorem (Thompson). Let Φ be a fixed point free automorphism group on
a group G. Then G is nilpotent.

Proof. see [Rob96], p.306.
Sketch: It suffices to show that G has to be nilpotent if it admits a fixed point

free automorphism α of prime order p. Assume that the theorem is false and let
G be a counter example of minimal order. By Proposition 3.3 (c) we see that ᾱ
is fixed point free on G/C(G) and thus C(G) is trivial for the reason that G is
minimal. First we deal with the case where G is solvable, then the non solvable
case is reduced with Thompson’s criterion for p-nilpotence.

Let A be a minimal non trivial normal subgroup of G which is invariant under
α. We conclude that A is an elementary abelian q-group for some prime q. By
Lemma 3.4 there is an α-invariant r-Sylow subgroup of G for a prime r distinct
from p and q.

If AR 6= G for all r 6= q, then the minimality of |G| forces AR to be nilpotent
and R ≤ CG(A) implying the contradiction that q divides |C(G)|. Thus G = AR
and after checking the presumptions, Lemma 3.5 can be applied on A with σ = α|A
and M the group of automorphisms of A that arise from conjugation by elements
of R. This gives the contradiction A ≤ C(G).

For G non solvable there is an α-invariant q-Sylow subgroup Q for an odd prime
divisor q of |G|. Since |G| is minimal, all proper normal α-invariant subgroups are
nilpotent. Thompson’s criterion ( see [Rob96], p.298 ) may be applied and shows
that G is q-nilpotent. This leads to G being solvable.

3.7. Theorem (Burnside). Let Φ be a fixed point free automorphism group on
a group G.

(a) If the order of Φ is |Φ| = pq for p, q not necessarily distinct primes, then Φ
is cyclic.

(b) The p-Sylow subgroups of Φ are cyclic for p > 2, they are cyclic or quaternion
groups for p = 2.
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Proof.

(a) Suppose Φ of order pq is not cyclic. Then some straightforward application
of the Sylow Theorems 1.13 shows that Φ = 〈α, β〉 is a semidirect product
where ordα = p, ordβ = q such that 〈β〉 is normal. The element αβi has
order p for 0 ≤ i ≤ q − 1. Since G is nilpotent by Theorem 3.6, the center
C(G) is non trivial and Φ acts on it without fixed points, In particular, pq
divides |C(G)| − 1. Thus we may apply Lemma 3.5 to Φ acting on C(G),
obtaining the contradiction that Φ is cyclic.

(b) All subgroups of order p2 of Φ are cyclic by (a), implying that each p-Sylow
subgroup of Φ has exactly one subgroup of order p. Theorem 1.25 identifies
the p-groups with this property as cyclic or quaternion groups.

In the light of G being nilpotent if there is a fixed point free automorphism
group Φ on G, we formulate the following:

3.8. Proposition. LetG = ⊕mi=1Gi be the direct product of its pi-Sylow subgroups
Gi with pi, i = 1, . . .m, prime and let Φ be a fixed point free automorphism group
on G. Then for all i = 1, . . . ,m the restriction Φ|Gi is fixed point free on Gi and
isomorphic to Φ.

Proof. See Proposition 3.3 (a) and 1.15.

2. Characterization of Φ

So groups where all p-Sylow subgroups are cyclic and groups with quaternion
2-Sylow subgroup and cyclic p-Sylow subgroups for all other primes are of particular
interest in this context. Zassenhaus characterized all solvable groups with the above
properties in [Zas36]. To be precise, he demanded that the 2-Sylow subgroups
should have a cyclic subgroup of index 2. This requirement is certainly fulfilled in
case of quaternion groups so that the solvable fixed point free automorphism groups
occur as subclass of these groups.

We use a different approach, aiming directly at solvable groups Φ, which are
described by Theorem 3.7 (b) and building them up by extension.

3.9. Lemma (Zassenhaus [Hup67](IV. 2.10)). If Φ′/Φ′′ and Φ′′/Φ′′′ are cyclic
for a group Φ, then Φ′′ = Φ′′′.

Proof. By transition from Φ to Φ/Φ′′′ we can assume that Φ′′′ is trivial. Then
we have to show, that Φ′′ is also trivial.

Φ′′ is cyclic and NΦ(Φ′′)/CΦ(Φ′′) being isomorphic to a subgroup of Aut(Φ′′)
has therefore to be abelian by Proposition 1.8. Thus Φ′ ≤ CΦ(Φ′′) and Φ′′ is a
subgroup of the center of Φ′. Since Φ′/Φ′′ is cyclic, we have Φ′ = 〈a,Φ′′〉 for some
a ∈ Φ′ and Φ′ is abelian. Hence Φ′′ is trivial.

3.10. Lemma ( [Hup67](IV. 2.9)). A finite group Φ, with all p-Sylow subgroups
being cyclic, is solvable.

Proof. We use induction on the number of distinct prime divisors of |Φ|. If Φ
has prime power order, then the assertion is obvious. Now suppose the hypothesis
holds for all groups for which the order is divisible by exactly n distinct primes.
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Let p be the smallest of n + 1 distinct prime divisor of |Φ| and let P be a
p-Sylow subgroup of order pd. Since NΦ(P )/CΦ(P ) can be embedded into Aut(P )
which is a group of order pd−1(p− 1) by Proposition 1.17, we find

NΦ(P ) = CΦ(P ).

Theorem 1.34 provides a normal subgroup N of Φ such that

Φ/N ∼= P.

While N is solvable by assumption, Φ/N is solvable as a cyclic group. Eventually,
Φ is solvable.

The next theorem, due to Zassenhaus, describes the structure of any group,
where all p-Sylow subgroups are cyclic.

3.11. Theorem ( [Hup67](IV. 2.11)). Let all p-Sylow subgroups of a group Φ
be cyclic. Then Φ is generated by elements a and b fulfilling the following relations:

am = bn = id, b−1ab = ar,(I)

where rn ≡ 1 mod m,m is odd, 0 ≤ r < m, gcd(m,n(r − 1)) = 1 and |Φ| = mn.
The derived subgroup Φ′ = 〈a〉 and the factor group Φ/Φ′ = 〈b · Φ′〉 are cyclic,
|Φ′| = m and |Φ/Φ′| = n. Every group fulfilling the above relations has only cyclic
p-Sylow subgroups.

Proof. Since the abelian groups Φ′/Φ′′ and Φ′′/Φ′′′ have only cyclic Sylow
subgroups, both Φ′/Φ′′ and Φ′′/Φ′′′ are cyclic. Lemma 3.9 implies that Φ′′ = Φ′′′

and since Φ is solvable by Lemma 3.10, Φ′′ is trivial.
Let Φ′ = 〈a〉 and Φ/Φ′ = 〈b · Φ′〉 for some a, b ∈ Φ, let ord a = m and

ord b · Φ′ = n. Then bn = as ∈ 〈a〉 and b−1ab = ar ∈ 〈a〉 for integers r, s. Since

ar
n

= b−nabn = a−saas = a,

we have rn ≡ 1(m).
Let x = biaj , y = buav be two arbitrary elements of Φ:

[x, y] = (a−jb−i)(a−vb−u)(biaj)(buav)

= a−j(b−ia−vbi)(b−uajbu)av

= a−ja−vr
i

ajr
u

av

= aj(r
u−1)−v(ri−1)

and [x, y] is a power of the commutator [a, b] = ar−1. Thus ar−1 generates Φ′ = 〈a〉
and gcd(m, r − 1) = 1. Now

as = bn = b−1bnb = b−1asb = ars

implies s(r − 1) ≡ 0 mod m and s ≡ 0 mod m, i.e., ord b = n.
If a prime p were to divide both m and n, then 〈am/p, bn/p〉 would be a non

cyclic subgroup of order p2, contradicting the hypothesis. Thus gcd(m,n) = 1.
Conversely, assume that Φ has the presentation given above and let P be a

p-Sylow subgroup. Then Φ has order mn and either P ≤ 〈a〉 or a conjugate of P is
in 〈b〉 since gcd(m,n) = 1. In either case, P is cyclic.

We will refer to the groups described in the above Theorem 3.11 as groups
of type (I) in accordance with [Wol67] and [Wäh87] as they represent our first
class of groups fulfilling the properties given in Theorem 3.7 (b). Cyclic groups are



22 3. STRUCTURE OF FIXED POINT FREE AUTOMORPHISM GROUPS

represented in this form as 〈b〉 with a being the identity. We mention that groups
which have a cyclic normal subgroup with cyclic factor group are called metacyclic
in [Hup67] and [Rob96] without making further use of this name.

Note that having type (I) alone does not qualify a group to be isomorphic to a
fixed point free automorphism group. For instance the symmetric group on 3 points,
S3, has order 6 and all p-Sylow subgroups are cyclic. S3 can be represented as in
Theorem 3.11 but a fixed point free automorphism group with order a product of
two primes has to be cyclic by Theorem 3.7 (a). We will refine our characterization
by requiring an additional condition forcing every subgroup of Φ of order pq to be
cyclic later on.

Next we are going to investigate those groups with quaternion 2-Sylow sub-
groups and cyclic p-Sylow subgroups for p > 2. The results of the following Theo-
rems 3.12 to 3.16 were basically found by Zassenhaus in [Zas36]. The formulations
and proofs given here are new.

3.12. Theorem. Let Φ be a group with quaternion 2-Sylow subgroups and cyclic
p-Sylow subgroups for p > 2. If the derived subgroup Φ′ has a cyclic 2-Sylow
subgroup, then Φ′ is cyclic and Φ is generated by elements a, b, q fulfilling the
following relations:

am = bn = id, b−1ab = ar, q2 = bn/2, q−1aq = ak, q−1bq = bl,(II)

where n = 2tu, t > 1, u odd, 2t|l + 1 and n|l2 − 1 as well as r2u ≡ rl−1 ≡ k2 ≡
1(m), gcd(m,n(r − 1)) = 1. The order of Φ is |Φ| = 2mn and H = 〈a, b〉 is a
subgroup of type (I) and index 2.

Proof. Since Φ′ has cyclic p-Sylow subgroups for all primes p, we have that
Φ′/Φ′′ and Φ′′/Φ′′′ are cyclic and Lemma 3.9 applies to Φ′′ = Φ′′′ = 〈id〉. Thus Φ′

has to be abelian and even cyclic.
Let Q = 〈p, q〉 with p2t = id, q2 = p2t−1

, q−1pq = p−1 be a quaternion 2-Sylow
subgroup of Φ of order 2t+1. Since Q′ = 〈p2〉 ≤ Φ′ there is a 2-Sylow subgroup
Q∗ of Φ′ including Q′. According to the assumption Q∗ is cyclic and thus either
Q∗ = 〈p2〉 or Q∗ = 〈p〉.

Suppose Q∗ = 〈p2〉. The abelian factor group Φ/Φ′ has a 2-Sylow subgroup
isomorphic to Z2

2 and cyclic p-Sylow subgroups for p > 2 because Φ has some. Then

Φ/Φ′ ∼= Z2 × Z2 × Zn
where 2 - n, i.e., ∃v ∈ Φ such that vn ∈ Φ′ and Φ/Φ′ = 〈p · Φ′, q · Φ′, v · Φ′〉

The group H := 〈p, v,Φ′〉 is of order |Φ|/2 and has only cyclic p-Sylow sub-
groups.

Suppose Q∗ = 〈p〉. Then

Φ/Φ′ ∼= Z2 × Zn
where 2 - n, i.e., ∃v ∈ Φ such that vn ∈ Φ′ and Φ/Φ′ = 〈q · Φ′, v · Φ′〉.

The group H := 〈v,Φ′〉 is of order |Φ|/2 and has only cyclic p-Sylow subgroups.
In both cases H is a subgroup of Φ of index 2, that is, H is normal, and has a

representation H = 〈a, b〉 as given by Proposition 3.11. The divisibility conditions
on ord a and ord b imply that ord a = m is odd. Thus we have ord b = n = 2tu with
2 - u and bu = p, w.l.o.g.

Since H ′ = 〈a〉 is characteristic in Φ′ and therefore normal in Φ, it holds
q−1aq = ak where gcd(m, k) = 1. The element q2 = p2t−1 ∈ Φ′ commutes with
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a ∈ Φ′ since Φ′ is cyclic. So

a = q−2aq2 = ak
2

and k2 ≡ 1 mod m.
There are exactly m distinct subgroups of order n in H, namely the groups of

the form 〈bai〉 for 0 ≤ i ≤ m− 1. The orbits of these groups under conjugation by
q have a power of 2 as length and since m is odd, there has to be one subgroup of
order n which is fixed by q, w.l.o.g., q−1bq = bl for some integer l. Then,

b = q−2bq2 = q−1blq = bl
2

and l2 ≡ 1 mod n. Furthermore,

b−u = q−1buq = (bl)u = blu

and l ≡ −1 mod 2t. Since the commutator

[bu, q] = b−uq−1buq = b−2u

is an element of Φ′ and a ∈ Φ′, it holds that b2u commutes with a because Φ′ is
cyclic. Hence,

a = b−2uab2u = ar
2u

and r2u ≡ 1 mod m. Similarly, for b−1q−1bq = bl−1 we have rl−1 ≡ 1 mod m.

The following two Lemmata prove to be useful.

3.13. Lemma. Let Φ be a group with quaternion 2-Sylow subgroups and cyclic
p-Sylow subgroups for p > 2.

(a) If Φ′ has a quaternion 2-Sylow subgroup, then Φ/Φ′ is cyclic and 4 - [Φ : Φ′].
(b) If Φ′′ has a quaternion 2-Sylow subgroup, then Φ/Φ′′ has type (I) and

2 - [Φ′ : Φ′′].
(c) If Φ′′′ has a quaternion 2-Sylow subgroup, then Φ′′′ = Φ′′.

Proof.

(a) Let Q = 〈p, q〉 with p2t = id, q2 = p2t−1
, q−1pq = p−1 be a quaternion

2-Sylow subgroup of order 2t+1 of Φ. Since Q′ = 〈p2〉 ≤ Φ′, there is a 2-
Sylow subgroup Q∗ of Φ′ including Q′. According to the assumption Q∗ is
quaternion and thus either Q∗ = 〈p2, q〉 or Q∗ = 〈p, q〉 = Q.

Suppose Q∗ = 〈p2, q〉. The abelian factor group Φ/Φ′ has a 2-Sylow
subgroup 〈p · Φ′〉 of order 2 and cyclic s-Sylow subgroups for primes s > 2
because Φ has. Thus Φ/Φ′ is cyclic.

Suppose Q∗ = Q. Then Φ/Φ′ is of odd order and has only cyclic s-Sylow
subgroups. This results again in Φ/Φ′ being cyclic.

(b) Φ/Φ′ and Φ′/Φ′′ are cyclic according to (a) and there is a 2-Sylow subgroup
Q∗∗ of Φ′′ either equal Q = 〈p, q〉, 〈p2, q〉 or 〈p4, q〉. In any case, Φ/Φ′′ has
only cyclic p-Sylow subgroups, i.e., is of type (I).

The derived subgroup of the factor group is

(Φ/Φ′′)′ = (Φ′ · Φ′′)/Φ′′ = Φ′/Φ′′.

According to Theorem 3.11 the orders |Φ/Φ′| and |Φ′/Φ′′| are relatively
prime and moreover, |Φ′/Φ′′| is odd.

(c) Since Φ′/Φ′′ and Φ′′/Φ′′′ are cyclic, Lemma 3.9 gives Φ′′ = Φ′′′.
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3.14. Lemma. If Φ′ has a quaternion 2-Sylow subgroup Q and Φ′′ is cyclic, i.e.,
Φ′ is of type (II), for a group Φ, then Φ′ = 〈a〉 ×Q with some a of odd order and
|Q| = 8.

Proof. Let Q = 〈p, q〉 with q−1pq = p−1 be a quaternion 2-Sylow subgroup
of Φ′.

Φ′′�Φ and by Proposition 1.8 the factor group Φ/CΦ(Φ′′) can be embedded into
Aut(Φ′′) which is abelian since Φ′′ is cyclic according to Theorem 3.12. This allows
us to conclude that Φ′ ≤ CΦ(Φ′′) and Φ′′ ≤ C(Φ′). By Theorem 3.12 again there is
a subgroup H = 〈u, v〉 of type (I) and index 2 in Φ′. Evidently, H ′ = 〈u〉 ≤ Φ′′ and
H ′ ≤ C(Φ′) if and only if u = id. Moreover, [p, q] = p−2 ∈ Φ′′ implies that p2 = q2

and |Q| = 8.
Thus H = 〈v〉 is cyclic of order 4n with n odd. We are free to assume vn =

p ∈ Q and q ∈ Φ′ \H.
Let q−1vq = vl for some l such that 1 < l < 4n. Then the commutator

[v, q] = vl−1 ∈ Φ′′ has to commute with every element of Φ′, in particular

vl−1q = v−1q−1vqq = v−1qv

and

qvl−1 = vqv−1

have to coincide. We have used the fact that q2 = p2 as the unique element of order
2 in Φ′′ is in the center of H.

id = (v−1qv)(vq−1v−1) = v−1(q−1v2q)v−1 = v2l−2

determines l = 2n+ 1. Since q−1v4q = v8n+4 = v4, we find that q commutes with
every element of odd order in H and Φ′ = 〈a〉 × 〈p, q〉 where a = v4.

3.15. Theorem. Let Φ be a solvable group with a quaternion 2-Sylow subgroup
Q and cyclic p-Sylow subgroups for p > 2. If Q has order 8 and Q ≤ Φ′, then Φ is
generated by elements a, b, p, q fulfilling the following relations:

am = bn = id, b−1ab = ar, p4 = id, q2 = p2,(III)

q−1pq = p−1, ap = pa, aq = qa, b−1pb = q, b−1qb = pq

where m,n are odd, m|rn − 1, 3|n and 0 ≤ r < m, gcd(m,n(r − 1)) = 1.
H = 〈a, b〉 is a group of type (I) and of odd order, Q = 〈p, q〉� Φ and Φ = HQ

is a semidirect product of H and Q. The derived subgroup Φ′ = 〈a〉 × 〈p, q〉 is of
type (II) and Φ′′ = 〈p2〉.

