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Vorwort

Mit der ganzen Algebra ist man oftmals nur ein Narr,
wenn man nicht noch etwas anderes weiß.

Friedrich, der Große

Friedrich der Große war offensichtlich kein leidenschaftlicher Anhänger der Al-
gebra. Nachdem Sie bereits das Inhaltsverzeichnis dieser Arbeit überstanden haben,
dürften Sie sich wesentlich von diesem Herrn unterscheiden. Und da Sie bestimmt
noch vieles andere wissen, können Sie sich jetzt gleich noch tiefer in die Algebra
stürzen, ohne fürchten zu müssen, als Narr zu gelten.

Ende der sechziger Jahre begann man, das überaus erfolgreiche Konzept der
Polynome und Polynomfunktionen, welches bis dahin vorwiegend im Bereich der
Körper und Ringe verwendet wurde, auf universelle Algebren zu übertragen. 1973
publizierten Hans Lausch und Winfried Nöbauer ein umfangreiches Werk zu diesem
Themenkreis. Seitdem gelang es, die Polynomfunktionen auf den meisten bekannten
Klassen von Gruppen zu beschreiben, eine einheitliche Methode für alle Gruppen
scheint jedoch weniger denn je in Sicht.

Gleichfalls 1973 erschien ein Artikel von Stuart D. Scott, der von der soge-
nannten Länge einer Gruppe handelt. Diese Zahl stellt sich als die wesentliche
Größe bei der Bestimmung der Polynomfunktionen auf Gruppen der Nilpotenz-
klasse 2 heraus.

Mitte der siebziger Jahre begannen Lausch und Nöbauer die sogenannten kom-
patiblen Funktionen auf Gruppen zu untersuchen. Insbesondere erweisen sich
Polynomfunktionen stets als kompatibel. 1976 erschien eine Beschreibung der
kompatiblen Funktionen auf endlichen abelschen Gruppen. Dieser Aufsatz enthält
auch eine Charakterisierung derjenigen abelschen Gruppen, auf denen es außer
den Polynomfunktionen keine kompatiblen Funktionen gibt, die sogenannten 1-
affinvollständigen abelschen Gruppen.

Für Gruppen der Nilpotenzklasse 2 wurde die 1-Affinvollstängigkeit von Ma-
rianne Dorda in ihrer Dissertation aus dem Jahr 1977 weitgehend untersucht. Sie
zeigte, dass 1-affinvollständige p-Gruppen der Nilpotenzklasse 2 zumindest von der
Ordnung p6 sein müssen, falls p > 2 ist.Schließlich konstruierte sie ein Beispiel einer
1-affinvollstädigen Gruppe der Ordnung p6 und Nilpotenzklasse 2.



II Vorwort

Scott’s Arbeit über die Länge einer Gruppe zielt nicht primär auf eine algorith-
mische Lösung ab. Im Kapitel 1 entwickeln wir einen Algorithmus zur Bestimmung
der Länge einer Gruppe der Nilpotenzklasse 2, und damit zur Bestimmung aller
Polynomfunktionen auf einer derartigen Gruppe.

Mit den von Lausch, Nöbauer und Dorda entwickelten Methoden ist es
u.a. möglich, die kompatiblen Funktionen auf Gruppen zu bestimmen, die einen
einzigen nichttrivialen minimalen Normalteiler besitzen. Im Kapitel 2 werden diese
Methoden verallgemeinert für den Fall, dass die Gruppe zumindest einen distribu-
tiven minimalen nichttrivialen Normalteiler besitzt. Darüberhinaus studieren wir
in diesem Kapitel gewisse direkte Produkte von Gruppen.

Im Kapitel 3 werden die Resultate, die seit 1970 über Polynomfunktionen auf
Gruppen erschienen sind, mit den Ergebnissen aus Kapitel 2 verknüpft. Dabei
tauchen neue Klassen 1-affinvollständiger Gruppen auf. Schließlich wird in diesem
Kapitel der Zusammenhang zwischen 1-Affinvollstädigkeit und direkten Produkten
bzw. der Bildung von Quotienten untersucht.