Proof. Let Q be a quaternion 2-Sylow subgroup of Φ such that Q ≤ Φ′ and
let N = NΦ(Q) denote the normalizer of Q in Φ. By Theorem 1.33 there is a
subgroup H such that N = HQ and H ∩ Q = {id}; of course, H has odd order.
However, H/CH(Q) is isomorphic to a subgroup of Aut(Q) which is of order 24 by
Proposition 1.26. Thus [H : CH(Q)] divides 3 and either N = H × Q or there is
b ∈ NH(Q) \ CH(Q) with b3 ∈ CH(Q).

Applying Grün’s First Theorem 1.35 we have

Q ∩ Φ′ = 〈Q ∩N ′, Q ∩ g−1Q′g|g ∈ Φ〉.

Now N = H ×Q implies Q ∩N ′ = Q ∩ (H ′ ×Q′) = 〈p2〉 and since Q ∩ g−1Q′g =
Q ∩ g−1〈p2〉g is a group of order 2 at most, we find that Q ∩ Φ′ is generated by
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elements of order 2. There is only one element of order 2 in Q, namely p2 and
Q ∩ Φ′ = 〈p2〉, contrary to our assumption.

So we assume there is b ∈ NH(Q) \ CH(Q) with b3 ∈ CH(Q). By letting b
operate on Q by conjugation we separate Q into orbits with sizes some power of 3.
In particular, there is one element p ∈ Q of order 4 with b−1pb 6= p. If b−1pb were
equal to p−1, then p = b−3pb3 = p−1. Thus b permutes the 3 cyclic subgroups of Q
order 4 by conjugation without leaving any of them fixed;

b−1pb = q

for some q 6∈ 〈p〉 and, w.l.o.g.,

b−1qb = pq.

Each element of a quaternion group Q2t+1 is conjugate to its inverse within
Q2t+1 as can be seen easily using the defining relations. With the additional equa-
tions b−1pb = q and b−1qb = pq all elements of order 4 of Q are conjugate in N
by now. Moreover, the Sylow theorems imply all elements of order 4 in Φ are
conjugate.

The relations above can be evaluated to

[p, b] = p−1b−1pb = p−1q, [q, b] = q−1b−1qb = p−1

and this allows us to conclude that p, q ∈ N ′, thus Q ≤ N ′ ≤ Φ′. We note that
3 to be divisor of |Φ| is not a sufficient but a necessary condition for Φ′ to have a
quaternion subgroup.

Suppose Q ≤ Φ′′. Then some b′ ∈ 〈b〉 with order a power of 3 and b′ 6∈ CΦ(Q)
has to be in Φ′. Obviously, the factor group Φ/Φ′′ has type (I) and odd order.
The divisibility conditions on |Φ/Φ′| and |Φ′/Φ′′| as given in Theorem 3.11 force
3 - |Φ′/Φ′′| if |Φ/Φ′| is odd. Thus b′ ∈ Φ′′ and again Q ≤ Φ′′′. Both Φ′/Φ′′ and
Φ′′/Φ′′′ are cyclic, resulting in Φ′′ = Φ′′′ by Lemma 3.9 in contradiction to Φ being
solvable.

Hence Φ′′ has cyclic 2 Sylow subgroups, Φ′ is of type (II) and we can apply
Lemma 3.14 to determine

Φ′ = 〈a〉 ×Q

with some a of odd order and |Φ′′′| = 2. Moreover, Q = 〈p, q〉 is characteristic in
Φ′ and also in Φ. Thus, eventually, we have shown that

Φ = N = HQ

the semidirect product of a group H of type (I) with odd order and a quaternion
group Q of order 8.

H = 〈a, b〉

with b 6∈ CH(Q) having the properties described above. am = bn = id, b−1ab = ar

and gcd(m,n(r − 1)) = 1,m|rk − 1 as in Theorem 3.11.

Note that the implication given in [Wäh87] on page 21, namely that T =
〈bn/3, p, q〉 ∼= SL(2, 3) is not true if 9|n. It can be seen from the above proof that
for this case bn/3 would be in CΦ(〈p, q〉) and T = 〈bn/3〉 × 〈p, q〉. Nonetheless, it
can be shown that Φ/〈b3, a〉 ∼= SL(2, 3).
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3.16. Theorem. Let Φ be a solvable group with a quaternion 2-Sylow subgroup Q
and cyclic p-Sylow subgroups for p > 2. If the order of Q is greater than 8 and Φ′

has a quaternion 2-Sylow subgroup Q∗, then Φ is generated by elements a, b, p, q, z
fulfilling the following relations:

am = bn = id, b−1ab = ar, p4 = id, p2 = q2 = z2,

q−1pq = p−1, ap = pa, aq = qa, z−1az = ak, b−1pb = q,(IV)

b−1qb = p2q, z−1bz = bl, z−1pz = qp, z−1qz = q−1

where m,n are odd, 3|n, 0 ≤ r < m, gcd(m,n(r − 1)) = 1 and rn ≡ rl−1 ≡ k2 ≡
1 mod m, l ≡ 2 mod 3, l2 ≡ 1 mod n.

Φ has order 16mn, H = 〈a, b, p, q〉 is a subgroup of Φ of type (III) and index 2.

Proof. We start similarly to the proof of Theorem 3.15, where we character-
ized the groups of type (III).

Let N = NΦ(Q) denote the normalizer of Q = 〈u, v〉 in Φ. By Theorem 1.33
there is a subgroup H such that N = HQ and H ∩ Q = {id}; of course, H has
odd order. However, H/CH(Q) is isomorphic to a subgroup of Aut(Q) which is a
2-group for |Q| ≥ 16 by Proposition 1.28. Thus H = CH(Q) and N = H ×Q.

By Grün’s First Theorem 1.35 we have

Q ∩ Φ′ = 〈Q ∩N ′, Q ∩ x−1Q′x : x ∈ Φ〉.

Now Q ∩ N ′ = Q ∩ (H ′ × Q′) = 〈u2〉 and Q ∩ Φ′ is a quaternion subgroup if and
only if there is x ∈ Φ such that 〈u2, x−1u2x〉 is a quaternion group. In particular
u2 has order 4, see Proposition 1.28. Setting p = u2 and q = v we can assume

∃x ∈ Φ x−1px = q.

Then 〈p, q〉 will be a quaternion subgroup of Φ′ of order 8. According to Lemma
3.13 we have to distinguish between the two possibilities that Φ′ is of type (II) or
Φ′′ is of type (II).

Suppose Φ′ is of type (II). Lemma 3.14 states Φ′ = 〈a〉 ×Q∗ with some a ∈ Φ′

of odd order and |Q∗| = 8. Moreover, Q∗ is characteristic, i.e.,

Q∗ = 〈p, q〉

actually equals the intersection of all 2-Sylow subgroups of Φ. Since the index
[Φ : Φ′] is not divisible by 4, it follows that |Q| = 16.

The number of 2-Sylow subgroups of Φ is given by [Φ : NΦ(Q)], odd. Since
Q′ is characteristic in Q, we have NΦ(Q) ≤ NΦ(Q′) and [Φ : NΦ(Q′)] divides
[Φ : NΦ(Q)]. Thus the number of conjugates to Q′ = 〈p〉 is odd and 〈p〉, 〈q〉 and
〈pq〉 are conjugate, i.e., all 6 elements of order 4 of Q∗ are conjugate under Φ. There
has to be an element x ∈ Φ \ CΦ(Q∗) such that

x3 ∈ CΦ(Q∗)

and x−1px = q. By the same arguments as given in the proof of 3.15 we find
x−1qx = pq.

x 6∈ Φ′, otherwise Φ′ would be of type (III). So 3 is a divisor of [Φ : Φ′] and
since Φ/Φ′ is cyclic, there is w ∈ Φ such that w2n ∈ Φ′, where n is odd and 3|n
and Φ = 〈w,Φ′〉.

H = 〈w2,Φ′〉 has index 2 in Φ. Thus x ∈ H and H is a group of type (III).
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Suppose Φ′′ is of type (II). By Lemma 3.14 the 2-Sylow subgroup of Φ′′ has
order 8 and by Lemma 3.13 we have 2 - [Φ′ : Φ′′]. Thus Φ′ is of type (III) and there
is w ∈ Φ such that w2n ∈ Φ′ where n is odd and Φ = 〈w,Φ′〉.

H = 〈w2,Φ′〉 has index 2 in Φ and evidently is of type (III).
In any case, H has a representation 〈a, b, p, q〉 with relations as given in Theorem

3.15 and

Φ = 〈a, b, p, q, z〉

with some z ∈ Φ \H and z2 ∈ H. The 2-Sylow subgroups of Φ have order 16.
In order to end up with a nice presentation of Φ we choose z ∈ Φ \H such that

z−1〈a, b〉z = 〈a, b〉

which is possible because all complements of Q∗ in H are conjugate by Theorem
1.33. Since b−1pb = q implies pbp−1 = bqp−1 6∈ 〈a, b〉, we see that p and in fact all
other elements of order 4 in Q∗ do not have this property. Consequently, z can not
be of order 8, which would mean z2 = p for instance, but z has order 4 and

z2 = p2 = q2.

Furthermore, z commutes neither with p, q nor pq, otherwise z ∈ 〈p〉, 〈q〉 or 〈pq〉,
respectively.
〈a〉 is a characteristic subgroup of Φ and therefore

z−1az = ak

for some integer k. Since a ∈ CG(Q∗), we have

a = z−2az2 = ak
2

and for m = ord a it holds m|k2 − 1. The length of orbits on the complements of
〈a〉 in 〈a, b〉 is given by powers of 2 and the number of complements is odd. At least
one of them is fixed and since they all are conjugate by elements of 〈a〉, where a
commutes with the elements of Q∗, we can assume

z−1bz = bl

for some integer l and b−1pb = q, b−1qb = pq.
The orbits on the 3 maximal subgroups of Q∗ generated by p, q and pq respec-

tively under conjugation by z have length 1 or 2. Thus one of them, w.l.o.g., 〈q〉,
gets fixed and

z−1qz = q−1.

Now z−1pz 6= p−1 because otherwise z−1pqz = p−1q−1 = pq means z and pq
commute. Thus z−1pz = (pq)i where i = ±1 because these are the only remaining
elements of order 4 in Q∗. The conjugation of b−1pb = q by z implies b−l(pq)ibl =
q−1. The relations

b−1pb = q, b−2pb2 = pq, b−3pb3 = p

force us to conclude that i = −1,

z−1pz = qp

and l ≡ 2 mod 3. We conjugate ar = b−1ab by z to obtain

ark = b−lakbl = akr
l
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and thus m|rl−1 − 1. Since b and z2 = p2 commute,

b = z−2bz2 = bl
2
,

implying n|l2 − 1 for n = ord b.

We summarize the results found above in one statement characterizing all solv-
able finite fixed point free automorphism groups.

3.17. Theorem ([Wol67], 6.1.11). Φ is a finite solvable group, where every sub-
group of order a product of two primes is cyclic, if and only if Φ is isomorphic to
one of the following groups

Type Generators Relations Conditions
I a, b am = bn = id, gcd(m,n(r − 1)) = 1,

b−1ab = ar rn ≡ 1 mod m
II a, b, q as in I; also as in I; also

bn/2 = q2, n = 2tu, t ≥ 2, u odd,
q−1aq = ak, l ≡ −1 mod 2t,
q−1bq = bl l2 ≡ −1 mod u,

rl−1 ≡ k2 ≡ 1 mod m
III a, b, p, q as in I; also as in I; also

p4 = id, p2 = q2, m,n odd,
q−1pq = p−1, n ≡ 0 mod 3
ap = pa, aq = qa,
b−1pb = q, b−1qb = pq

IV a, b, p, q, z as in III; also as in III; also
p2 = z2, z−1pz = qp, rl−1 ≡ k2 ≡ 1 mod m,
z−1qz = q−1, l2 ≡ 1 mod n,
z−1az = ak, z−1bz = bk l ≡ 2 mod 3

with the additional condition that if d is the smallest natural number such that
rd ≡ 1 mod m, then n/d is divisible by any prime divisor of d.

Proof. Suppose every subgroup of the finite solvable group Φ with order st for
some primes s, t is cyclic. The proof of Proposition 3.7 (b) shows that each p-Sylow
subgroup of Φ for an odd prime p has to be cyclic and each 2-Sylow subgroup is
either cyclic or quaternion. Thus Φ is isomorphic to one of the groups described in
Theorem 3.11, 3.12, 3.15 and 3.16.

Let H = 〈a, b〉 ≤ Φ with a, b described as for the isomorphism type of Φ.
Furthermore, let d be the smallest natural number such that m|rd−1. Let n = ord b
and let t be a prime divisor of d which does not divide n/d. Let s be a prime divisor
of m. Then 〈am/s, bn/t〉 has order st and has to be cyclic. Therefore,

a
m
s = b−

n
t a

m
s b

n
t = a

m
s r

n/t

which means m
s (rn/t − 1) ≡ 0 mod m which is the case if and only if

s|(rn/t − 1)

for all prime divisors s of m.
By definition, d|n and since t is prime, either gcd(d, n/t) = d or gcd(d, n/t) =

d/t. The first case implies that t divides (n/d) in contradiction to our assumption.
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Thus we are forced to conclude that gcd(d, n/t) = d/t and

s|(rd/t − 1)

for all s. We evaluate

rd − 1 = (rd/t − 1)
t−1∑
i=0

rid/t

≡ (rd/t − 1)
t−1∑
i=0

1 mod s

≡ (rd/t − 1)t mod s.

Thus m|(rd − 1) actually implies that m|(rd/t − 1) since gcd(s, t) = 1 for every
prime divisor s of m. This contradicts the minimality of d. Hence, if a prime t
divides d, it also divides n/d.

Conversely, suppose Φ is a group with one of the presentations (I) to (IV) and
let n/d be divisible by any prime divisor of n. Since all s-Sylow subgroups of Φ
are cyclic or quaternion groups, every group of order s2 with s prime is cyclic. If 2
is a divisor of |Φ| where Φ is of the type (II),(III) or (IV), then there is a unique
element i of order 2 in Φ, thus i ∈ C(Φ) and all groups of order 2s are abelian, even
cyclic.

For a group U of order st for two distinct odd primes s and t or t = 2 in case
of Φ having type (I), there exists a conjugate which lies in H = 〈a, b〉, where a
and b are the elements of these names in the presentation of Φ. For proving that
U is cyclic, we only have to deal with the case that s|m and t|n for m = ord a
and n = ord b. Otherwise, we could find a conjugate of U either in 〈a〉 or 〈b〉 and
everything is clear. Thus we assume that U is conjugate with 〈am/s, bn/t〉 and since
d|(n/t) implies bn/t ∈ 〈bd〉 and bd commutes with a, we conclude that U is cyclic
as the conjugate of a cyclic group.

3.18. Corollary. Let Φ be a fixed point free automorphism group of square free
order on the group G. Then Φ is cyclic.

Proof. Φ has type (I) and the additional condition that p|(n/d) if p|d from
Theorem 3.17 implies d = 1. Thus m|r − 1, i.e., r=1, and Φ is cyclic.

We lack a characterization of non solvable fixed point free automorphism groups
which we add right now.

3.19. Theorem (Zassenhaus [Zas85]). If Φ is a non trivial fixed point free au-
tomorphism group of some finite group and Φ = Φ′, then Φ ∼= SL(2, 5).

Proof. For the proof which exceeds this thesis we refer to the article [Zas85]
by Zassenhaus himself or to the presentation in [HB82], p.387-413.

The idea is to start with an investigation of the maximal proper subgroups H of
Φ which are solvable, based on Theorem 3.17. The non solvable maximal subgroups
of Φ are dealt with induction on |Φ|. Then the maximal cyclic subgroups and their
normalizers are determined to obtain a partition of Φ into conjugacy classes. The
final step is done using character theory.
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3.20. Theorem (Zassenhaus [Zas85]). If Φ is a non solvable fixed point free
automorphism group of some finite group, then Φ has a subgroup H of the form

H ∼= SL(2, 5)× U
such that [Φ : H] ≤ 2, and where U is of type (I) and gcd(|U |, 30) = 1.

Proof. see [Wäh87], p.335.



CHAPTER 4

The Cyclic Case

We are well prepared to start the meal which will culminate in the description of
the fixed point free automorphism groups of abelian groups. We will reach our aim
in 3 levels of increasing difficulty, namely dealing with cyclic, elementary abelian
and abelian groups, refining our methods but unfortunately loose in completeness
what we gain in generality of our results.

Antipasto: We give all fixed point free automorphism groups on the cyclic group
Zn.

4.1. Proposition. There is exactly one fixed point free automorphism group of
order k on Zpd , p an odd prime, for k|p− 1 and it is cyclic.

There is no fixed point free automorphism group of order k if k - p− 1.

Proof. Suppose αi : x 7→ ix mod pd has a fixed point x ∈ Zpd , that is αi(x) =
ix = x. Thus ix − x = 0 and (i − 1)x = 0 mod pd. If gcd(i − 1, p) = 1, then i − 1
has a multiplicative inverse in Zpd resulting in x = 0, and αi is fixed point free.

If, on the other hand, i − 1 = lp for some l then (i − 1)y = lpy = 0 mod pd

holds for y = pd−1 6= 0 and αlp+1, l ∈ Zpd , has a non trivial fixed point.
Now let

I := {lp+ 1 mod pd : l ∈ Zpd}
= {1, p+ 1, 2p+ 1, . . . , (pd−1 − 1)p+ 1}.

As for i, j ∈ I also ij mod pd ∈ I we have

U := {αi : i ∈ I} ≤ Aut(Zpd)

and |U | = |I| = pd−1. The elements of U are exactly the automorphisms on Zpd
with fixed points.

So for Φ ≤ Aut(Zpd) if and only if |Φ| = k with k|p− 1, then Φ∩U = {id} and
Φ is fixed point free on Zpd .