Viele der Ergebnisse dieser Kapitel haben Konsequenzen im Bereich der rech-
nerischen Gruppen- und Fastringtheorie. Algorithmen zur Bestimmung von kom-
patiblen und Polynomfunktionen auf endlichen Gruppen wurden mit Hilfe des Com-
puteralgebrasystems GAP1 und des Pakets SONATA2 implementiert. In Kapitel 5
finden sich Vergleiche zwischen verschiedenen Algorithmen, insbesondere auch Ver-
gleiche mit früher angewandten Methoden.

Nähere Informationen zur verwendeten Software finden sich in GAP [1999];
Aichinger et al. [1997a,b, 1998].

1GAP, Groups, Algorithms, Programing, GAP [1999].
2SONATA, a System Of Nearrings And Their Applications, ist ein Paket zu GAP4 für

Fastringe, entwickelt an der Abteilung für Algebra and der Johannes Kepler Universität Linz.



Preface

In the late sixties the concept of polynomials and polynomial functions – mainly
used in the context of fields up to then – has been transfered to arbitrary algebras.
In 1973, Hans Lausch and Winfried Nöbauer published an extensive work on such
polynomials. Since then, most of the well-known classes of groups have been treated,
but a theory for all groups still seems to be out of reach if not impossible.

Also in 1973 Stuart D. Scott published a paper on what he called the length
of a group. It turns out that for nilpotent groups of class 2 the length contains the
information needed to describe, enumerate and count polynomial functions on such
groups.

In the mid-seventies, Lausch and Nöbauer began investigating so called compat-
ible functions on groups. Compatibility is a property, which polynomial functions
always have. In 1976, a description of the compatible functions on finite abelian
groups was published, including a characterization of those finite abelian groups
forcing compatible functions to be polynomial, so called 1-affine complete finite
abelian groups.

In her thesis in 1977, Marianne Dorda treated 1-affine complete class 2 nilpotent
p-groups, and showed that such groups have to have order at least p6, if p > 2, and
gave an example of such a group.

Since then, not much has been published in the field of 1-affine complete groups.
Scott’s work on the length of a group was not really intended to lead to an algo-

rithmic computation of the length. In Chapter 1, an algorithm for the computation
of the length of a given nilpotent group of class 2 is developed.

With the methods found by Lausch, Nöbauer, and Dorda, it is possible to de-
termine the compatible functions on groups, which have a unique minimal normal
subgroup. In Chapter 2 we generalize this result to the case, where the group pos-
sesses a distributive minimal normal subgroup. Moreover, certain direct products
of groups are treated.

In Chapter 3, the results on polynomial functions published since 1970 are
combined with the results of Chapter 2, and new classes of 1-affine complete groups
turn up. The connection between 1-affine completeness and building quotients and
direct products of groups is studied.



IV Preface

Many of the results of these three chapters have consequences in the area of
computational group and near ring theory. Algorithms for the computation of poly-
nomial and compatible functions on arbitrary finite groups have been implemented
using the computer algebra system GAP3 together with the package SONATA4.
Chapter 5 lists a few benchmarks of these algorithms and compares them to previ-
ously used algorithms.

Descriptions of the software used for the computational part of this thesis can
be found in GAP [1999]; Aichinger et al. [1997a,b, 1998].

3GAP, Groups, Algorithms, Programing, GAP [1999].
4SONATA, a System Of Nearrings And Their Applications, is a GAP4 package for near

rings, developed at the Algebra Department of the Johannes Kepler University, Linz.
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CHAPTER 0

Preliminaries

Convention: All the groups we are treating in this dissertation are finite.
All groups are written additively, even if they are not abelian. Groups are
displayed in bold face, their underlying sets are represented by uppercase
roman letters. If G denotes a group, G denotes its underlying set, and
vice versa.

0.1. Notation. The set of integers will be indicated by Z, the set of positive
integers by N, and the set of prime numbers by P.

0.2. Notation. For the cyclic group of order n we write Zn. Moreover, Z∗q
denotes the multiplicative group of the finite field GF(q) (,where q is a prime power).

0.3. Notation. A description of all groups of order at most 32 (up to isomor-
phism) can be found in Thomas and Wood [1980]. The authors identify groups
with pairs of integers, one being the size of the group. When talking about small
groups we will occasionally use the notation in this book.

0.4. Definition. Let G be a group. For elements a, b ∈ G we call
[a, b] := −a− b+ a+ b the commutator of a and b. For two subgroups H1 and H2

of G, we write [H1,H2] for the subgroup generated by all [h1, h2], where h1 ∈ H1

and h2 ∈ H2.

0.5. Definition. Let Ki(G) be defined recursively in the following way:
K1(G) := G and Ki(G) := [Ki−1(G),G] for i ≥ 2. If there is a natural num-
ber r, s.t. Kr(G) = {0} then G is called nilpotent . If r is the smallest such
number then r − 1 is called the nilpotency class of G. Usually we write G′ for
K2(G). The subgroup G′ is often called the derived subgroup (or commutator

subgroup) of G.

0.6. Notation. Let G be a group, g ∈ G, S ⊆ G. Throughout this section,
we write 〈g〉 for the subgroup of G generated by g and 〈S〉 for the subgroup of G

generated by S. We write [g] for the normal subgroup of G generated by g and [S]
for the normal subgroup of G generated by S.
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0.7. Notation. We write group presentations in the following way:

〈x1, . . . , xn; s1, . . . , sm〉,

where x1, . . . , xn are generators, s1, . . . , sm are words in
{x1, . . . , xn} ∪ {−x1, . . . ,−xn}, and si stands for the generating relation si = 0.

0.8. Notation. Let N and H be two groups, and let α be a homomorphism
from H into the group of automorphisms of N. Defining

(n1, h1) +α (n2, h2) := (α(h2)(n1) + n2, h1 + h2),

for n1, n2 ∈ N and h1, h2 ∈ H, (N × H,+α) turns out to be a group, the semi-

direct product of N by H w.r.t. α, denoted by Noα H. For subsets R ⊆ N and
S ⊆ H, let (R, h) denote the set {(r, h) | r ∈ R}. Analogously we use the notations
(n, S) and (R, S).

0.9. Notation. Let G be a group. Then Z(G) denotes the center of G.

0.10. Definition. For a group G, let GG denote the set of all functions from
G to G. On GG we define

(ϕ+ ψ)(x) := ϕ(x) + ψ(x)

and

(ϕ ◦ ψ)(x) := ϕ(ψ(x))

and note that M(G) = (GG,+, ◦) is a near ring1. All near rings we will consider
are sub-near rings of such a near ring M(G).

0.11. Remark. By the third isomorphism theorem [Robinson, 1996, 1.4.4], for
a group G and N E G, the natural epimorphism η : G→ G/N, g 7→ g+N induces
a 1-to-1-correspondence between the normal subgroups of G containing N and the
normal subgroups of G/N. Moreover η preserves inclusion in the lattices and for
all N ≤ I ≤ J ≤ G, J/I ∼= (J/N)/(I/N). The lattice of normal subgroups of a
quotient G/N can be derived from the lattice of normal subgroups of G simply by
throwing away all normal subgroups not containing N.

When studying compatible and polynomial functions on direct products of
groups in the following chapters, we will ask, under which circumstances every pair
of polynomial/compatible functions on two groups can be combined to a polyno-
mial/compatible function on their direct product. In both cases we will prove that
the necessary and sufficient condition is that every normal subgroup of the direct

1c.f. Pilz [1983]
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product G ×H is G-H–decomposable2, i.e., it is a direct product of a normal
subgroup of G and a normal subgroup of H. The following theorem characterizes
such direct products.

0.12. Definition. We call a group G super-perfect iff

∀N E G : [G,N] = N.

0.13. Theorem ([Miller, 1975, Theorem 1]). Every normal subgroup of the di-
rect product of the groups G and H is G-H–decomposable ⇐⇒

1. at least one of G and H is super-perfect, or
2. for all M E G, N E H, the elements of M/[G,M] have order relatively

prime to those of N/[H,N].

0.14. Notation. For I,J E G, we write I ≺ J iff I < J, and for all K E G, if
K < J, then I 6≤ K.

2In Pilz [1980] and Nöbauer [1976] direct products of groups satisfying this condition are

called free of skew congruences.
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CHAPTER 1

Polynomial functions on groups

1. Introduction

1.1. Definition. Let G be a group. The near ring of polynomial func-

tions on G, P(G), is the sub-near ring of M(G) generated by the inner automor-
phisms and the constant functions on G.