Since Aut(Zpd) is cyclic by Proposition 1.17, there is exactly one subgroup of
order k for each divisor k of |Aut(Zpd)| and all subgroups are cyclic.

4.2. Proposition. ( [KK95] (3.2)) Let G =
⊕m

i=1 Zpdii
, pi distinct primes, be

cyclic. The fixed point free automorphism groups of size k on G are of the form
Φ = 〈(α1, . . . , αm)〉, where αi is an automorphism of Z

p
di
i

of order k for i =
1, . . . ,m.

For each integer k satisfying k|(pi − 1) for all 1 ≤ i ≤ m there are exactly
(φ(k))m−1 distinct, i.e., non-conjugated, fixed point free automorphism groups of
size k on G.
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Proof. If G has a cyclic 2-Sylow subgroup Z2d , then G has a unique element
of order 2 and this has to be fixed by any automorphism of G. Thus G only permits
the trivial fixed point free automorphism group of size 1.

We assume all pi for 1 ≤ i ≤ m are odd. By Proposition 1.17 and Proposition
1.18, we have

Aut(G) ∼=
m⊕
i=1

(Zpi−1 × Zpdi−1
i

).

Let Φ < Aut(G) of order k be fixed point free on G. Since Φ is fixed point free on
each Z

p
di
i

, by Proposition 4.1 we can embed Φ into
⊕m

i=1 Zpi−1, and

Φ = 〈(α1, . . . , αm)〉
with αi ∈ Aut(Z

p
di
i

) of order k.
The assertion on the number of distinct fixed point free automorphism groups of

a given size k follows since for all ji such that gcd(ji, k) = 1 the groups 〈(α1, . . . , αm)〉
and 〈(α1, α

j2
2 . . . , αjmm )〉 are distinct.

Note that for an arbitrary group with cyclic 2-Sylow subgroup there is no non
trivial fixed point free automorphism group. According to Proposition 3.3, if an
arbitrary group G has a characteristic subgroup or factor group which is cyclic,
then G admits only cyclic fixed point free automorphism groups of a size given by
Proposition 4.2.



CHAPTER 5

The Elementary Abelian Case

Primo Piatto: We obtain a result from Ke and Kiechle in [KK95] characteriz-
ing the cyclic fixed point free automorphism groups on elementary abelian groups
by using a slightly different approach and notation. This enables us to give an
assertion on the number of the cyclic, as well as a mean to describe the quaternion
fixed point free automorphism groups and those of type (I).

According to Proposition 2.6 we identify the elementary abelian group (G,+) of
order pn as n-dimensional vector space over the field Fp; an automorphism α on G
can be regarded as regular Fp-linear transformation, i.e., induced by multiplication
with a matrix A ∈ GL(n, Fp) with respect to a basis B of G. We write [α]B = A
and α(g) = Ag for the canonical basis B ( see Proposition 2.8 ).

Recall that α being fixed point free is equivalent to A not having eigenvalue 1.

1. Cyclic Φ

5.1. Lemma. Let h be a monic irreducible polynomial of degree n over Fp and let
T : Fnp → Fnp be defined by multiplication by A = C(h), i.e., T (v) = Av. Then 〈T 〉
is a fixed point free automorphism group on Fnp of order k = ord(f) and k|pn − 1.

Proof. Let ei = (0, . . . , 0, 1, 0, . . . , 0) denote the vector with 1 in the i-th
position and 0 elsewhere in Fnp . Obviously B = {e1, . . . , en} is a basis of Fnp . Now
identify Fnp and Fp[x]/〈h〉 as n-dimensional vector spaces over the field Fp via the
vector space isomorphism

µ : Fnp → Fp[x]/〈h〉
n∑
i=1

aiei 7→
n∑
i=1

aix
i−1.

Then, from the definition of A = C(h), we see that in Fp[x]/〈h〉 the linear trans-
formation T simply becomes T̄ := µTµ−1 and

T̄ : f 7→ xf mod h,

and the order of T equals the order of h, i.e., the smallest natural number k such
that h|xk − 1.

Suppose there is some non trivial f ∈ Fp[x]/〈h〉, and there is a natural number
l such that xlf = f mod h, thus

(xl − 1)f = 0 mod h.

Since h is irreducible over Fp and h - f , we necessarily have h|xl − 1. Now k|l and
T̄ l = id.

So 〈T̄ 〉 is fixed point free on Fp[x]/〈h〉 as well as 〈T 〉 is fixed point free on
Fnp .

33
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The following proposition is the fundamental result of this section. Notation
and proof differs from the original work from Ke and Kiechle.

5.2. Proposition ( [KK95](2.2)). Let (G,+) be an elementary abelian group of
order pn with fixed point free automorphism group 〈ϕ〉 of order k where ϕ(g) = Ag
for all g ∈ G. Then there is a smallest natural number e such that k|pe − 1 and
e|n. Let d = n/e. Then there are monic irreducible polynomials hi of degree e and
order k over Fp for i = 1, . . . , d such that

A ' C(h1)⊕ · · · ⊕ C(hd)

Every automorphism of the form given above generates a fixed point free automor-
phism group on G.

Proof. Since 〈ϕ〉 is fixed point free on G, k|pn − 1 by Proposition 3.1. The
minimal polynomial mϕ of ϕ divides xk − 1. By definition, every monic irreducible
polynomial h ∈ Fp[x], whose order divides k, is a divisor of xk − 1.

Suppose there is a polynomial h such that h2|xk − 1. This implies that h
divides the derivative of xk − 1 as well, that is, h|kxk−1. Since gcd(p, k) = 1, we
have kxk−1 6= 0 and h is constant because xk − 1 and kxk−1 are relatively prime.

Thus xk − 1 actually equals the product of all distinct monic irreducible poly-
nomials such that their orders divide k. Now evidently,

mϕ =
s∏
i=1

hi

is the minimal polynomial of ϕ where hi are distinct monic irreducible polynomials
with orders dividing k for i = 1, . . . , s and

cϕ =
s∏
i=1

hnii

is the characteristic polynomial with integers ni. By definition, each elementary
divisor of ϕ is a power of some irreducible polynomial and has to divide mϕ. So
the set of elementary divisors of ϕ is just the set of irreducible divisors of cϕ where
each hi occurs with multiplicity ni. By Theorem 2.19

A '
s⊕
i=1

ni⊕
j=1

C(hi).

Suppose there is a factor hg of mϕ such that hg|xl−1 for l < k. Since C(hi) is a
root of hi for each i = 1, . . . , s and especially hg(C(hg)) = 0, we get C(hg)l−I = 0.
Then

Al '
s⊕
i=1

ni⊕
j=1

C(hi)l

has the eigenvalue 1 and ϕl is not fixed point free, contrary to our assumption.
Thus the order of hi equals k for each i = 1, . . . , s and by Lemma 2.23 the degree
of hi equals e, where e is the smallest natural number such that k|pe − 1 for each
i = 1, . . . , d. Thus the assertion on ϕ holds.

Define ϕ : G→ G by multiplication with

A = C(h1)⊕ · · · ⊕ C(hd),
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i.e., ϕ(g) = Ag, with the polynomials hi of equal degree e and order k. Obviously
G =

⊕d
i=1Gi where Gi ∼= Zep are ϕ-invariant subspaces of G for i = 1, . . . , n/e.

Let ϕi : Gi → Gi be defined by multiplication by C(hi). Then the previous
Lemma 5.1 can be applied to prove that 〈ϕi〉 is fixed point free on Gi. Since all
restrictions ϕi on Gi are of the same order k, Proposition 3.3 (b) implies that 〈ϕ〉
is fixed point free on G.

5.3. Corollary. ( [KK95](2.4)) Two automorphisms ϕ1 and ϕ2 both generating
a fixed point free automorphism group on G are conjugate if and only if cϕ1 = cϕ2 .

Proof.

(a) If ϕ1 and ϕ2 are conjugate, then their characteristic polynomials are equal.
(b) Let ϕ1 and ϕ2 both generate a fixed point free automorphism group on G

and let cϕ1 = cϕ2 = h1 · · ·hd. By Proposition 5.2 their elementary divisors
and their rational canonical form coincide. Thus ϕ1 and ϕ2 are conjugate.

5.4. Corollary. Let (G,+) be an elementary abelian group of order pn. There is
a cyclic fixed point free automorphism group of order k on G if and only if k|pn−1.

Proof.

(a) k|pn−1 is a necessary condition on G for having a fixed point free automor-
phism group of order k by Proposition 3.1.

(b) If k|pn − 1 then ∃α ∈ Fpe a primitive k-th root of unity over Fp with e the
smallest natural number such that k|pe− 1. Obviously e|n and the minimal
polynomial mα of α over Fp is of degree e and order k. Now Proposition 5.2
applies to give a fixed point free automorphism group of order k.

Proposition 5.2 and its corollaries complete our task of fully characterizing the
cyclic fixed point free automorphism groups on elementary abelian groups up to
conjugacy.

We can construct all cyclic fixed point free automorphism groups of order k on
Znp by simply determining all irreducible polynomials of order k over Fp, choosing
some hi of them with multiplicity ni as elementary divisors and applying Proposi-
tion 5.2.

If we look at ϕ generating a fixed point free automorphism group on G in a
different way, we can gather even further insight.

5.5. Corollary. Let (G,+) be an elementary abelian group of order pn with fixed
point free automorphism group 〈ϕ〉 of order k where ϕ(g) = Ag. Then there is a
smallest natural number e such that k|pe−1 and the matrix A can be diagonalized
over the extension field Fpe .

A '
n/e⊕
i=1

diag(αi, α
p
i , α

p2

i , . . . , α
pe−1

i ),

where αi is a primitive k-th root of unity for i = 1, . . . , n/e and

ϕ ' ϕp ' ϕp
2
' . . . ' ϕp

e−1
.



36 5. THE ELEMENTARY ABELIAN CASE

Proof. We may assume that

A =
n/e⊕
i=1

C(hi)

by Proposition 5.2. For each i = 1, . . . , n/e we consider C(hi) as matrix over some
extension field K of Fp. According to Corollary 2.20 the matrix C(hi) of order k
is diagonalizable over K if only xk − 1 has k distinct roots in K.

In general, the splitting field of xk − 1 over Fp is called the k-th cyclotomic
field over Fp and since gcd(p, k) = 1, all the roots of xk − 1 are distinct. Note that
xk − 1 and its derivative kxk−1 have no common roots.

According to Theorem 2.47(ii) in [LN84] the k-th cyclotomic field over Fp is
isomorphic to F ep , where e is the smallest natural number such that k|pe − 1.

So by choosing F ep for K, all conditions for Corollary 2.20 are fulfilled. The

roots of hi are of the form αi, α
p
i . . . , α

pe−1

i for some αi ∈ Fpe , they are all distinct
and have multiplicative order k. Thus

C(hi) ' diag(αi, α
p
i . . . , α

pe−1

i )

and obviously,

C(hi) ' C(hi)p ' . . . C(hi)p
e−1

over Fpe for each i = 1, . . . , n/e.
Naturally, the characteristic polynomial of ϕ is the same, whether A is consid-

ered over Fp or over its extension, i.e.,

cϕ = cA =
n/e∏
i=1

e−1∏
j=0

(x− αp
j

i )

and since

cA = cAp = . . . = cApe−1

Corollary 5.3 implies

ϕ ' ϕp ' ϕ2 ' . . . ' ϕp
e−1

and the assertion is proven.

If ϕ generates a fixed point free automorphism group on G of order k and
k|p − 1, i.e., e = 1, then A can be diagonalized over Fp and the statements of
Proposition 5.2 and Corollary 5.5 coincide.

5.6. Lemma. Let (G,+) be an elementary abelian group of order pn with fixed
point free automorphism group 〈ϕ〉 of order k and let 1 < r < k. Then

ϕ ' ϕr

if and only if

cϕ =
n/d∏
i=1

[(x− αi)(x− αri ) · · · (x− αr
d−1

i )]

in Fp[x], where d is the smallest natural number such that k|rd−1. Also d| gcd(n, φ(k))
and d > 1.
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Proof. Let ϕ : g 7→ Ag. According to Corollary 5.5 the matrix A can be
diagonalized over the field Fpe , where e is the smallest natural number such that
k|pe − 1. Let Ā denote the diagonalization of A,

Ā =
s⊕
i=1

αiIni ,

where n =
∑s
i=1 ni and the αi ∈ Fpe are distinct primitive k-th roots of xk − 1.

We notice A ' Ar ' Ar2 ' . . . ' Ard−1
, where d is the smallest natural number

such that k|rd − 1, to be conjugate,

Ār
j

=
s⊕
i=1

αr
j

i Ini ,

and therefore the multiplicity ni of the eigenvalue αi of Ā equals the multiplicity
of αr

j

i for j = 1, . . . , d − 1 as eigenvalue of Ā. Necessarily, d divides n and d > 1
since k - r − 1. Moreover, 〈r〉 is a subgroup of Z∗k of order d, thus d|φ(k).

Conversely, if the automorphism ϕ : g 7→ Ag has a characteristic polynomial as
given above, then A can be diagonalized,

A '
n/d⊕
i=1

diag(αi, αri . . . α
rm−1

i ),

over Fpe and since A ' Ar, also ϕ ' ϕr.

Computing the number of non conjugate automorphisms of a given order k
generating a fixed point free automorphism group on G is just a combinatorial
problem, because of Proposition 5.2, depending on the number of distinct monic
irreducible polynomials in Fp[x] of order k. But in order to find the number of non
conjugated cyclic fixed point free automorphism groups of size k, we need a more
general view and some new definitions. Even before this we have this simple lemma
for motivation.

5.7. Lemma. Let ϕ be an automorphism of order k on G. If ϕr ' ϕ for all
r ∈ S ⊆ {1, . . . , k − 1}, then ϕr ' ϕ for all r ∈ 〈S〉 ≤ Z∗k .

Proof. Let i, j ∈ S. Then ϕij = (ϕi)j ' ϕj ' ϕ.

5.8. Definition. For a fixed k let R denote the set of rational canonical forms for
automorphisms ϕ, which generate a fixed point free automorphism group of order
k on G, i.e., R is a set of representatives for each conjugacy class of automorphisms
of order k.

For an arbitrary subgroup U ≤ Z∗k , let

RU = {ϕ ∈ R : ϕr ' ϕ,∀r ∈ U}.

Let 〈p〉 = {1, p, p2, . . . , pe−1} ≤ Z∗k where e is the smallest natural number such
that k|(pe − 1) be denoted by E. Then obviously,

RE = R

by Proposition 5.5.

The sets RU give a classification of the mappings ϕ and their cardinality is easy
to determine.
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5.9. Lemma. Let ϕ be an automorphism of order k on Znp .

ϕ ∈ RU ⇔ cϕ =
n/|〈E,U〉|∏

i=1

∏
j∈〈E,U〉

(x− αji ) in Fp[x],

where αi are primitive k-th roots of unity over Fp.

Proof. If ϕ ∈ RU , then for every root αi ∈ Fpe of cϕ also αri for r ∈ U has
to be a root of cϕ with equal multiplicity for the same reason as in the proof of
Corollary 5.5. Thus cϕ is of the given form.

The converse is trivial.

Now we are using this characterization for counting the elements of RU .

5.10. Lemma.

|RU | =


(

φ(k)
|〈E,U〉| + n

|〈E,U〉| − 1
n

|〈E,U〉|

)
if |〈E,U〉| divides n

0 else

Proof. By Lemma 5.9 we have the characteristic polynomial of ϕ in RU as
product of n/|〈E,U〉| factors

∏
j∈〈E,U〉(x−α

j
i ). Thus t := |〈E,U〉| has to divide n.

There are exactly φ(k) distinct primitive roots of xk − 1 = 0 in Fpe and they
are separated into disjoint sets

{αji : j ∈ 〈E,U〉}
of size t. We get all distinct polynomials cϕ by choosing n/t of these φ(k)/t sets
and make their elements roots of cϕ. There are exactly(

φ(k)/t+ n/t− 1
n/t

)
possibilities to do this.

We get the number of non conjugated ϕ as a corollary.

5.11. Proposition. Let (G,+) be an elementary abelian group of order pn. If
k|pn− 1, then there is a smallest natural number e such that k|pe− 1 and there are
exactly

|R| =
(
φ(k)/e+ n/e− 1

n/e

)
non conjugate automorphisms on G which generate a fixed point free automorphism
group of order k.

Proof. Since R = RE and |E| = e the number |R| follows immediately from
Lemma 5.10.

We also note the fact that if ϕ ∈ RU and for all W such that U < W ≤ Z∗k it
holds that ϕ /∈ RW , then the group 〈ϕ〉 has exactly

[Z∗k : 〈E,U〉] =
φ(k)
|〈E,U〉|

non conjugate generators.
Hence we get the following formula:
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5.12. Proposition. Let U = {U ≤ Z∗k : E ≤ U}. There are exactly

Nk =
1

φ(k)

∑
U∈U
|U |(|RU | − |

⋃
W>U

RW |)

non conjugate cyclic fixed point free automorphism groups of order k on G = Znp .

Proof.

|RU | − |
⋃
W>U

RW |

gives the number of non conjugate ϕ ∈ RU for which there are exactly |U | powers
ϕr ' ϕ. Thus every φ(k)/|U | of these non conjugate ϕ generate conjugate groups
〈ϕ〉. By summing up over all U ≤ Z∗k with E ≤ U we are done.

The disadvantage of this expression is plainly visible. While we know |RU | by
Lemma 5.10, the evaluation of |

⋃
W∈U,W>U RW | in general involves some tedious

computation. However, it is merely a problem of knowing the subgroup lattice of
the abelian group Z∗k ( see Proposition 1.18 ). For the solution we refer to the next
chapter on abelian groups where the same problem is dealt with more generally.