1.2. Lemma. The near ring P(G) is also generated additively by the identity
function and the constant functions on G.

Proof. For every g ∈ G, the inner automorphism x 7→ −g + x+ g is the sum
of the constant function x 7→ −g, the identity function, and the constant function
x 7→ g. Conversely, the identity function is the inner automorphism induced by
0 ∈ G.

Following Scott [1969], we make the following definition.

1.3. Definition. By a polynomial p over a group G we mean an element
of the free product of G and the free group generated by {x}.1 Every polynomial
p over G induces a function p̄ from G to G, mapping g to p(g), where p(g) is
the element of G obtained when replacing every x in p by g. We call p a term

representation of p̄.

1.4. Remark. If c ∈ G, the polynomial c induces the constant function x 7→ c.
The polynomial x induces the identity function on G.

1.5. Remark. If A is an abelian group, then every polynomial function on A

is induced by a polynomial of the form kx+d, where k ∈ {1, . . . , exp A} and d ∈ A.
Hence there are precisely

|P(A)| = |A| · exp A

different polynomial functions on A.

1The general definitions of a polynomial and a polynomial function over an algebra can be

found in Lausch and Nöbauer [1973].



6 Polynomial functions on groups

2. Nilpotent groups of class 2

In the case of a nilpotent group of class 2 a certain invariant of the group, the
length defined by S. D. Scott, can be used to determine the number of polynomial
functions on the group. We will determine sharp upper and lower bounds for this
invariant. It is shown how the length of a group can be determined from a set of
generating elements and the length of all p-groups up to order p4 is determined as
an application.

2.1. Introduction.

1.6. Lemma (Huppert [1967]). For a nilpotent group G of class 2, the commu-
tator operation is “bilinear” and “alternating”, precisely, for all a, b, c ∈ G, k ∈ Z

[a, b+ c] = [a, b] + [a, c]

[a+ b, c] = [a, c] + [b, c]

[ka, b] = [a, kb] = k[a, b]

[a, b] = −[b, a]

We deal with polynomial functions on nilpotent groups of class 2, which will
be described in the next theorem.

1.7. Proposition. If G is nilpotent of class 2, then every polynomial function
p̄ on G can be written in the form

x→ g + kx+ [x, h](1.1)

for some g, h ∈ G, k ∈ N.

Proof. Say p̄ is induced by a polynomial p of the form

p = g0 + x+ g1 + x+ · · ·+ x+ gl.

Now swapping the gi to the left using the rule a+ b = b+a+ [a, b] and transferring
the appearing commutators to the right (they are all in the center of G) we get

p =
l∑
i=0

gi + lx+
l∑
i=1

[x,
l∑
j=i

gj ],

which we can simplify to

p =
l∑
i=0

gi + lx+ [x,
l∑
i=1

igi].
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This gives rise to a formula for the number of polynomial functions on a nilpo-
tent group of class 2. We ask, when a polynomial z = g + kx + [x, h] induces the
zero function. Clearly, if g 6= 0 then z̄(0) = g 6= 0, so g has to be equal to zero. Of
course, exp G · x = [x, 0] for all x ∈ G. So there exists a smallest positive integer k
such that there exists an element π ∈ G with

kx = [x, π] ∀x ∈ G.(1.2)

This number k is known as the length of G, which we define in the next section,
before we write down the formula for the size of P(G).

2.2. Scott’s lambda.

1.8. Definition (c.f. Scott [1969]). The length of the polynomial

p = g0 + z1x+ g1 + z2x+ · · ·+ zrx+ gr,

where zi ∈ Z, gi ∈ G and G is a group, is defined as l(p) :=
∑r
i=1 zi. The

polynomial p is an annihilating polynomial of G, iff the polynomial function
induced by p is the zero function. A polynomial of minimal positive length among
the annihilating polynomials is called a minimum polynomial, λ(G) denotes its
length which we call the length of G. Furthermore, we define the length of a
polynomial function as the minimal positive length of a polynomial inducing this
function.

The smallest positive integer k satisfying (1.2) for some π ∈ G is obviously the
length of the group. Using λ we can write the formula

|P(G)| = |G| · λ(G) · [G : Z(G)].(1.3)

The following results for the length of a group are taken from Scott [1969]:

1.9. Proposition ([Scott, 1969, Proposition 1.1]). Let G be a nilpotent group
of class 2. Then

λ(G)| exp G

Proof. In Proposition 1.1 of Scott [1969], we choose R(x) = (exp G)x.

1.10. Theorem ([Scott, 1969, Theorem 2.1]). Let G and H be groups. Then

λ(G×H) = lcm(λ(G), λ(H))(1.4)

As every nilpotent group is the direct product of its p-Sylow subgroups, its
length is the product of the lengths of its p-Sylow subgroups, and its center is the
direct product of the centers of its p-Sylow subgroups, we can restrict ourselves to
the case of a nilpotent p-group of class ≤ 2.
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2.3. Bounds for λ(G).

1.11. Lemma ([Huppert, 1967, III,2.13]). Let G be a p-group of nilpotency
class 2. Then exp(G/Z(G)) ≤ exp Z(G) and exp G′ ≤ exp(G/G′).

A stronger version of [Scott, 1969, Proposition 2.3], which says that for all
N E G,

λ(G/N) | λ(G)

and

λ(G) | λ(G/N) · λ(N),

for p-groups of nilpotency class 2 is the following. Observe, that for an abelian
group A, λ(A) = exp A.

1.12. Proposition. Let G be a p-group of nilpotency class 2. Then

exp G
exp(G/Z(G))

| λ(G)(a)

exp(G/G′) | λ(G)(b)

Proof. Let λ = λ(G).

(a) First we observe that in a non-abelian p-group G there exists a non-central
element of order exp G: of course, there exists an element e of order exp G.
Suppose e ∈ Z(G). The group G is not abelian, take an arbitrary a 6∈ Z(G).
Now a+ e is non-central and its order is exp G.

By the definition of λ(G), there exists an element π such that λx = [x, π]
for all x ∈ G. Abbreviate q = expG

λ . Then for all x ∈ G,

0 = qλx = q[x, π] = [x, qπ].

So qπ ∈ Z(G). In particular this equation must hold if x is a non-central
element of order exp G, so q is the smallest such number. Hence the order
of π + Z(G) in G/Z(G) is q. So q divides the exponent of G/Z(G). The
result follows from the fact that exp(G/Z(G)) divides exp G (Lemma 1.11).

(b) Clearly, λG ⊆ G′, so λ · (G/G′) = {0}.

1.13. Proposition. Let G be a p-group of nilpotency class 2 with exp G = pn

and λ(G) = pm. Then

• m ≤ n.
• If p is equal to 2 then m ≥ n+1

2 .
• If p is odd then m ≥ n

2 .
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Proof. Let λ = λ(G). By the definition of λ, m ≤ n. Suppose that π ∈ G
is such that λx = [x, π], for all x ∈ G. For x = π it follows that λπ = 0. For
x = x+ π, we get

λ(x+ π) = [x+ π, π]

λx+ λπ −
(
λ

2

)
[x, π] = [x, π] (by [Huppert, 1967, III,1.3])

λx−
(
λ

2

)
(λx) = λx

λ2(λ− 1)
2

x = 0

So pn = exp G | λ
2(λ−1)

2 = p2m(pm−1)
2 . If p = 2 then 2m− 1 is odd, hence 2n|22m−1

and n ≤ 2m − 1. If p > 2 then pm − 1 is even, but pn is odd, hence pn|p2m and
n ≤ 2m.

1.14. Corollary. If G is nilpotent of class 2 and exp G is equal to 4 then
λ(G) = exp G = 4.

1.15. Example. Let G be a Hamiltonian group (i.e., a non-abelian group
where every subgroup is a normal subgroup) of order n and exponent e. If e = 2λq,
where q is odd, then

|P(G)| = 16nq.

Proof. By Dedekind’s theorem ([Huppert, 1967, III,7.12]), G is the direct
product

G = A×Q8×B

of the group of quaternions Q8 of order 8, an abelian group A of odd order and
an abelian group B, where exp B is equal to either 1 or 2. Clearly, the exponent
of A must be equal to q. The center of Q8 has index 4 in Q8, so the center of G

has index 4 in G. By Corollary 1.14, λ(Q8×B) = exp(Q8×B) = 4, and by (1.4),
λ(G) = λ(Q8×B) · λ(A) = 4q. As a consequence of (1.3),

|P(G)| = n · 4q · 4 = 16nq.