5.13. Example. We would like to apply our new knowledge and determine all
cyclic fixed point free automorphism groups of order 8 on Z4

5 up to conjugacy.
We need irreducible polynomials of order 8 over F5. Since 8|52 − 1 we know

that the degree of such polynomials has to be 2 and since φ(8) = 4 we know that
there are exactly 2 such polynomials h1, h2. We look for them among the factors of

x8 − 1 = (x+ 1)(x+ 2)(x+ 3)(x+ 4)(x2 + 2)(x2 + 3)

and find h1 = x2 + 2 and h2 = x2 + 3 of order 8. By Proposition 5.2 and Corollary
5.3 the matrices A = C(h1)⊕C(h1), B = C(h1)⊕C(h2) and C = C(h2)⊕C(h2) all
induce non conjugate fixed point free automorphisms ϕ1, ϕ2 and ϕ3, respectively,
of order 8 on Z4

5 . The characteristic polynomials are

cϕ1 = (x2 + 2)2 = (x− α)2(x− α5)2,

cϕ2 = (x2 + 2)(x2 + 3) = (x− α)(x− α3)(x− α5)(x− α7).

cϕ3 = (x2 + 3)2 = (x− α3)2(x− α7)2,

where α is a primitive 8-th root of unity over F5. Proposition 5.11 reassures that
there are exactly (

4/2 + 4/2 + 1
4/2

)
= 3

such non conjugate mappings. We see that cϕ3
1

= cϕ3 , i.e., 〈ϕ1〉 ' 〈ϕ3〉 and there
are only 2 non conjugated cyclic fixed point free automorphism groups of order 8,
namely 〈ϕ1〉 and 〈ϕ2〉 with

ϕ1(g) =


0 3 0 0
1 0 0 0
0 0 0 3
0 0 1 0

 g
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and

ϕ2(g) =


0 3 0 0
1 0 0 0
0 0 0 2
0 0 1 0

 g.

Without regard of this result we would also like to apply Proposition 5.12 and
define E = {1, 5} ≤ Z∗8 . By Proposition 1.17 we have Z∗8 ∼= Z2

2 , thus U = {E,Z∗8}.
We already computed

|RE | = 3

and furthermore,

|RZ∗8 | =
(

4/4 + 4/4− 1
4/4

)
= 1.

There are exactly

N8 =
1

φ(8)
·
[
|E|(|RE | − |RZ∗8 |) + |Z∗8 |(|RZ∗8 | − 0)

]
= 2

non conjugate cyclic fixed point free automorphism groups of order 8 on Z4
5 .

2. Quaternion Φ

By using the same principles as above we are now going to determine all the
quaternion fixed point free automorphism groups on G = Znp . We will need the
following lemma first.

5.14. Lemma. Let e be the smallest natural number such that 2t|pe − 1 for an
odd prime p and t > 1. Then e = 2l for some l.

Proof. Suppose e = 2lr with r odd is the smallest natural number such that
2t|pe − 1. Then

pe − 1 = (p2l − 1)(p2l(r−1) + . . .+ p2l + 1),

and since p is odd and r is odd, the sum
∑r−1
i=0 p

2li is odd. Thus 2t|p2l − 1 and
r = 1.

5.15. Lemma. Let (G,+) be an elementary abelian group of order pn with ϕ,ψ
such that 〈ϕ,ψ〉 is a non cyclic fixed point free automorphism group on G with
ϕm = ψ4 = id, where either m > 1 is odd and |Φ| = 4m or m = 2t for t ≥ 2 and
Φ is a quaternion group of order 2t+1. Let e be the smallest natural number such
that m|pe − 1.

(a) We have ψ−1ϕψ = ϕ−1.
(b) If ϕ : g 7→ Ag and ψ : g 7→ Bg for matrices A,B, then there is a matrix X

over Fpe such that

X−1AX =
n/2⊕
i=1

(
αi 0
0 α−1

i

)
, X−1BX =

n/2⊕
i=1

(
0 −1
1 0

)
,

where αi ∈ Fpe are primitive m-th roots of unity for i = 1, . . . , n/2.
(c) Any linear transformations ϕ,ψ fulfilling the above relations generate a fixed

point free automorphism group of type (I) if m is odd and a quaternion fixed
point free automorphism group of order 2t+1 if m = 2t.
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Proof.

(a) Let m be odd. Then Φ has type I, Φ′ = 〈ϕ〉 and ψ−1ϕψ = ϕr where
gcd(m, r − 1) = 1. Since ψ2(g) = −g for all g ∈ G, we have that ψ2

commutes with ϕ,

ϕ = ψ−2ϕψ2 = ϕr
2
.

Thus m|r2 − 1 and gcd(m, r − 1) = 1 implies m|r + 1, i.e., r = m− 1.
If m = 2t, then Φ is a quaternion group and ψ−1ϕψ = ϕ−1 follows

directly from the presentation of Φ.
(b) Since ϕ and ϕ−1 are conjugate by (a), cϕ =

∏n/2
i=1(x − αi)(x − α−1

i ) by
Lemma 5.6 and n has to be even. The matrix A can be diagonalized over
Fpe , where e is the smallest natural number such that m|pe − 1. Let ni be
the multiplicity of αi as root of cϕ and let

Ā = X−1AX

denote the diagonalization of A with X ∈ GL(n, Fpe),

Ā =
d⊕
i=1

(
αiIni 0

0 α−1
i Ini

)
,

where n/2 =
∑d
i=1 ni and the αi ∈ Fpe are distinct primitive m-th roots of

unity. Let

B̄ = X−1BX.

Now if v is an element of the eigenspace Vαi of Ā for the eigenvalue αi, then

Ā(B̄v) = B̄(B̄−1ĀB̄)v = B̄Ā−1v = α−1
i B̄v

and the vector B̄v is an eigenvector of the matrix Ā for the eigenvalue α−1
i ,

thus B̄v ∈ Vα−1
i

. Actually B̄ defines an isomorphism between the eigenspaces
Vαi and Vα−1

i
. Note that B̄2 = −I and B̄(B̄v) = −v ∈ Vαi .

For i = 1, . . . , d let Bi = {ei1, . . . , eini} be basis of Vαi . Then
{B̄ei1, . . . , B̄eini} is a basis of Vα−1

i
and hence the union of these Bi∪ B̄(Bi)

over i, i.e., the ordered set

B =
d⋃
i=1

{ei1, . . . , eini} ∪ {B̄(ei1), . . . , B̄(eini)},

is a basis of Fnpe , for which B̄ is of the form

B̄ =
d⊕
i=1

(
0 −Ini
Ini 0

)
with

∑d
i=1 ni = n/2. By rearranging the basis of Fnpe we obtain the form

given in the hypothesis for Ā and B̄.
(c) By construction, 〈Ā, B̄〉 is a group of type (I) or a quaternion group and all

elements are of the form B̄iĀj for 0 ≤ i ≤ 3 and 0 ≤ j ≤ m − 1. Since
neither

Āj = −B̄2Āj =
n/2⊕
i=1

(
αji 0
0 α−ji

)
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for 1 ≤ j ≤ 2t − 1 nor

B̄Āj = −B̄3Āj =
n/2⊕
i=1

(
0 −α−ji
αji 0

)
with characteristic polynomial

∏n/2
i=1(x2 + 1) = (x2 + 1)n/2 = cB̄ has eigen-

value 1, any ϕ,ψ fulfilling the above conditions generate a fixed point free
automorphism group on G indeed.

Lemma 5.15 describes fixed point free automorphism groups on G which are
extensions of a cyclic group 〈ϕ〉 with a cyclic group 〈ψ〉 of order 4, thus both non
cyclic fixed point free automorphism groups of type (I) with order 4m,m odd and
quaternion groups of order 2t+1. It states necessary conditions on ϕ,ψ, especially
on the characteristic polynomial

cϕ =
n/2∏
i=1

(x− αi)(x− α−1
i )

of ϕ. If the minimal polynomial mα divides cϕ, then so does mα−1 . We have to
distinguish 2 cases: either mα 6= mα−1 and

cϕ =
n/2e∏
i=1

mαimα−1
i

or mα = mα−1 and

cϕ =
n/e∏
i=1

mαi .

The next lemma characterizes the difference for the case of Φ being quaternion.

5.16. Lemma. Let α be a 2t-th root of unity for m > 1 over Fp. Then mα = mα−1 ,
if and only if 2t|p+ 1 and mα = (x− α)(x− α−1).

Proof. Since

mα = (x− α)(x− αp) · · · (x− αp
e−1

),

where e = 2l is the smallest natural number such that 2t|pe−1, we have mα = mα−1

if and only if

α−1 ∈ {α, αp, . . . , αp
e−1
}.

Thus α−1 = αp
i

for some 1 ≤ i ≤ e − 1 and 2t|pi + 1. Now 2t|p2i − 1 and e|2i.
Because i < e this results in i = 2l−1. Suppose i > 1, then 4|pi− 1 in contradiction
to 2t|pi + 1 for m ≥ 2. Therefore i = 1, e = 2 and p ≡ 3 mod 4.

The converse is obvious.

5.17. Proposition. Let (G,+) be an elementary abelian group of order pn and
2t - p+ 1 .

(a) There exists a quaternion fixed point free automorphism group Φ of order
2t+1 on G if and only if 2t+1|pn−1 and 2e|n, where e is the smallest natural
number such that 2t|pe − 1.
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(b) Any such Φ is conjugate to a group 〈ϕ,ψ〉 with ϕ2t = id, ψ2 = ϕ2t−1
,

ψ−1ϕψ = ϕ−1, where ϕ : g 7→ Ag, ψ : g 7→ Bg and

A =
n/e⊕
i=1

(
C(hi) 0

0 C(hi)−1

)
, B =

n/e⊕
i=1

(
0 −Ie
Ie 0

)
,

and h1, . . . , hd are monic irreducible polynomials of degree e = 2l and order
2t over Fp.

(c) Any automorphisms ϕ,ψ fulfilling the above relations generate a quaternion
fixed point free automorphism group of order 2t+1 on G.

Proof.

(a) If 2t+1
- pn − 1, then there is no fixed point free automorphism group on G

according to Proposition 3.1. By Lemma 5.15 there is no quaternion fixed
point free automorphism group if 2 - n.

The converse can be seen by the construction in (b).
(b) Let 2t+1|pn − 1 and 2e|n. Suppose Φ = 〈ϕ,ψ〉 is a quaternion fixed point

free automorphism group of order 2t+1. Lemma 5.15 and Lemma 5.16 give
the characteristic polynomial

cϕ =
n/2e∏
i=1

(mαimα−1
i

),

where αi is a primitive 2t-th root of unity over Fp and mαi is its minimal
polynomial of degree e. We define

A =
n/2e⊕
i=1

(
C(mαi) 0

0 C(mαi)
−1

)
and since

C(mαi)
−1 ' diag(α−1

i , α−pi , . . . , α−p
e−1

i ) ' C(mα−1
i

)

over Fpe , the characteristic polynomial cA = cϕ. Thus we may assume
ϕ(g) = Ag. Note that A is not the rational canonical form for ϕ but it
serves our purpose better. By defining the matrix

B =
n/2e⊕
i=1

(
0 −Ie
Ie 0

)
and the linear transformation ψ∗(g) = Bg we obtain a quaternion fixed point
free automorphism group 〈ϕ,ψ∗〉 of order 2t+1. Since Lemma 5.15 allows
for each choice of ϕ only one quaternion extension, it holds 〈ϕ,ψ〉 = 〈ϕ,ψ∗〉
and, w.l.o.g., ψ = ψ∗.

(c) Follows from the construction in (b) and Lemma 5.15 (c).

We will need the following lemma to guarantee the existence of a quaternion
fixed point free automorphism group of order 2t+1 if mα = mα−1 .

5.18. Lemma. For each element a ∈ Fp, for p prime, there are u, v ∈ Fp such that
u2 + v2 = a.
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Proof. Let S = {u2 : u ∈ F ∗p } denote the set of squares in F ∗p .
Suppose a = 0 or a = u2 ∈ S. Then the hypothesis is fulfilled for u = v = 0 or

v = 0 respectively.
Suppose for all u, v ∈ Fp we have that u2 +v2 ∈ S. For n ∈ S we have n+1 ∈ S

since 1 ∈ S. By induction S = F ∗p which is obviously false. Thus there are u, v ∈ Fp
and l ∈ F ∗p \ S such that u2 + v2 = l.

Since {lt2 : t ∈ F ∗p } = F ∗p \ S and (ut)2 + (vt)2 = lt2, all non square elements
of Fp can be represented as sum of two squares.

Here is the result corresponding to Proposition 5.17.

5.19. Proposition. Let (G,+) be an elementary abelian group of order pn and
let 2t|p+ 1.

(a) There exists a quaternion fixed point free automorphism group Φ of order
2t+1 on V if and only if 2|n.

(b) Any such Φ is conjugate to a group 〈ϕ,ψ〉 with ϕ2t = id, ψ2 = ϕ2t−1
,

ψ−1ϕψ = ϕ−1 where ϕ : g 7→ Ag, ψ : g 7→ Bg and

A =
n/2⊕
i=1

(
0 −1
1 ai

)
, B =

d⊕
i=1

(
ui vi

vi − uiai −ui

)
,

and x2−aix+ 1 is irreducible of order 2t over Fp and u2
i + v2

i −uiviai + 1 ≡
0 mod p.

(c) Any linear transformations ϕ,ψ fulfilling the above relations generate a fixed
point free quaternion automorphism group of order 2t+1 on G.

Proof.

(a) If 2 - n, then 2t+1
- pn − 1 and there is no quaternion fixed point free

automorphism group on G according to Proposition 3.1 and Lemma 5.15.
The converse is proven by (b).

(b) Let 2|n. Since 2t+1|(p− 1)(p+ 1) also 2t+1|pn − 1. Suppose Φ = 〈ϕ,ψ〉 is a
quaternion fixed point free automorphism group of order 2t+1.

Lemma 5.15 and Lemma 5.16 provide the characteristic polynomial

cϕ =
n/2∏
i=1

(x− αi)(x− α−1
i ) =

n/2∏
i=1

mαi

where αi is a primitive 2t-th root of unity over Fp and

mαi = (x− αi)(x− α−1
i ) = x2 − aix+ 1

for ai ∈ Fp is its minimal polynomial of degree 2.
By Proposition 5.2 we may assume

A =
n/2⊕
i=1

C(mαi) =
n/2⊕
i=1

(
0 −1
1 ai

)
.

Let

X =
(

0 −1
1 a

)
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and x2− ax+ 1 be of order 2t over Fp. Now suppose there is a 2× 2 matrix

Y =
(

u v
w y

)
over Fp such that Y 2 = −I and Y −1XY = X−1. Since

Y 2 =
(

u2 + vw v(u+ y)
w(u+ y) wv + y2

)
,

we have either u+ y = 0 or v = w = 0. The latter results in u2 = y2 = −1
thus the polynomial x2+1 splits into 2 linear factors over Fp which is possible
if and only if 4|p − 1, contrary to 2t|p + 1 for m > 1. Hence y = −u and
u2 + vw = −1. Next we use the equality

XY = Y X−1(
0 −1
1 a

)(
u v
w −u

)
=

(
u v
w −u

)(
a 1
−1 0

)
(

−w u
u+ wa v − ua

)
=

(
ua− v u
wa+ u w

)
and find w = v − ua. Thus for

Y =
(

u v
v − ua −u

)
with u2 + v2 − uva = −1 the group 〈X,Y 〉 is a quaternion group of order
2t. By Lemma 5.15 (c) none of its elements except I has 1 as eigenvalue.

For the existence of Y we have to show that if x2 − ax + 1 = 0 has no
roots in Fp, the equation

x2 + y2 − axy + 1 = 0

has solutions x = u, y = v in Fp. We rewrite

y1,2 =
ax

2
±
√
a2x2

22
− 1− x2

=
ax

2
± x
√
a2

4
− x−2 − 1

which is solvable if and only if a2

4 − 1 − x−2 is a square in Fp, i.e., there is
z ∈ Fp such that

(x−1)2 + z2 =
a2

4
− 1.

Lemma 5.18 gives this assertion and guarantees the existence of a matrix Y
for each X which fulfill the above conditions.

By defining the matrix

B =
n/2⊕
i=1

(
ui vi

vi − uiai −ui

)
with u2

i +v2
i −uiviai+1 ≡ 0 mod p and ψ∗ : g 7→ Bg, we obtain a quaternion

fixed point free automorphism group 〈ϕ,ψ∗〉 of order 2t+1. By Lemma 5.15
it holds 〈ϕ,ψ〉 = 〈ϕ,ψ∗〉 and, w.l.o.g., ψ = ψ∗.
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(c) It is easy to see that no non trivial element of the automorphism group
constructed in (b) admits the eigenvalue 1.

By Proposition 5.17 and Proposition 5.19, respectively, we have characterized
all quaternion fixed point free automorphism groups on G = Znp up to conjugacy.
We add an assertion on the number of such groups.

5.20. Proposition. Let U = {U ≤ Z∗2t : 〈p,−1〉 ≤ U} and let RU denote the set of
non conjugate automorphisms ϕ generating a fixed point free automorphism group
of order 2t on Znp such that ϕr ' ϕ for all r ∈ U . Then there are exactly

1
2t−1

∑
U∈U
|U |(|RU | − |

⋃
W>U

RW |)

non conjugate quaternion fixed point free automorphism groups of order 2m + 1 on
Znp .

Proof. This follows from Proposition 5.10 and Lemma 5.17.

5.21. Corollary. All quaternion fixed point free automorphism groups of order 8
on G = Znp are conjugated.

Proof. This is a simple consequence of Lemma 5.16 and the fact that there
are exactly 2 primitive 4-th roots of unity over Fp.

5.22. Example. We give the quaternion fixed point free automorphism groups on
Z4

5 and refer to the previous example where we determined the automorphisms of
order 8.

2 and 3 are 4-th primitive roots over F5; x + 3 and x + 2 are the polynomials
of order 4 over F5. Thus by Lemma 5.15 or Proposition 5.17 we have that 〈ϕ,ψ〉
where ϕ : g 7→ Ag, ψ : g 7→ Bg and

A =
(

2 0
0 3

)
⊕
(

2 0
0 3

)
,

B =
(

0 −1
1 0

)
⊕
(

0 −1
1 0

)
is a quaternion fixed point free automorphism group of order 8 and it is unique up
to conjugacy according to Corollary 5.21.