Let G be a nilpotent group of class 2 and p ∈ P(G). Then of course, the
function p0 := p− p ◦ 0 is a zero-symmetric polynomial function. It induces a zero-
symmetric polynomial function pG′

0 on G/G′, where pG′

0 (g + G′) := p0(g) + G′.
Since G/G′ is abelian, pG′

0 is induced by a polynomial of the form kx, where
0 ≤ k < exp(G/G′). The function q defined by q(g) := p0(g) − kg is polynomial
and maps G into G′. It is induced by a polynomial of the form lx + [x, h], where
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0 ≤ l < λ(G) and h ∈ G. Since q maps G into G′, the exponent of G/G′ must
divide l.

Immediately, we find

q(g + c) = l(g + c) + [g + c, h] = lg + [g, h] = q(g),

for all g ∈ G, c ∈ G′, since by Lemma 1.11, the exponent of G′ divides the exponent
of G/G′. So q is constant on the cosets of G′ in G. This gives an upper bound for
|P(G)|, namely |G| · exp(G/G′) · |G′|[G:G′]. As a consequence,

λ(G) ≤ exp(G/G′)
[G : Z(G)]

· |G′|[G:G′].(1.5)

Assume that p > 2 or exp G′ < exp G/G′. Then we observe that by
Lemma 1.11,

q(x+ y) = l(x+ y) + [x+ y, h]

= lx+ [x, h] + ly + [y, h]−
(
l

2

)
[x, y] = q(x) + q(y).

So q is a homomorphism from G into G′. Again we get an upper bound from this
observation: |P(G)| ≤ |G| · exp(G/G′) · |hom(G,G′)|. And for the length of G,

λ(G) ≤ exp(G/G′)
[G : Z(G)]

· |hom(G,G′)|.(1.6)

2.4. Bounds for the order of π.

So far, we have tried to find bounds for λ(G). If we want to check if a certain
number k is the length of a group, we have to check, whether kx = [x, π], for some
π ∈ G, and that there is no smaller such number. Of course, elements in the same
coset modulo the center of the group behave identically. The following proposition
gives bounds for the order of such an element π.

1.16. Proposition. Let G be a p-group of nilpotency class 2, exp G = pn and
m ∈ N, π ∈ G such that pmx = [x, π] for all x ∈ G. Then the order of π is bounded
by

pn−m ≤ ord π ≤ pm.

Proof. We see immediately that pmπ = [π, π] = 0.
The second inequality can be seen as follows: In a p-group of exponent pn there
exists an element e of order pn. Linearity of the commutator operation gives
[e, pn−m−1π] = pn−m−1[e, π] = pn−1e 6= 0, so in particular pn−m−1π 6= 0.
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2.5. Presentations and generators.

Suppose that we have a presentation of a nilpotent group of class 2. Is it possible
to determine the length of the group from this presentation? Or alternatively, given
a set of generators of a nilpotent group of class 2. Is it possible to determine the
length? We show that we have to consider the equation kx = [x, π] only for the
generators of the group.

1.17. Proposition. Let G be a nilpotent group of class 2 and generated by a
and b. Then for any fixed k and π the following are equivalent:

1.
(
k
2

)
[a, b] = 0 and kx = [x, π] holds for x ∈ {a, b}.

2. kx = [x, π] holds for all x ∈ G.

Proof. Let G be generated by a and b.

• 1 =⇒ 2: From the elementary properties of the commutator in nilpotent
groups of class 2 it follows that if
y = α1a+ β1b+ · · ·+ αsa+ βsb, then

[a, y] = [a, (
s∑
i=1

αi)a+ (
s∑
i=1

βi)b]

= [a, (
s∑
i=1

βi)b]

= γ[a, b],

for a suitable number γ. In particular, the assumptions imply
(
k
2

)
[a, y] = 0.

Let x be a word over {a, b}. Now we use induction on the length of x. If
x = a+ y, then

kx = k(a+ y) = ka+ ky −
(
k

2

)
[a, y]

= [a, π] + [y, π] = [a+ y, π] = [x, π].

For x = b+ y the proof is analogous.
• 2 =⇒ 1: If kx = [x, π] does not hold for x ∈ {a, b} then 2 clearly does

not hold. So suppose that kx = [x, π] holds for x ∈ {a, b}, but
(
k
2

)
[a, b] 6= 0.

Since k(a+ b) = ka+ kb ⇐⇒
(
k
2

)
[a, b] = 0 (use [Huppert, 1967, III,1.3)]) it

follows that k(a+b) 6= ka+kb. But [a+b, π] = [a, π]+[b, π], a contradiction.

The condition
(
k
2

)
[a, b] = 0 is inconvenient. We show now that we can drop it

easily.
Let G be a p-group, pa = exp G′, pb = exp(G/G′) and pe = exp G. By

Lemma 1.11, a ≤ b ≤ e. As a consequence, e
2 ≥ a.
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So for p > 2, taking k a power of p and at least p
e
2 (as Proposition 1.13

suggests), we get
(
k
2

)
[a, b] = k−1

2 (k[a, b]) = 0 for all a, b ∈ G, and hence need not
check it.

For p = 2 and odd e, we have to choose k a power of 2 and (by Proposition 1.13)
at least 2

e+1
2 , whence

(
k
2

)
[a, b] = (k − 1)q(2

e−1
2 [a, b]) (for some q ∈ N). Since

2
e−1

2 [a, b] = 0 ⇐⇒ 2
e
2 [a, b] = 0, we are happy.

For p = 2 and even e, we have to choose k a power of 2 and at least 2
e+1

2 , which
in this case is at least 2

e
2 +1. So,

(
k
2

)
[a, b] = (k− 1)q(2

e
2 [a, b]) (for some q ∈ N), and

2
e
2 [a, b] = 0.

We formulate these results as a theorem:

1.18. Theorem. Let G be a nilpotent group of class 2 and generated by a and
b. If k fulfills the conditions for λ(G) in Proposition 1.13, then for any π the
following are equivalent:

1. kx = [x, π] holds for x ∈ {a, b}.
2. kx = [x, π] holds for all x ∈ G.

Proposition 1.17 and Theorem 1.18 can be generalized to finitely many gener-
ators:

1.19. Corollary. Let G = 〈g1, . . . , gr〉 be a p-group of nilpotency class 2.
If k fulfills the conditions for λ(G) in Proposition 1.13, then for fixed π ∈ G the
following are equivalent:

1. kx = [x, π] holds for x ∈ {g1, . . . , gr}.
2. kx = [x, π] holds for all x ∈ G.

2.6. Minimal examples of class 2 nilpotent p-groups.

In a p-group G of exponent pn, the length λ(G) is always a power of p between
p
n(+1)

2 and pn. We will now give examples of p-groups for which the lower bound is
sharp. More precisely, for every prime power q, which is not equal to a prime, the
square of a prime or a power of 8, we will give an example of such a group of order
q, for which the lower bound is sharp.

1.20. Proposition. For every prime p and every l ≥ 1, the group

G = 〈a, b; p2l+1a, plb, [a, b] = pl+1a〉

is a semi-direct product of Zp2l+1 with Zpl of order p3l+1 and exponent p2l+1. This
group is nilpotent of class 2 and λ(G) = pl+1.

Proof. Groups of this kind are described in [Huppert, 1967, Chapter III]. So
size and exponent of G are well-known. The nilpotency class of G is 2. This can
be demonstrated as follows: the commutator [a, b] = pl+1a has to commute with
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both a and b; of course it commutes with a. Furthermore [a, b] + b = pl+1a + b =
b+pl+1(1+pl+1)a, so we have to show that pl+1a = pl+1(1+pl+1)a, or equivalently
pl+1(1 + pl+1) ≡ pl+1 mod p2l+1, which can be verified immediately expanding
the expression on the left. By Proposition 1.13, the length λ(G) is greater or
equal to pl+1. In fact it is equal to pl+1, which can be verified setting π := b in
Proposition 1.17.

The following examples of size p3l+2 and p3l look quite similar just as the proofs
of the corresponding propositions, which are omitted for this reason.