Since 〈5,−1〉 = Z∗8 , the formula of Proposition 5.20 shows that there is exactly
1 quaternion fixed point free automorphism group of order 16 up to conjugacy.
x2 + 2 is a polynomial of order 8 over F5. By Proposition 5.17 the matrices

A =


0 3 0 0
1 0 0 0
0 0 0 1
0 0 2 0

 ,

B =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


induce automorphisms ϕ : g 7→ Ag, ψ : g 7→ Bg so that 〈ϕ,ψ〉 is such a group.
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3. Φ of Type (I)

Next we dedicate ourselves to fixed point free automorphism groups of type (I)
and give a necessary condition for their existence on Znp .

5.23. Lemma. Let (G,+) be an elementary abelian group of order pn, let Φ be a
non cyclic fixed point free automorphism group on G with cyclic Sylow subgroups,
i.e., Φ = 〈ϕ,ψ〉 where ϕs = ψt = id, ψ−1ϕψ = ϕr and rt ≡ 1(s), gcd(s, t(r−1)) = 1
and |Φ| = st.

Let d be the smallest natural number such that s|rd−1. Then d| gcd(n, φ(s), t)
and d > 1.

Proof. By Lemma 5.6 we have d| gcd(n, φ(s)) and d > 1. Since s|rt − 1, it
also holds d|t.

5.24. Corollary. Let (G,+) be an elementary abelian group of order pn. If
gcd(n, pn − 1) = 1, then every fixed point free automorphism group Φ on G is
cyclic.

Proof. Suppose there is a quaternion fixed point free automorphism group
on G. Then n has to be even by Lemma 5.15 but since gcd(n, pn − 1) = 1, we are
forced to conclude that |G|−1 is odd and there is no fixed point free automorphism
of even order.

Suppose there is a group Φ = 〈ϕ,ψ〉 as defined in Lemma 5.23. Then gcd(n, t) >
1 is in contradiction to t|pn − 1, and hence gcd(n, pn − 1) = 1.

We give the fixed point free automorphism groups on Znp , where n is prime.

5.25. Proposition. Let (G,+) be an elementary abelian group of order pn with
n prime and let there is a fixed point free automorphism group Φ = 〈ϕ,ψ〉 on G
where ϕs = ψt = id, ψ−1ϕψ = ϕr and rt ≡ 1(s), gcd(s, t(r − 1)) = 1 and |Φ| = st.

Then n|p − 1, s|rn − 1 and n2|t. If ϕ : g 7→ Ag and ψ : g 7→ Bg for matrices
A,B, then there is a matrix X over Fpn such that

X−1AX = diag(α, αr, . . . , αr
n−1

), X−1BX = C(xn − b)

where α ∈ Fpn is a primitive s-th roots of unity and bt/n = 1.

Proof. Since ϕ ' ϕr ' . . . ϕr
t−1

and n is prime, Lemma 5.6 implies that
cvarphi =

∏n
i=1(x − αi) for α a primitive s-th root of unity. Let e be the smallest

natural number such that s|pe − 1, then e ∈ {1, n}. Let Ā = X−1AX denote the
diagonalization of A over Fpe ,

Ā = diag(α, αr, . . . , αr
n−1

)

and let B̄ = X−1BX.
Now if v is an element of the eigenspace Vα of Ā for the eigenvalue α, then

Ā(B̄v) = B̄(B̄−1ĀB̄)v = B̄Ārv = αri B̄v

and the vector B̄v is an eigenvector of the matrix Ā for the eigenvalue αr, thus B̄v ∈
Vαr . Actually B̄ defines an isomorphism between the 1-dimensional eigenspaces Vα
and Vαr . Note that B̄n(v) ∈ Vα and since Vα has dimension 1, B̄n(v) = bv for some
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b ∈ Fp. Let v ∈ Vα and v 6= 0. Thus {v} is a basis for Vα and {v, B̄(v), . . . B̄n−1(v)}
is a basis of Fnpe for which B̄ is of the form

B̄ =


0 b

1
. . . 0
. . . 0

...
1 0

 .

The characteristic polynomial is cB̄ = xn − b, indeed B̄ = C(xn − b). In particular
b ∈ Fp. Since B̄n = bIn, we find the order of B̄ as t = n ord b where ord b denotes
the multiplictive order of b ∈ Fp. Theorem 3.17 states that any prime divisor of
d, minimal such that s|rd − 1, also divides t/d. Thus n| ord b and in particular
n|p− 1.

Let Φ = 〈ϕ,ψ〉 a fixed point free automorphism group on Znp for arbitrary n
and let each eigenvalue of ϕ over Fpe have mulitplicity 1, e.g., ordϕ|pn − 1 but
ordϕ - pl − 1 for l < n. Then the proof of Proposition 5.25 holds and ϕ, psi are
induced by matrices conjugate to block diagonal matrices

⊕m
i=1Ai,

⊕m
i=1Bi where

the Ai and Bi are of the same form as Ā and B̄, respectively, in Proposition 5.25.



CHAPTER 6

The Abelian Case

Secondo Piatto: We are awaiting the fixed point free automorphism groups Φ
of an abelian group G. By Proposition 3.3 and 1.15 it suffices to deal with the
p-Sylow subgroups of G and to patch isomorphic fixed point free automorphism
groups thereupon together.

Moreover, an abelian p-group G can be further decomposed, and we will show
that its fixed point free automorphism groups can be constructed out of the fixed
point free automorphism groups of elementary abelian groups. We use additive
notation for abelian groups once again.

1. Transfer to the Elementary Abelian Case

We need the following theorem, which has important applications in repre-
sentation theory also, to decompose an abelian p-group G into Φ-invariant direct
factors. Even before this we have give some new definitions.

6.1. Definition. Let Φ be a group. A Φ-module G is an abelian group together
with a scalar multiplication map

· : Φ×G→ G

that satisfy the following axioms. Let ϕ,ψ ∈ Φ and g, h ∈ G.
(a) ϕ(g + h) = ϕg + ϕh.
(b) (ϕψ)g = ϕ(ψg).
(c) 1g = g.

6.2. Definition. Let Φ be a group and let G,H be Φ-modules. A function f :
G→ H is an Φ-module homomorphism if for all g1, g2 ∈ G and ϕ ∈ Φ

(a) f(g1 + g2) = f(g1) + f(g2),
(b) f(ϕm) = ϕf(m).

6.3. Theorem (Maschke, Schur). Let Φ be a finite group of order k and G a
Φ-module and let there be a Φ-endomorphism τ such that τ(kg) = g for all g ∈ G.
Let G = G1⊕G∗2 be a direct decomposition of G as an abelian group such that G1

is a Φ-submodule of G. Then there exists a direct decomposition G = G1 ⊕G2 as
Φ-module.

Proof. see [Hup67], p.122.

In our application, G will be an abelian p-group and Φ an automorphism group
of order k where k - p. The mapping g 7→ kg is an isomorphism with the inverse
τ(g) = k−1g and τ is a Φ-homomorphism. Thus the conditions for Theorem 6.3
are fulfilled. The assertion states that for every Φ-invariant direct factor G1 of G
there exists a Φ-invariant complement G2 so G = G1 ⊕G2.

Theorem 6.3 gives the following

49
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6.4. Lemma. Let G be an abelian p-group and Φ a group of automorphisms on
G with p - |Φ|. Let pd be the biggest invariant of G. Then G has a decomposition
G = G1⊕G2, both G1, G2 are invariant under Φ, all abelian invariants of G1 equal
pd and all the invariants of G2 are smaller than pd.

Proof. Obviously, this is true for d = 1, i.e., G is elementary abelian. We
carry out an induction on d with expG = pd.

Suppose the assumption holds for all abelian p-groups G such that expG = pd

and for all Φ on G such that p - |Φ|. For any abelian group G with expG =
pd+1, d ≥ 1, and some Φ such that p - |Φ|, the group F = pG has exponent pd and
is a characteristic subgroup of G. Thus the assumption holds for F = F1 ⊕ F2.

Define

N = {g ∈ G : pg ∈ F2}

which is Φ-invariant since F2 is. It also has a Φ-invariant direct factor {g ∈ F1 :
pg = 0}. Theorem 6.3 guarantees the existence of a complement G2 such that

N = {g ∈ F1 : pg = 0} ⊕G2

and G2 is Φ-invariant. The abelian invariants of G2 are at most p expF2 ≤ pd, while
the invariants of its complement in G are all equal to p expF1 = pd+1. Theorem
6.3 again implies there is a Φ-invariant factor G1 ≤ G such that G = G1 ⊕G2.

6.5. Proposition. Let G be an abelian p-group and Φ group of automorphisms on
G with p - |Φ|. Then G ∼=

⊕m
i=1Gi, where Gi = Zni

pdi
such that d1 > d2 > . . . > dm

and all Gi are Φ-invariant.

Proof. By applying Lemma 6.4 iteratively.

The previous Proposition 6.5 and Proposition 3.3 (a) enable us to split any fixed
point free automorphism group Φ on an arbitrary abelian group G into isomorphic
fixed point free automorphism groups Φi on factors Gi of G, with each Gi having
only abelian invariants pdii and di 6= dj for pi = pj .

Every fixed point free automorphism group Φi on

Gi ∼= Zni
p
di
i

induces a fixed point free automorphism group Φ̄i on the elementary abelian factor

Gi/piGi ∼= Znipi

and vice versa.
Now simply by determining the fixed point free automorphism groups Φ̄i on

Gi/piGi, extending them to Φi on Gi for all i = 1, . . . ,m and finally patching
those isomorphic Φi together via Proposition 3.3 (b), we find all fixed point free
automorphism groups Φ on G.

The following Lemmata 6.6 to 6.8 state the connections between Φ on G = Znpd

and Φ̄ on G/pG more precisely.

6.6. Lemma. Let G = Znpd and p prime. For pG = {pg : g ∈ G} the factor group
G/pG is isomorphic to Znp . There is a natural epimorphism

h : Aut(G) → Aut(G/pG)
α 7→ ᾱ



1. TRANSFER TO THE ELEMENTARY ABELIAN CASE 51

with ᾱ : x+ pG 7→ α(x) + pG and

Kerh = {α ∈ Aut(G) : ∀g ∈ G ∃f ∈ pG : α(g) = g + f},

is a p-group.

Proof. The homomorphism h is well defined because pG is a characteristic
subgroup of G.

Let {e1, . . . , en} denote a set of generators of G. If α ∈ Kerh, then for every
ei there is fi ∈ pG such that

α(ei) = ei + fi.

Every α defined in this way is an automorphism on G indeed and for each generator
ei we have |pG| = p(d−1)n possibilities to choose fi from. Thus

|Kerh| =
n∏
i=1

|pG| = p(d−1)n.

Let d > 1 and ᾱ ∈ Aut(G/pG) such that

ᾱ : ei + pG 7→
n∑
j=1

ajiej + pG.

Then

α : G → G

ei 7→
n∑
j=1

ajiej

is linear on G. Suppose ∃0 6= g ∈ G such that α(g) = 0 in G. Obviously, g ∈ pG
since ᾱ(g + pG) = 0 + pG. Thus there is f ∈ G such that g = pf . We denote f by
g/p.

Now α(g/p) ∈ pd−1G, In particular, α(g/p) ∈ pG and ᾱ(g/p + pG) = pG.
Again g/p ∈ pG and there is g/p2 ∈ G with g = p2(g/p2) and α(g/p2) ∈ pd−2G.

By iteration downwards we get some g/pd−1 ∈ G and α(g/pd−1) ∈ pG. Thus
finally g = pd(g/pd) for g/pd ∈ G and g = 0.

Hence α is an automorphism on G for which h(α) = ᾱ and h is an epimorphism
indeed.

Lemma 6.6 not only guarantees the existence of a pre-image α for any auto-
morphism ᾱ ∈ Aut(G/pG) but its proof also gives a specific example of such an
α.

6.7. Lemma. If Φ ≤ Aut(G) and p - |Φ|, then h(Φ) is isomorphic to Φ.
Conversely, if Φ̄ ≤ Aut(G/pG) and p - |Φ̄|, then there is Φ ≤ Aut(G) such that

h(Φ) = Φ̄ and h(Φ) is isomorphic to Φ̄. Any two such groups Φ1,Φ2 are conjugate
in Aut(G).

Proof. As Kerh is a p-group but p - |Φ| we get |h(Φ)| = |Φ|/|Φ∩Kerh| = |Φ|
and h(Φ) ∼= Φ.

On the other hand, since h is an epimorphism from Aut(G) to Aut(G/pG) there
is a unique pre-image Φ∗ with h(Φ∗) = Φ̄ which includes Kerh for every subgroup
Φ̄ ∈ Aut(G/pG).
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If additionally p - |Φ̄|, then [Φ∗ : Kerh] = |Φ̄| and |Kerh| = pn(d−1) are
relatively prime and Theorem 1.33 assures that Φ∗ contains subgroups of order |Φ̄|
and any two of them are conjugate in Φ∗.

Let Φ denote any of these complements of Kerh. Then h(Φ) = Φ̄ and Φ and
Φ̄ are isomorphic.

6.8. Lemma. If Φ ≤ Aut(G) is fixed point free on G, then h(Φ) is fixed point free
on G/pG.

Conversely, if Φ̄ ≤ Aut(G/pG) is fixed point free on G/pG, then any
Φ ≤ Aut(G) such that h(Φ) = Φ̄ and p - |Φ| is fixed point free on G.

Proof. Proposition 3.3 (c) shows that h(Φ) is fixed point free on G/pG.
Suppose Φ ≤ Aut(G) such that h(Φ) = Φ̄ and p - |Φ| but Φ is not fixed point

free on G, i.e.,

∃ idG 6= ϕ ∈ Φ and ∃0 6= x ∈ G : ϕ(x) = x.

For ϕ̄ := h(ϕ) we have ϕ̄(x + pG) = x + pG and since Φ̄ acts fixed point free
on G/pG, we get x ∈ pG.

Let g ∈ G \ pG such that plg = x for some l < d. Thus ϕ(g) 6= g and

plϕ(g) = ϕ(plg) = ϕ(x) = x = plg.

Since pl(g − ϕ(g)) = 0 and l < d we have g − ϕ(g) ∈ pG and ϕ(g) = g + f with
f ∈ pG. Then

ϕ̄(g + pG) = ϕ(g) + pG = g + pG

and ϕ̄ 6= idG/pG has a nontrivial fixed point, contrary to our assumption.

The following proposition characterizes all fixed point free automorphism groups
Φ on an abelian group G in terms of fixed point free automorphism groups on ele-
mentary abelian groups.

6.9. Proposition. Let G be an abelian group, G ∼=
⊕m

i=1Gi, where Gi = Zni
p
di
i

and di 6= dj if pi = pj . The following are equivalent:

(a) The automorphism group Φ on G is fixed point free on G.
(b) The restriction Φi := Φ|Gi is isomorphic to Φ and fixed point free on Gi for

every i = 1, . . . ,m.
(c) The order of Φ is not divisible by pi and Φ̄i is fixed point free on Gi/piGi ∼=

Znipi for every i = 1, . . . ,m.

Proof.

(a)⇒ (b) : Proposition 6.5 and Proposition 3.3 (a);
(b)⇒ (c) : Proposition 3.3 (c);
(c)⇒ (a) : Lemma 6.7, Lemma 6.8 and Proposition 3.3 (b).

6.10. Corollary. Let G be an abelian group, G ∼=
⊕m

i=1Gi, where Gi = Zni
p
di
i

and

di 6= dj if pi = pj .
There is a fixed point free automorphism group Φ of size k if and only if

k|(pnii − 1) for all 1 ≤ i ≤ m.
In particular, there is a cyclic fixed point free automorphism group of this size.
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Proof. The necessary condition for a fixed point free automorphism group Φ
follows directly from Proposition 6.9 (c) and Proposition 3.1.

Conversely, if k|(pnii − 1), then there is a cyclic fixed point free automorphism
group 〈ϕ̄i〉 of order k on Znipi

∼= Gi/piGi for every i = 1, . . . ,m by Proposition 5.2.
Lemma 6.7 and Lemma 6.8 state that there is a fixed point free automorphism group
〈ϕi〉 of order k on Gi and 〈(ϕ1, . . . , ϕm)〉 is fixed point free on G by Proposition
3.3 (b).

Proposition 6.9 allows the computation of all fixed point free automorphism
groups on an abelian group G. We just have to find isomorphic fixed point free
automorphism groups Φ̄i on the elementary abelian groups Gi/piGi and extend
them onto Gi which is always possible by Lemma 6.7. Thus we get a bunch of
conjugate possible extensions on Gi. We choose one Φi for each i and paste them
together using automorphisms

ai : Φ1 → Φi for i > 1

to obtain

Φ = {(φ1, a2(φ1), . . . , am(φ1)) : φ1 ∈ Φ1}

to be fixed point free on G via Proposition 3.3 (b).
Obviously, there is a variety of possibilities to choose Φi and ai and lots of the

resulting groups Φ will be conjugate in Aut(G), if not identical. The situation has
to be clarified.

6.11. Proposition. Let G be an abelian group, G ∼=
⊕m

i=1Gi, where Gi = Zni
p
di
i

and di 6= dj for pi = pj . Let Φ and Ψ be automorphism groups on G with pi
dividing the order of none of them for i = 1, . . . ,m. The following are equivalent:

(a) There is x ∈ Aut(G) such that

Φ = x−1Ψx.

(b) There is x ∈ Aut(G) with x(Gi) = Gi for i = 1, . . . ,m such that

Φ̄ = x̄−1Ψ̄x̄

in G/F (G).

Proof.

(a) ⇒ (b) : Let G =
⊕d

i=1 Spi be the factorization of G into its p-Sylow
subgroups Spi for 1 ≤ i ≤ d. Since Aut(G) ∼=

⊕d
i=1 Aut(Spi) we can, w.l.o.g.,

assume G is a p-group and d1 > d2 > . . . > dm.
If Φ = x−1Ψx in Aut(G), then Φ̄ = x̄−1Ψ̄x̄ in Aut(G/pG). All we have to do is

to construct an automorphism x∗ which transfers Ψ into Φ but leaves Gi invariant
for all i = 1, . . . ,m.

Let ϕ,ψ be fixed such that ϕ̄ = x̄−1ψ̄x̄. Since ϕ,ψ both leave Gi invariant for
i = 1, . . . ,m, we have ϕ̄ : v 7→ Av, ψ̄ : v 7→ Bv with v ∈ G/pG and

A = A11 ⊕ . . .⊕Amm,
B = B11 ⊕ . . .⊕Bmm

with Aii, Bii ∈ Aut(Gi/pGi). Note that we regard the elementary abelian group
G/pG as n-dimensional vector space and represent the automorphisms as matrices
in GL(n, p), with n = n1 + · · ·+ nm again.
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Since x is an arbitrary automorphism, the matrix X with x̄ : v 7→ Xv is not
of block diagonal form in general. For all g ∈ Gi, the order ord(g) ≤ pdi and also
ord(x(g)) = ord(g) ≤ pdi . Thus, for x ∈ Aut(G) we obtain

x(g) ∈
i−1⊕
j=1

pGi ⊕
m⊕
j=i

Gi

and

x̄(g + pG) = x(g) + pG ∈
m⊕
j=i

Gi/pGi.

In general, x̄ : v 7→ Xv and

X =

 X11 · · · X1m

. . .
...

0 Xmm


with Xij ∈ Hom(Gi/pGi, Gj/pGj). Let x̄−1 : v 7→ Y v with Y = X−1 of the same
upper triangular form

Y =

 Y11 · · · Y1m

. . .
...

0 Ymm

 .

Now

XY = (XY )ij = (
m∑
k=1

XikYkj)ij = (
i∑

k=j

XikYkj)ij = I

the identity mapping on G/pG. In particular, for i = j we have (XY )ii = XiiYii =
Ini , the identity on Gi/pGi, and Yii = X−1

ii the unique inverse which exists since
Xii has full rank. The equation ϕ̄ = x̄−1ψ̄x̄ now becomes:

A = X−1BX

=

 X−1
11 · · · Y1m

. . .
...

0 X−1
mm


 B11 · · · 0

. . .
...

0 Bmm


 X11 · · · X1m

. . .
...

0 Xmm


=

 X−1
11 · · · Y1m

. . .
...

0 X−1
m,m


 B1,1X11 · · ·

∑m
k=1BkkXkm

. . .
...

0 Bm,mXmm


=

 X−1
11 B1,1X11 0

. . .
0 X−1

mmBm,mXmm


Note that the last equality is forced since A on the left side is of diagonal form. For
each i there is Xii ∈ Aut(Gi/pGi) such that

Aii = X−1
ii BiiXii.

By Lemma 6.6 there is an automorphism xi on Gi such that

x̄∗i : v 7→ Xiiv
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on Gi/pGi. Let Φ̄i = Φ̄|Gi/pGi and Ψ̄i = Ψ̄|Gi/pGi . Then Φ̄i = x̄∗
−1
i Ψ̄ix̄

∗
i and

by Lemma 6.7 any two extensions Φi of Φ̄i on Gi are conjugate in Aut(Gi) for
i = 1, . . . ,m. The same holds for extensions Ψi on Gi. W.l.o.g., we assume

Φi = (x∗i )
−1Ψix

∗
i .

Then Φ = (x∗)−1Ψx∗ for x∗ ∈ Aut(G) with x∗|Gi = x∗i .
2⇒ 1 : Let

h : Aut(G) → Aut(G/F (G))
α 7→ ᾱ

with ᾱ : g + F (G) 7→ α(g) + F (G).
For all groups Φ,Ψ ≤ Aut(G) such that h(Φ) = Φ̄ and h(Ψ) = Ψ̄ there is some

x ∈ Aut(G) such that h(Φ) = h(x)−1h(Ψ)h(x). Thus the pre-image of h(Φ) is

〈Φ,Kerh〉 = 〈x−1Ψx,Kerh〉 =: H.

Now

Kerh = {α ∈ Aut(G) : ∀g ∈ G,∃f ∈ F (G) : α(g) = g + f}
is isomorphic to the direct product of automorphism groups on the Sylow subgroups
of G. For determining the order of Kerh, we compute the number of automorphisms
of the form g 7→ g + F (G) on each Sylow subgroup and multiply them up.

To simplify notation we assumeG ∼=
⊕m

i=1Gi to be a p-group. Let {ei1, . . . , eini}
be a set of generators of Gi for i = 1, . . . ,m. If α ∈ Kerh, then for every eij there
is fij ∈ F (G) = pG and ord fij ≤ ord eij such that

α(eij) = eij + fij .

Every α defined in this way is an automorphism on G indeed. For each generator
eij we can choose fij from pG ∩Gpdi , where Gpdi = {x ∈ G : pdix = 0}. Now

|Kerh| =
m∏
i=1

|pG ∩Gpdi |ni

and Kerh is a p-group.
Thus for arbitrary abelian G we have Kerh to be a direct product of pi-groups,

where pi are the prime divisors of |G|.
Since |Kerh| and [H : Kerh] = |Φ̄| are relatively prime, Theorem 1.33 assures

that H contains subgroups of order |Φ̄| and any two of them are conjugate in H.
Let Φ denote any of these complements of Kerh. Then h(Φ) = Φ̄ and they are
isomorphic.

In the same way we choose Ψ as some complement of Kerh in xHx−1, then Φ
and Ψ are conjugate in Aut(G).

Proposition 6.11 gives a one to one correspondence between non conjugate fixed
point free automorphism groups on

G =
m⊕
i=1

Zni
p
di
i

and the isomorphic fixed point free automorphism groups on
m⊕
i=1

Znipi
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in
⊕m

i=1 Aut(Znipi ) which are non conjugate therein. This enables us to transfer all
our knowledge on elementary abelian groups to arbitrary abelian groups G.

2. Cyclic Φ

Once again, first we concentrate on Φ to be cyclic. Although the form of an
automorphism ϕ on G generating a fixed point free automorphism group is clear
by Proposition 6.9, we state it explicitly.

6.12. Corollary. Let G be an abelian group, G =
⊕m

i=1Gi, where Gi ∼= Zni
p
di
i

and

di 6= dj if pi = pj . The automorphism ϕ ∈ Aut(G) generates a fixed point free
automorphism group of order k on G if and only if

ϕ = (ϕ1, . . . , ϕm),

where 〈ϕi〉 is a fixed point free automorphism group of order k on Gi for i =
1, . . . ,m.

Proof. This is a reformulation of Proposition 6.9 for cyclic groups Φ.

Another specialization:

6.13. Corollary. Let ϕ,ψ ∈ Aut(G) both generate a fixed point free automor-
phism group of order k on G.

〈ϕ〉 ' 〈ψ〉 in Aut(G) ⇔ 〈ϕ̄〉 ' 〈ψ̄〉 in
m⊕
i=1

Aut(Gi/piGi).

Proof. This is a reformulation of Proposition 6.11 for cyclic groups Φ.

In the following let G always denote the abelian group,

G =
m⊕
i=1

Gi,

where Gi ∼= Zni
p
di
i

and di 6= dj if pi = pj . We obtain the number of non conjugate

cyclic fixed point free automorphism groups onG by building up the same structures
as in the elementary abelian case. The only change necessary is to think in i =
1, . . . ,m in parallel.

6.14. Definition. For a fixed k let R denote the set of m-tuples ϕ = (ϕ1, . . . , ϕm)
of rational canonical forms for automorphisms ϕi, which generate a fixed point free
automorphism group of order k on Znipi

∼= Gi/piGi, i.e., R is a set of representatives
for each conjugacy class of automorphisms in

⊕m
i=1 Aut(Znipi ) generating a fixed

point free automorphism group of order k on
⊕m

i=1Gi.
For an arbitrary subgroup U ≤ Z∗k , let

RU = {ϕ ∈ R : ϕr ' ϕ,∀r ∈ U}.
Let

Ei = 〈pi〉 = {1, pi, . . . , pei−1
i } ≤ Z∗k ,

where ei is the smallest natural number such that k|(peii − 1) and

E =
m⋂
i=1

Ei.
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Then

RE = R.

6.15. Lemma. Let ϕ = (ϕ1, . . . , ϕm) ∈ R.

ϕ ∈ RU ⇔ ∀r ∈ U,∀i = 1, . . . ,m : ϕri ' ϕi.

Proof. trivial.

Now we are using this characterization for counting the elements of RU .

6.16. Lemma. Let ti = |〈Ei, U〉| for 1 ≤ i ≤ m.

|RU | =


∏m
i=1

(
φ(k)
ti

+ ni
ti
− 1

ni
ti

)
if ti|ni for all i

0 else

Proof. By Lemma 6.15 we only have to build all m-tuples ϕ, where ϕri ' ϕi
for r ∈ U for all i = 1, . . . ,m. These ϕi and their numbers are determined by
Lemma 5.6 and 5.9. By multiplying them up we get the above expression.

What is more, we get exactly the same formula for the number of non conju-
gated cyclic fixed point free automorphism groups of order k on G abelian as on
Znp .

6.17. Proposition. Let U = {U ≤ Z∗k : E ≤ U}. There are exactly

Nk =
1

φ(k)

∑
U∈U
|U |(|RU | − |

⋃
W>U

RW |)

non conjugate cyclic fixed point free automorphism groups of order k on G, abelian.

Proof. The same argumentation as used for the elementary abelian case
( Proposition 5.12 ) gives the above expression for non conjugate fixed point free
automorphism groups of order k in

⊕m
i=1 Aut(Gi/piGi), which equals the number

of non conjugated fixed point free automorphism groups of order k on G =
⊕m

i=1Gi
by Corollary 6.13.

The evaluation of |
⋃
W∈U,W>U RW | has still to be done. Evidently, it suffices

to do the union over all minimal groups W > U , that is over all groups W such
that [W : U ] is prime. In general, we have:

6.18. Proposition. Let W = {W ≤ Z∗k : [W : U ] prime, |RW | 6= 0}. Then∣∣ ⋃
W∈U,W>U

RW
∣∣ =

∣∣ ⋃
W∈W

RW
∣∣

=
|W|∑
j=1

(−1)j−1
∑

W1,... ,Wj∈W,pairwise distinct

|R〈⋃jh=1 Wh〉|

Proof. Since for U < W1 ≤ W2 the set RW2 is a subset of RW1 , the first
equality holds. The second follows from standard inclusion-exclusion counting of
the elements of a union of non-disjoint sets.

By Lemma 6.16 we have |R〈⋃jh=1 Wh〉| = 0 if the order of 〈Ei,
⋃j
h=1Wh〉 does

not divide ni for every i = 1, . . . ,m. Thus lots of summands will vanish in the
above formula.
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6.19. Lemma. Let u = gcd(n1, . . . , nm, φ(k)). If |W | > u then |RW | = 0.

Proof. This can be seen immediately from Lemma 6.16.

We look at some particularly well behaved specializations

6.20. Corollary. If u = |E|, then

Nk =
|E|
φ(k)

|R|.

6.21. Corollary. If u/|E| is prime, then

Nk =
|E|
φ(k)

[
|R|+ (

u

|E|
− 1)

∑
|W |∈U,|W |=u

|RW |
]
.

6.22. Corollary. For k equal to 4 or an odd prime power or 2 times an odd prime
power, Z∗k is cyclic, i.e., the subgroup lattice of Z∗k is linearly ordered: for some l

E = U0 < U1 < . . . < Ul = Z∗k

with [Ui+1 : Ui] prime and

Nk =
1

φ(k)

l∑
i=0

|Ui|(|RUi | − |RUi+1 |),

where |RUl+1 | = 0 for ease of notation.

Note that the counting arguments given above can also be transferred to groups
with nonabelian pi-Sylow subgroups Gi but we fail to give a formula for |RU | in
this case.

6.23. Example. We would like to compute the number of non conjugate fixed
point free automorphism groups of order 8 on the group G = Z4

5 × Z2
49. Evidently,

this is equal to the number for Z4
5×Z2

7 or in general for Z4
5i×Z

2
7j with some integers

i, j.
8 divides 52 − 1 and 72 − 1. Thus E1 = {1, 5} ≤ Z∗8 and E2 = {1, 7} ≤ Z∗8 ; the

intersection is E = E1∩E2 = {1} and 〈E1, E2〉 = Z∗8 . Since u = gcd(4, 2, φ(8)) = 2,
we can actually use Corollary 6.21. We compute

R〈1〉 =
(

4/2 + 4/2− 1
4/2

)(
4/2 + 2/2− 1

2/2

)
= 3 · 2 = 6,

RE1 = 0,

RE2 =
(

4/4 + 4/4− 1
4/4

)(
4/2 + 2/2− 1

2/2

)
= 1 · 2 = 2,

RZ∗8 = 0

via Lemma 6.16 and obtain

N8 =
1
4
[
6 + (

2
1
− 1)(0 + 2)

]
= 2

which actually equals the number of non conjugate fixed point free automorphism
groups of order 8 on the group Z4

5 ( see the example in chapter 5 ).
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3. Quaternion Φ

We are working ourselves up to quaternion fixed point free automorphism
groups on G although we do not give their explicit form in general as done for
the elementary abelian case. Recall that being abelian is a necessary condition on
a group G to admit a fixed point free automorphism of order 2. Thus the following
proposition is the definitive existence result.

6.24. Proposition. Let G be an abelian group, G =
⊕m

i=1Gi, where Gi ∼= Zni
p
di
i

and di 6= dj if pi = pj . There exists a quaternion fixed point free automorphism
group of order 2t+1 on G if and only if for every i = 1, . . . ,m it holds 2t+1|pnii − 1
and either 2|ni and 2t|pi+1 or 2ei|ni, where ei is the smallest natural number such
that 2t|peii − 1.

Proof. Proposition 6.9, 5.17 and 5.19 together give the result.

For the simple case 2t+1 = 8 we can also state

6.25. Corollary. There exists a quaternion fixed point free automorphism group
Φ of order 8 on G if and only if for every i = 1, . . . ,m it holds 2 - pi and 2|ni.
Any such Φ is conjugated to the group 〈ϕ,ψ〉 with ϕi = ϕ|Gi : v 7→ Aiv and
ψi = ψ|Gi : v 7→ Biv where

Ai =
ni/2⊕
j=1

(
0 −1
1 0

)
, Bi =

ni/2⊕
j=1

(
ui vi
vi −ui

)
,

and u2
i + v2

i + 1 = 0 mod pdii .

Proof. Proposition 6.24 gives the sufficient and necessary conditions on G. It
is easy to see that 〈ϕ,ψ〉 as given in the hypothesis exists and is fixed point free on
G. Corollary 5.20 shows all groups Φ to be conjugate.

6.26. Corollary. Let G of order pn, n odd. Then all fixed point free automorphism
groups on G are of type (I).

Proof. For abelian G =
⊕m

i=1Gi, where Gi ∼= Zni
pdi

the sum
∑m
i=1 dini =

n is odd, thus there is some ni odd, and G has no quaternion fixed point free
automorphism group by Proposition 6.24

6.27. Proposition. Let U = {U ≤ Z∗k : 〈E,−1〉 ≤ U} and let RU denote the
set of representatives for each conjugacy class of automorphisms in

⊕m
i=1 Aut(Znipi )

generating a fixed point free automorphism group of order k = 2t on
⊕m

i=1 Z
ni
pi

such that ϕr ' ϕ for all r ∈ U . Then there are exactly

1
2t−1

∑
U∈U
|U |(|RU | − |

⋃
W>U

RW |)

non conjugate quaternion fixed point free automorphism groups of order 2t + 1 on
G =

⊕m
i=1 Z

ni

p
di
i

with di 6= dj for pi = pj .

Proof. This follows from Proposition 5.20 and Corollary 6.13.
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4. Φ of type (I)

Similarly, we can also generalize our results on Φ with cyclic Sylow subgroups
on elementary abelian groups G.

6.28. Lemma. Let G be an abelian group, G =
⊕m

i=1Gi, where Gi ∼= Zni
p
di
i

and

di 6= dj for pi = pj . Let Φ be a non cyclic fixed point free automorphism group on
G with cyclic Sylow subgroups, i.e., Φ = 〈ϕ,ψ〉 where ϕs = ψt = id, ψ−1ϕψ = ϕr

and rt ≡ 1(s), gcd(s, t(r − 1)) = 1 and |Φ| = st.
Let d be the smallest natural number such that s|rd − 1. Then d divides

gcd(n1, . . . , nm, φ(s), t) and d > 1.

Proof. By Lemma 5.23 and Proposition 6.9.

6.29. Corollary. Let G be an abelian group, G =
⊕m

i=1Gi, where Gi ∼= Zni
p
di
i

and

di 6= dj for pi = pj . If

gcd(n1, . . . , nm, p
n1
1 − 1, . . . , pnmm − 1) = 1,

then every fixed point free automorphism group Φ on G is cyclic.

Proof. Same as the corresponding proof for G elementary abelian, Corollary
5.24.

We give one more statement on arbitrary p-groups.

6.30. Proposition. Let G be of order pn, p, n prime, and not elementary abelian.
Then each fixed point free automorphism group Φ on G is cyclic and its order is a
divisor of p− 1.

Proof. By Proposition 3.3 a necessary condition on G for having a fixed point
free automorphism group Φ is the existence of isomorphic fixed point free automor-
phism groups on F (G) and G/F (G), which are both non trivial since G is not
elementary abelian. Let |F (G)| = ps and |G/F (G)| = pt with s+ t = n. Obviously,
the order k of Φ has to divide

gcd(ps − 1, pt − 1) = pgcd(s,t) − 1.

Since s+ t = n prime, thus gcd(s, t) = 1, the size k is bounded by p− 1.
W.l.o.g., F (G) is elementary abelian; F (i)(G) is for some i. Suppose there is

a non cyclic, fixed point free automorphism group Φ on G. According to Lemma
5.23 there is an integer m > 1 such that m|s and m|t, but gcd(s, t) = 1.

So G admits only cyclic fixed point free automorphism groups.

Note that by Proposition 3.3 it suffices that an arbitrary group G has a char-
acteristic subgroup or factor group of order pn, with primes p and n, which is not
elementary abelian, and G admits only cyclic fixed point free automorphism groups
of an order dividing p− 1.



CHAPTER 7

Applications of Fixed Point Free Automorphism
Groups

Satisfied by the last 3 dishes we have a little something in between: examples
for structures wherein fixed point free automorphism groups arise quite naturally.
In particular, we show their connections with Frobenius groups, planar nearrings
and nearfields.

1. Frobenius Groups

We cite the famous criterion for the non-simplicity of a group by Wielandt
to provide the background for our introduction of Frobenius groups, but make no
further use of it. For the proof, which extensively relies on character theory, we
refer to [Rob96].

7.1. Theorem (Wielandt). Let G be a finite group with subgroups H and K
such that K �H and H ∩Hx ≤ K for all x ∈ G \H. Let N be the set of elements
of G which do not belong to any conjugate of H \K. Then N is a normal subgroup
of G such that G = HN and H ∩N = K.

Proof. see [Rob96], p.248.

Frobenius obtained this result for the case K = {1G}, thus describing groups
which are of special interest.

7.2. Definition. A group G is called Frobenius group if it has a proper non trivial
subgroup H < G such that H ∩Hg = {1G} for all g ∈ G \H.

N = G \
⋃
g∈G(H \ {1G})g is a normal subgroup of G such that G = HN and

H∩N = {1G}, i.e., G is a semidirect product of H and N . We call N the Frobenius
kernel and H a Frobenius complement.

By the following proposition we find that a finite Frobenius group with kernel
N and complement H and a group with fixed point free automorphism group are
essentially the same.

7.3. Proposition ( [Hup67](V. 8.5)).
(a) Let G be a Frobenius group with complement H and kernel N then the

mapping τ : H → Aut(N), h 7→ ϕh where ϕh(n) = hnh−1 for h ∈ H,n ∈ N
is an isomorphism from H to a fixed point free automorphism group Φ :=
τ(H) on N .

(b) Let Φ be a fixed point free automorphism group on the additive group (N,+).
Then the semidirect product G = ΦnN with the group operation

(ϕ1, n1)(ϕ2, n2) = (ϕ1ϕ2, ϕ2(n1) + n2)

is a Frobenius group with complement Φn 〈0N 〉 and kernel 〈idN 〉nN .
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Proof.

(a) Let h1, h2 ∈ H. Then τ(h1h2) = ϕh1h2 and

ϕh1h2 : n 7→ h1h2nh
−1
2 h−1

1

whereas τ(h1)τ(h2) = ϕh1ϕh2 and

ϕh1ϕh2 : n 7→ h1h2nh
−1
2 h−1

1 .

So τ is a homomorphism. Suppose there are h ∈ H and n ∈ N such that
ϕh(n) = hnh−1 = n, then

n−1hn = h ∈ H ∩Hn.

Either h = 1G and φh = idN or n = 1G by the definition of a Frobenius
group. Thus τ is an isomorphism and τ(H) is a fixed point free automor-
phism group on N .

(b) It is easy to see that G = Φ n N with the multiplication defined as above
is a group indeed. Let H = Φ n 〈0N 〉 and g = (ϕg, ng) ∈ G \H. Suppose
h = (ϕh, 0N ) ∈ H ∩Hg. Then there is x = (ϕx, 0N ) ∈ H such that

h = g−1xg

= (ϕ−1
g ,−ϕ−1

g (ng))(ϕx, 0N )(ϕg, ng)

= (ϕ−1
g ,−ϕ−1

g (ng))(ϕxϕg, ϕg(0N ) + ng)

= (ϕ−1
g ,−ϕ−1

g (ng))(ϕxϕg, ng)

= (ϕ−1
g ϕxϕg, ϕxϕgϕ

−1
g (−ng) + ng)

= (ϕ−1
g ϕxϕg,−ϕx(ng) + ng).

Thus ϕh = ϕ−1
g ϕxϕg and 0N = −ϕx(ng) + ng resulting in ϕx = idN = ϕh

and h = (idN , 0N ). Hence H ∩Hg = {(idN , 0N )} for each g ∈ G \H and G
is a Frobenius group with complement Φn 〈0N 〉 and kernel 〈idN 〉nN .

The objective of this paper is to provide means for the construction of fixed
point free automorphism groups Φ on a group N , thus in terms of Frobenius groups
speaking, we start with a kernel N and determine feasible complements H such that
the semidirect product HN is a Frobenius group.

We mention one more interesting connection between automorphism groups Φ
on N and semidirect products ΦnN .

7.4. Proposition. Let Φ,Ψ be fixed point free automorphism groups on the group
(N,+). The following are equivalent:

(a) ΦnN and ΨnN are isomorphic.
(b) Φ and Ψ are conjugate in Aut(N).

Proof. (a)⇒ (b) : By Proposition 7.3 both ΦnN and ΨnN are Frobenius
groups with kernel N and complement Φ and Ψ, respectively. Since the kernel
of a Frobenius group is unique and the complement is unique up to conjugacy by
Theorem 1.33 any isomorphism

i : ΦnN → ΨnN

is of the form

i : (ϕ, n) 7→ (a(ϕ), b(n))
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where a : Φ→ Ψ is an isomorphism and b ∈ Aut(N).
For all ϕ1, ϕ2 ∈ Φ and for all n1, n2 ∈ N we need i((ϕ1, n1)(ϕ2, n2)) =

i((ϕ1, n1))i((ϕ2, n2)).

i((ϕ1, n1)(ϕ2, n2)) = (a(ϕ1ϕ2), b(ϕ2(n1) + n2))

and

i((ϕ1, n1))i((ϕ2, n2)) = (a(ϕ1), b(n1))(a(ϕ2), b(n2))
= (a(ϕ1)a(ϕ2), a(ϕ2)(b(n1)) + b(n2)).

Thus

a(ϕ1ϕ2) = a(ϕ1)a(ϕ2),

that is, a is an homomorphism from Φ to Ψ, and

b(ϕ2(n1) + n2) = (a(ϕ2)b)(n1) + b(n2)
ϕ2(n1) + n2 = (b−1a(ϕ2)b)(n1) + n2,

that is, ϕ2 = b−1a(ϕ2)b for every ϕ2 ∈ Φ thus a : ϕ 7→ bϕb−1 and bΦb−1 = Ψ for
b ∈ Aut(N).

(b)⇒ (a) : Let Φ = b−1Ψb for b ∈ Aut(N) and define a homomorphism

i : ΦnN → ΨnN
(ϕ, n) 7→ (bϕb−1, b(n)).

It is easy to see that i is an isomorphism.

Thus if we want to find all non isomorphic Frobenius groups with a given kernel
N , we can restrict our search on all non conjugate fixed point free automorphism
groups on N .

2. Planar Nearrings

Another structure which heavily relies on regular automorphism groups on
some group, as has been shown by Ferrero, are planar nearrings. We follow the
development of Clay in [Cla92] where we can also find a survey of applications of
planar nearrings in design theory.

7.5. Definition. A nearring (N,+, ·) is a set with two operations + and · such
that

(a) (N,+) is a group;
(b) (N \ {0}, ·) is a semigroup;
(c) (n1 + n2) · n3 = n1 · n3 + n2 · n3 for all n1, n2, n3 ∈ N .

To be precise, by requiring the right distributive law we obtained right near-
rings. Of course, left nearrings are defined with the appropriate modifications and
their respective theory corresponds by simply rewriting the multiplication order.

7.6. Definition. Let (N,+, ·) be a nearring. For a, b ∈ N we define a relation:

a ≡ b⇔ a · x = b · x for all x ∈ N

If a ≡ b, then a and b are called equivalent multipliers.

It is easy to see that ≡ is a equivalence relation indeed.
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7.7. Definition. A nearring (N,+, ·) is called planar, if the following conditions
hold:

(a) ≡ induces at least 3 equivalence classes, |N/ ≡ | ≥ 3.
(b) The equation

x · a = x · b+ c

has a unique solution for any a, b, c ∈ N, a 6≡ b.

We present a method for constructing finite planar nearrings which is due to
Giovanni Ferrero.

7.8. Definition. Let (N,+) be a finite additive group and Φ a fixed point free
automorphism group on N . We choose some of the nontrivial orbits, say m ones,
and for each of them we fix a representative ei, 1 ≤ i ≤ m.

N∗ =
m⋃
i=1

Φ(ei)

be the union of these orbits Φ(ei). Then we can define a multiplication “·” on N
by

x · a =
{

0N if a 6∈ N∗
ϕa(x) if a ∈ Φ(ei)andϕa(ei) = a

The multiplication “·” is well defined and moreover we get:

7.9. Theorem.

(a) Let (N,+), |N | > 2, be a finite group with a fixed point free automorphism
group Φ. If “·” is defined as in 7.8, then (N,+, ·) is a planar nearring.

(b) Every finite planar nearring (N,+, ·) can be constructed from a group (N,+)
and an appropriate fixed point free automorphism group Φ following Defi-
nition 7.8.

Proof. see [Cla92], p.45 to p.47.

7.10. Proposition. Let Φ and Ψ be two conjugate fixed point free automorphism
groups of the group (N,+). Then for each nearring generated by Φ and N via
Definition 7.8 there is an isomorphic nearring generated by Ψ and N .

Proof. Let α ∈ Aut(N) such that Ψ = α−1Φα. Suppose ei, 1 ≤ i ≤ m, are
the chosen orbit representatives for the nearring multiplication of (N,+, ·) defined
by Φ. It is easy to see that α−1 maps (N,+, ·) to an isomorphic nearring (N,+, ·′)
constructed by the representatives α−1(ei), 1 ≤ i ≤ m and Ψ. For x ∈ N and
a ∈ N∗ it holds

α−1(x · a) = α−1(ϕa(x)) = α−1ϕaα(α−1(x))

and α−1ϕaα =: ψα−1(a) ∈ Ψ such that ψα−1(a)(α−1(ei)) = α−1ϕa(ei) = α−1(a).

All non isomorphic planar nearrings with a given additive group N can be
constructed from non conjugate fixed point free automorphism groups on N .
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3. Finite Nearfields

Nearfields represent a vast matter in its own, although we are going to regard
them simply as a special case of ( planar ) nearrings. Actually, it was the concept
of nearfields which inspired the idea of nearrings. For an account of the theory of
nearfields we refer to [Pil83] and [Wäh87].

7.11. Definition. A nearfield is a nearring (N,+, ·) where (N \ {0}, ·) is a group.

The structure of the additive groups of a nearfield is well known. As always we
confine ourselves to the finite case.

7.12. Proposition. If (N,+, ·) is a finite nearfield, then (N,+) is elementary
abelian.

Proof. see [Pil83], p.252.

What is more:

7.13. Proposition. If (N,+, ·) is a finite nearfield, then it is a planar nearring as
long as |N | > 2.

Proof. see [Cla92], p.56.

Thus nearfields on (Znp ,+) are defined by fixed point free automorphism groups
Φ on Znp and vice versa by Theorem 7.9. In particular, |Φ| = pn − 1, that is, Φ is
a fixed point free automorphism group of maximal size. This relation was actually
used by Zassenhaus in [Zas36] to determine all finite nearfields. His investigation
is based on the characterization of fixed point free automorphism groups in types
(I) to (IV) as in Theorem 3.17 and non solvable ones as in Theorem 3.20.

Without prove we mention that the construction of a nearring multiplication
on (Znp ,+) with fixed point free maximal Φ according to Definition 7.8 provides a
field for cyclic Φ, a so called Dickson nearfield for Φ of type (I) or quaternion Φ
and one of 7 exceptional nearfields for the remaining cases. The 7 exceptions all
have order p2 with p = 5, 7, 11 (two cases), 23, 29 or 59. See [Pil83], p.257, for a
representation of them.
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CHAPTER 8

An Implementation in GAP4

Now it is time for dessert: Actually constructing fixed point free automorphism
groups on a given group G is a lot easier with the support of a computer. Straight
forward algorithms turned out to be not very efficient, thus it seemed to be useful
to implement all the knowledge gathered above. Even so, this should not be a
purpose on its own but provide a tool to generate, e.g., Frobenius groups or planar
near rings, objects which can be further investigated or manipulated to obtain,
e.g., codes or designs see [Cla92] et al. So the outcome should not stand alone but
be available within a larger computer algebra program. The functions described
in the following are a small part of SONATA (“System Of Nearrings And Their
Applications”), [Tea97], a share package based on GAP4 which was developed at
the Institut für Algebra, Stochastik und wissensbasierte mathematische Systeme at
the Johannes Kepler Universität Linz and funded by the “Fonds zur Förderung der
wissenschaftlichen Forschung”.

1. Preliminaries

First of all we introduce some basic features of the programming language
GAP4. For details see the GAP4 reference manual and for a start in programming
on your own see the GAP4 tutorial.

1.1. Objects.

Integers: -2,0,1.
Boolean Values: true,false.
Permutations: are written in cycle notation: (1,2,3) and (1,2)(3,4).
Lists: are collections of objects separated by commas and enclosed in brackets:

[],[1..10],[a,b,c],[1,,3,,5] and [1,1,[1,2]]. The i-th entry of a list
l is accessible as l[i].

Sets: are sorted lists without holes, i.e., lists all of whose entries are distinct
and belong to the same type of object.

Matrices: are realized as list of lists.

1.2. Operators.
The operations +,*,^-1, etc., are generic, i.e., they can be applied to differ-

ent types of objects, like integers, matrices, permutations, etc., whenever there is
an appropriate meaning defined for that specific operation on the specific type of
object. So + applied to integers or matrices means the usual addition, while + is
not defined for permutations. Similarly, * is the usual multiplication for integers
or matrices, for permutations it means applying one permutation after the other.

The operators =,<>,<, etc., test for equality, inequality, less than, and so on.
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1.3. Domains.
A domain in GAP is a set of objects having an operational structure, i.e., a

collection of operations under which the set is closed.
Groups, rings, fields, conjugacy classes of a group, etc., are domains. For

example a group is closed under multiplication, taking the 0-th power and taking
the inverse of elements.

Domains in GAP4 are objects and not records as in GAP3.

2. Defining Groups in GAP

In theory groups are abstract objects, whereas for computational purposes the
specific representation of a group is important. The main types of representation
are: pc groups, permutation groups, matrix groups and finitely presented groups.

We can realize a group by using generating elements in the form of permutations
or matrices, by giving a presentation of generators and defining relations or by
simply using a library of already implemented groups that comes with GAP.

We demonstrate these possibilities in case of the cyclic group of order 6 and
the symmetric group on 3 points.

2.1. Pc group representations. Pc group stands for polycyclic group G,
i.e., a group with a series

{1G} = G0 �G1 � · · ·�Gn−1 �Gn = G

in which eachGi+1/Gi is cyclic. In the finite case polycyclic is equivalent to solvable.
Thus a solvable group has a polycyclic generating system {g1, . . . , gn} such that
Gi+1/Gi = 〈gi+1 ·Gi〉.

The GAP function SmallGroup retrieves a group of given size and number in
the library of small groups with polycyclic generating system if solvable.

gap> Z6 := SmallGroup( 6, 2 );
<pc group with 2 generators>
gap> Z6 := CyclicGroup( 6 );
<pc group of size 6 with 2 generators>
gap> Z6 := AbelianGroup( [2,3] );
<pc group of size 6 with 2 generators>
gap> S3 := SmallGroup( 6, 1 );
<pc group with 2 generators>

2.2. Permutation group representations. A permutation groups can be
easily realized by specifying its generators.

gap> Z6 := Group( (1,2,3,4,5,6) );
Group([ (1,2,3,4,5,6) ])
gap> Z6 := Group( (1,2),(3,4,5) );
Group([ (1,2), (3,4,5) ])
gap> S3 := SymmetricGroup( 3 );
Sym( [ 1 .. 3 ] )
gap> S3 := Group( (1,2),(2,3) );
Group([ (1,2), (2,3) ])

2.3. Matrix group representation.
gap> S3 := GL( 2, 2 );
SL(2,2)



3. COMPUTATION OF FIXED POINT FREE AUTOMORPHISM GROUPS 69

2.4. Finite presentations. For a finite presentation of a group it is necessary
to generate the free group with the appropriate number of generators, to define
relations on this group and to factor the free group by the relations.

gap> F := FreeGroup( 1 );
<free group on the generators [ f1 ]>
gap> f := GeneratorsOfGroup( F );
[ f1 ]
gap> r := [f[1]^6];
[ f1^6 ]
gap> Z6 := F/r;
<fp group on the generators [ f1 ]>
gap> F := FreeGroup( 2 );
<free group on the generators [ f1, f2 ]>
gap> f := GeneratorsOfGroup( F );
[ f1, f2 ]
gap> r := [f[1]^2, f[2]^3, (f[1]*f[2])^2];
[ f1^2, f2^3, f1*f2*f1*f2 ]
gap> S3 := F/r;
<fp group on the generators [ f1, f2 ]>

3. Computation of Fixed Point Free Automorphism Groups

All the information gathered on fixed point free automorphism groups has been
used to develop functions which compute all non conjugate fixed point free auto-
morphism groups on an arbitrary given group G without using the straightforward
approach of computing Aut(G) and searching for subgroups which operate on G in
a fixed point free way. Since G has to be nilpotent, it suffices to compute on its
p-Sylow subgroups Sp, which are direct factors of G, and to combine the results on
each single Sp. Abelian subgroups Sp can even be replaced by a bunch of elementary
abelian groups by Propositions 6.9 and 6.11 for computational purposes.

Furthermore, cyclic and quaternion fixed point free automorphism groups on
abelian groups can be written down virtually immediately by the propositions given
in Chapter 6. What remains is just a combinatorial problem to decide conjugacy. In
the non abelian case a representative for each conjugacy class of Aut(Sp) is checked
whether it generates a fixed point free automorphism group or not.

All groups of type (I) can be obtained by a single cyclic extension of a cyclic
fixed point free automorphism group. If G is non abelian we are done. Otherwise
by Theorem 3.12 groups of type (II) are computed by cyclic extension of groups
H of type (I) with an element q such that q2 ∈ H. According Theorem 3.15 Type
(III) groups are realized as a semidirect product of the quaternion fixed point free
automorphism group of order 8 which is unique by Proposition 6.27 and a type (I)
group. Theorem 3.16 guarantees we just have to extend the type (III) groups by
an element of order 4 and all solvable fixed point free automorphism groups on G
are constructed.

If for each prime divisor p of |G| the group Aut(Sp) contains a perfect subgroup
of order 120 which operates on Sp in a fixed point free way, then the non solvable
can be constructed via Theorem 3.20. Quite naturally, since each step is done on
all invariant factors of G in parallel, the extension process stops as soon as it does
not give a fixed point free automorphism group on one component.
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The implementation of the procedures roughly described above heavily relies
on the sophisticated algorithms for the computation of automorphism groups of
p-groups, conjugacy classes and normalizers available in GAP4. The functions
introduced in the following are part of the GAP4 share package SONATA.

We omit the source code and rather give a survey the main functions and their
applications. Those interested in the whole truth can look up the program file
“fpfaut.gi” that comes with SONATA.

3.1. IsFixedpointfreeAutomorphismGroup.
IsFixedpointfreeAutomorphismGroup( phi, G )

An automorphism group Φ of a group G is fixed point free if and only if every
automorphism of Φ except the identity mapping has the group identity of G as the
only fixed point, i.e., no element of G but the group identity is mapped onto itself.

The function IsFixedpointfreeAutomorphismGroup returns the according
value true or false for a group of automorphisms phi on the group G.

gap> G := CyclicGroup( 11 );
<pc group of size 11 with 1 generators>
gap> g := GeneratorsOfGroup( G )[1];;
gap> phi := Group( GroupHomomorphismByImages( G, G, [g], [g^3] ) );
<group with 1 generators>
gap> Size( phi );
5
gap> IsFixedpointfreeAutomorphismGroup( phi, G );
true

3.2. FixedpointfreeAutomorphismGroups.
FixedpointfreeAutomorphismGroups( G )
FixedpointfreeAutomorphismGroups( G, kmax )

In the first form FixedpointfreeAutomorphismGroups returns a list of all groups
of fixed point free automorphisms acting on the group G up to conjugacy.

In the second form FixedpointfreeAutomorphismGroups returns a list of all
groups of size less then or equal to kmax of fixed point free automorphisms acting
on the group G up to conjugacy. Note that a necessary condition for the existence
of a fixed point free automorphism group phi on G is that the order of phi divides
the order of G minus 1.

Note that the computation of all fixed point free automorphism groups even
of a fixed size k may be rather time consuming if they are not cyclic. Conditions
forcing a fixed point free automorphism group Φ to be cyclic are for example: |Φ|
being the product of two not necessarily distinct primes, |Φ| being square free, |Φ|
being an odd prime power or 2 times an odd prime power. Furthermore, Φ is cyclic
if any of the Sylow subgroups of G is cyclic.

Otherwise FixedpointfreeAutomorphismGroups uses the function
FixedpointfreeAutomorphismGroupsByCyclicExtension to compute representa-
tives for all conjugacy classes of fixed point free subgroups of the automorphism
group of G.

FixedpointfreeAutomorphismGroups calls the function
FixedpointfreeAutomorphismGroupsMaxSize, also when kmax is given, to make
sure kmax is a feasible order of a fixed point free automorphism group on G. If the
size should not be checked,
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FixedpointfreeAutomorphismGroupsNC( G, kmax )

may be called.
gap> G := CyclicGroup( 11 );
<pc group of size 11 with 1 generators>
gap> G := CyclicGroup( 11 );;
gap> FixedpointfreeAutomorphismGroups( G );
[ <group of size 1 with 1 generators>,
<group of size 2 with 1 generators>,
<group of size 5 with 1 generators>,
<group of size 10 with 1 generators> ]

gap> H := ElementaryAbelianGroup( 49 );;
gap> FixedpointfreeAutomorphismGroups( H, 24 );
[ <group of size 2 with 1 generators>,
<group of size 3 with 1 generators>,
<group of size 3 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 6 with 1 generators>,
<group of size 6 with 1 generators>,
<group of size 8 with 1 generators>,
<group of size 8 with 2 generators>,
<group of size 12 with 1 generators>,
<group of size 12 with 2 generators>,
<group of size 24 with 1 generators>,
<group of size 24 with 2 generators>,
<group of size 24 with 3 generators> ]

3.3. FixedpointfreeAutomorphismGroupsCyclic.
FixedpointfreeAutomorphismGroupsCyclic( G )
FixedpointfreeAutomorphismGroupsCyclic( G, kmax )

In the first form FixedpointfreeAutomorphismGroupsCyclic returns the list of
all cyclic groups of fixed point free automorphisms acting on the group G up to con-
jugacy. In the second form FixedpointfreeAutomorphismGroupsCyclic returns
the list of all cyclic groups of size less than or equal to kmax of fixed point free
automorphisms acting on the group G up to conjugacy. Note that a necessary con-
dition for the existence of a fixed point free automorphism group phi on G is that
the order of phi divides the order of G minus 1.

FixedpointfreeAutomorphismGroups calls the function
FixedpointfreeAutomorphismGroupsMaxSize, also when kmax is given, to make
sure kmax is a feasible order of a fixed point free automorphism group on G. If the
size should not be checked,
FixedpointfreeAutomorphismGroupsCyclicNC( G, kmax )

may be called.
gap> G := ElementaryAbelianGroup( 25 );;
gap> FixedpointfreeAutomorphismGroupsCyclicNC( G, 24 );
[ <group of size 2 with 1 generators>,
<group of size 3 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 4 with 1 generators>,
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<group of size 6 with 1 generators>,
<group of size 8 with 1 generators>,
<group of size 12 with 1 generators>,
<group of size 24 with 1 generators> ]

3.4. FixedpointfreeAutomorphismGroupsMaxSize.
FixedpointfreeAutomorphismGroupsMaxSize( G )

FixedpointfreeAutomorphismGroupsMaxSize returns a list with entries kmax,
metacyclic and quaternion where kmax is an upper bound for the size of a fixed
point free automorphism group on the group G; for example kmax divides the order
of G and kmax is odd for nonabelian groups G. The order of any fixed point free
automorphism group on G divides kmax.

The boolean metacyclic is false if there is no non cyclic fixed point free
automorphism group on G such that all p-Sylow subgroups are cyclic and true if
there could be one. The boolean quaternion is false if there is no quaternion
fixed point free automorphism group on G and true if there is one. Thus, if both
are false, then G has cyclic fixed point free automorphism groups only.

gap> H := ElementaryAbelianGroup( 49 );;
gap> FixedpointfreeAutomorphismGroupsMaxSize( H );
[ 48, true, true ]
gap> I := CyclicGroup( 15 );;
gap> FixedpointfreeAutomorphismGroupsMaxSize( I );
[ 2, false, false ]

3.5. FpfAutGrps.
FpfAutGrps( G, metacyclic, quaternion, kmax )

FpfAutGrps returns a list of all groups of size less then or equal to kmax of fixed
point free automorphisms acting on the group G up to conjugacy. Thus FpfAutGrps
does the same as the function FixedpointfreeAutomorphismGroups but one can
determine individually whether metacyclic groups or groups with quaternion sub-
group should be computed by setting metacyclic and quaternion equal to true
or false, respectively.

If metacyclic or quaternion equals true, then the function
FixedpointfreeAutomorphismGroupsByCyclicExtension is used.

gap> H := ElementaryAbelianGroup( 49 );;
gap> FpfAutGrps( H, true, false, 48 );
[ <group of size 2 with 1 generators>,
<group of size 3 with 1 generators>,
<group of size 3 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 6 with 1 generators>,
<group of size 6 with 1 generators>,
<group of size 8 with 1 generators>,
<group of size 12 with 1 generators>,
<group of size 12 with 2 generators>,
<group of size 16 with 1 generators>,
<group of size 24 with 1 generators>,
<group of size 48 with 1 generators> ]
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3.6. FixedpointfreeAutomorphismGroupsFieldGenerated.
FixedpointfreeAutomorphismGroupsFieldGenerated( G, k )

FixedpointfreeAutomorphismGroupsFieldGenerated returns a list with the field
generated group of size k of fixed point free automorphisms acting on the elementary
abelian group G as single entry.

A fixed point free automorphism group is field generated if there is a field
(F,+, .) such that G is isomorphic to the additive group of F and the generating
automorphism is induced by multiplication with a specific element in the field.

gap> I := CyclicGroup( 9 );;
gap> FixedpointfreeAutomorphismGroupsFieldGenerated( I, 4 );
Error group not elementary abelian at
Error( "group not elementary abelian" );
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop, you can ’quit;’ to quit to\
outer loop,

or you can return to continue
brk> quit;
gap> G := ElementaryAbelianGroup( 25 );;
gap> FixedpointfreeAutomorphismGroupsFieldGenerated( G, 4 );
[ <group of size 4 with 1 generators> ]

3.7. FrobeniusGroup.
FrobeniusGroup( phi, N )

FrobeniusGroup constructs the semidirect product of N with the fixed point free
automorphism group phi of N with the multiplication (f, n) · (g,m) = (fg, g(n)m)
by using the GAP function SemidirectProduct.

gap> N := AbelianGroup( IsPcGroup, [3,3,9,9] );
<pc group of size 729 with 6 generators>
gap> r := FixedpointfreeAutomorphismGroups( N );
[ <group of size 2 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 8 wit1h 1 generators>,
<group of size 8 with 1 generators>,
<group of size 8 with 2 generators> ]

gap> phi := r[5];
<group of size 8 with 2 generators>
gap> F := FrobeniusGroup( phi, N );
<pc group with 9 generators>
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CHAPTER 9

Examples of Special Fixed Point Free
Automorphism Groups

To make the functions described above available, start GAP, type
RequirePackage( "sonata" ); and you will see the SONATA - banner appear.
Note that this is the standard of December 1998, i.e., we are using SONATA 1b3
and GAP4b4. Both version and behavior of the following functions are bound to
change with the ongoing development of GAP and SONATA. SONATA, a descrip-
tion, how to install it, and a manual is available from:

http://www.algebra.uni-linz.ac.at/Sonata2/index.html

1. Groups of Order 64

For a demonstration how the computer can be used to obtain examples in a
convenient way, we choose to revisit a result by W.F. Ke and K.S. Wang who
characterized the fixed point free automorphism groups on the groups of order 64
in [KW93]. They found out that there are only 7 non isomorphic groups of this
size which admit a non trivial fixed point free automorphism group and 4 of them
are abelian. An explicit representation of these groups and of the automorphisms
was given.

We use the standard GAP functions as well as the functions described above
that come with SONATA. I am indebted to Bettina Eick and E. A. O’Brien for
their package AutPGrp [EO] which reduces the time for the computation of the
automorphism group of a finite p-group considerably. While it is not necessary
for SONATA to work, we recommend its use, when you deal with automorphism
groups of non abelian groups. We type

gap> RequirePackage( "autpgrp" );
Computing automorphism groups of p-groups

to have these functions at hand.
First of all we determine the total number of non isomorphic groups of size 64.

Up to order 1023, all groups are available in a library with the exception of the
groups with 512 elements.

gap> NumberSmallGroups( 64 );
267

Instead of looping over all 267 groups and trying to compute a fixed point free
automorphism group thereupon, we first exclude those which cannot admit such
automorphisms. We operate with lists and functions on lists.

gap> l := List( [1..267], x ->
> [x, FixedpointfreeAutomorphismGroupsMaxSize(
> SmallGroup( 64, x ) )[1]] );;
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gap> time;
10370
gap> l := Filtered( l, x -> x[2] > 1 );
[ [ 2, 3 ], [ 23, 3 ], [ 55, 7 ], [ 76, 7 ], [ 79, 7 ], [ 81, 7 ],
[ 82, 7 ], [ 192, 3 ], [ 217, 3 ], [ 220, 3 ], [ 223, 3 ],
[ 224, 3 ], [ 227, 3 ], [ 231, 3 ], [ 238, 3 ], [ 239, 3 ],
[ 241, 3 ], [ 242, 3 ], [ 245, 3 ], [ 267, 63 ] ]

gap> Length( l );
20

We have 20 candidates G left which could have a non trivial fixed point free
automorphism group Φ. The command time gives the information that it took
10370 milliseconds to apply FixedpointfreeAutomorphismGroupsMaxSize on all
267 groups. l is now a list of pairs where the first component describes the number
of G in the library of small groups, the second is an upper bound for the size of Φ
fixed point free on G. We note that |Φ| is either less than 3 or less than 7, only
for the group with number 267 a Φ of order 63 could not be excluded. Indeed,
SmallGroup( 64, 267 ) is the elementary abelian group.

gap> Gs := List( l, x -> SmallGroup( 64, x[1] ) );;
gap> phis := List( [1..20], i ->
> FixedpointfreeAutomorphismGroupsNC( Gs[i], l[i][2] ) );
[ [ <group of size 3 with 1 generators> ], [ ],

[ <group of size 7 with 1 generators> ], [ ], [ ], [ ],
[ <group of size 7 with 1 generators> ],
[ <group of size 3 with 1 generators> ], [ ], [ ], [ ],
[ ], [ ], [ ], [ ], [ ], [ ],
[ <group of size 3 with 1 generators> ],
[ <group of size 3 with 1 generators> ],
[ <group of size 3 with 1 generators>,
<group of size 7 with 1 generators>,
<group of size 7 with 1 generators>,
<group of size 9 with 1 generators>,
<group of size 21 with 1 generators>,
<group of size 63 with 1 generators>,
<group of size 63 with 2 generators> ] ]

gap> time;
63390
gap> Number( phis, x -> x <> [] );
7

Thus there are 7 groups remaining with a non trivial automorphism group. It took
63 seconds to find all of them.

gap> l := ListX( [1..Length( phis )], i -> phis[i] <> [],
> i -> l[i] );
[ [ 2, 3 ], [ 55, 7 ], [ 82, 7 ], [ 192, 3 ], [ 242, 3 ],

[ 245, 3 ], [ 267, 63 ] ]
gap> Gs := ListX( [1..Length( phis )], i -> phis[i] <> [],
> i -> Gs[i] );;
gap> List( Gs, IsAbelian );
[ true, true, false, true, false, false, true ]
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We see that the groups of order 64 with numbers 2 and 192 in the SmallGroup -
library both are abelian and have a fixed point free automorphism group of order
3. They are isomorphic to Z2

8 and Z2
4 ⊕ Z2

2 respectively. Group number 55 is
isomorphic to Z3

4 and has a Φ with size 7. Of course, the elementary abelian group
with number 267 admits Φ with orders up to 63.

There are 3 non abelian groups left; number 82 is called A(3, ϑ) in [KW93]
and has a fixed point free automorphism group of order 7, numbers 242 and 245
corresponding to T and S respectively both have Φ of order 3.

It is easy to see that no non abelian group of cardinality less than 64 can have
a non trivial fixed point free automorphism group.

2. The Elementary Abelian Group of Order 121

We take a look at the fixed point free automorphism groups of Z2
11.

gap> G := ElementaryAbelianGroup( 121 );
<pc group of size 121 with 2 generators>
gap> phis := FixedpointfreeAutomorphismGroupsNC( G, 120 );
[ <group of size 2 with 1 generators>,
<group of size 3 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 5 with 1 generators>,
<group of size 5 with 1 generators>,
<group of size 5 with 1 generators>,
<group of size 6 with 1 generators>,
<group of size 8 with 1 generators>,
<group of size 8 with 2 generators>,
<group of size 10 with 1 generators>,
<group of size 10 with 1 generators>,
<group of size 10 with 1 generators>,
<group of size 12 with 1 generators>,
<group of size 12 with 2 generators>,
<group of size 15 with 1 generators>,
<group of size 20 with 1 generators>,
<group of size 20 with 2 generators>,
<group of size 24 with 1 generators>,
<group of size 24 with 2 generators>,
<group of size 24 with 3 generators>,
<group of size 30 with 1 generators>,
<group of size 40 with 1 generators>,
<group of size 40 with 2 generators>,
<group of size 60 with 1 generators>,
<group of size 60 with 2 generators>,
<group of size 120 with 1 generators>,
<group of size 120 with 2 generators>,
<group of size 120 with 3 generators>,
<group of size 120 with 3 generators> ]

gap> time;
65300
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The answer was returned after a little bit more than a minute. Note that there are in
total 4 fixed point free automorphism groups of order 120: one cyclic, corresponding
to the field GF (121), one non cyclic of type (I), corresponding to the Dickson
nearfield, one of type (III) and a perfect one, isomorphic to SL(2, 5), which define
the remaining two nearfields of order 121.

3. An Abelian Example

In Chapter 7 we gave fixed point free automorphism groups of the group Z4
5 ×

Z2
49 as an example. We will check the results given there by using SONATA:

gap> G := AbelianGroup( [ 5, 5, 5, 5, 49, 49 ] );
<pc group of size 1500625 with 8 generators>
gap> phis := FixedpointfreeAutomorphismGroupsNC( G, 16 );
[ <group of size 2 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 4 with 1 generators>,
<group of size 8 with 1 generators>,
<group of size 8 with 1 generators>,
<group of size 8 with 2 generators>,
<group of size 16 with 1 generators>,
<group of size 16 with 2 generators> ]

gap> time;
69780

The answer corresponds to what we obtained by the calculations by hand. Up to
conjugacy there are 2 cyclic fixed point free automorphism groups of order 8, and
1 of order 16, as well as 1 quaternion group of order 8 and 1 of order 16. The
relatively long computational time of 69 seconds is almost completely due to the
transfer from the internal representation of the mappings to the GAP representation
of automorphisms on the group.
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