1.21. Proposition. For every prime p and every l ≥ 1, the group

G = 〈a, b; p2l+2a, plb, [a, b] = pl+2a〉

is a semi-direct product of Zp2l+2 with Zpl of order p3l+2 and exponent p2l+2. This
group is nilpotent of class 2 and λ(G) = pl+2.

1.22. Proposition. For every odd prime p and every l ≥ 1, the group

G = 〈a, b; p2la, plb, [a, b] = pla〉

is a semi-direct product of Zp2l with Zpl of order p3l and exponent p2l. This group
is nilpotent of class 2 and λ(G) = pl.

2.7. Class 2 nilpotent p-groups of order at most p4.

For all nilpotent groups G of class 2 and order pn (1 ≤ n ≤ 4) we list the
numbers λ(G) and the resulting sizes of P(G). From the discussion after (1.3)
it is clear that the number λ(G) contains the information needed to compute the
number of polynomial functions.

2.7.1. p and p2. All these groups are abelian.

2.7.2. p3. The center must be of order p in this case, since it has to be
nontrivial in a p-group and the quotient G/Z(G) must be noncyclic in a non-abelian
group.

p = 2: The non-abelian groups of order 8 are the dihedral group D8 and the
quaternion group Q8. Both are nilpotent of class 2 and have exponent 4
(groups of exponent 2 are abelian, p-groups of exponent equal to their order
are cyclic), thus by Corollary 1.14, λ(G) = exp G = 4.

|P(D8)| = |P(Q8)| = 27

p > 2: For p > 2, there are two non-abelian non-isomorphic groups of order
p3 (see [Huppert, 1967, Chapter III]). One, P 3

1 , has exponent p and hence
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λ(P 3
1 ) = p. The other one is the group P 3

2 = 〈a, b; p2a, pb, [a, b] = pa〉.
Taking π = b, we find λ(P 3

2 ) = p.

|P(P 3
1 )| = |P(P 3

2 )| = p6

2.7.3. p4.

The center of each of these groups is nontrivial and has order at most p2, since
the quotient by the center has to be noncyclic, whence of order greater or equal to
p2. We shall show that the center of each has order at least p2.

p = 2: There are 6 class 2 nilpotent groups of order 16, namely the groups
16/6, 16/7, 16/8, 16/9, 16/10, and 16/11 in Thomas and Wood [1980].
The group 16/11 = 〈a, b; 8a, 2b, [a, b] = 4a〉 has exponent 8, so by Propo-
sition 1.13, λ(16/11) ≥ 4. Taking π = b, we find that λ(16/11) = 4,
using Proposition 1.17. Each of the other five groups has exponent 4, so
λ(G) = exp G = 4, by Corollary 1.14.

|P(16/6)| = |P(16/7)| = |P(16/8)| = |P(16/9)| =

= |P(16/10)| = |P(16/11)| = 28
(1.7)

p > 3: For p > 3 there are 10 non-isomorphic non-abelian groups of order p4

(see [Huppert, 1967, 12.6]). The remarks before [Huppert, 1967, III,14.3] say
that the groups (9), (10), (12), and (13) are nilpotent of (maximal) class 3.
So the six groups (6), (7), (8), (11), (14), and (15) in the list are nilpotent
of class 2.

(6) The group P 4
6 = 〈a, b; p3a, pb, [a, b] = p2a〉 has exponent p3. By Propo-

sition 1.13, λ(P 4
6 ) ≥ p2. Choosing π = b, we find that λ(P 4

6 ) = p2.
Furthermore, pa ∈ Z(P 4

6 ), so |Z(P 4
6 )| ≥ p2.

|P(P 4
6 )| = p8

(7) For the group P 4
7 = 〈a, b; p2a, p2b, [a, b] = pa〉, we have p ≤ λ(P 4

7 ) ≤
expP 4

7 = p2. That λ(P 4
7 ) 6= p can be seen as follows: Suppose that

there is a π ∈ G, such that px = [x, π] for all x ∈ P 4
7 . Every a

occurring in π produces a power of a in [b, π], so the number of a’s in
π must be divisible by p2. So [b, π] = 0 6= pb. Furthermore, pa and pb
generate a subgroup of Z(P 4

7 ) of order p2.

|P(P 4
7 )| = p8

(8) For the group
P 4

8 = 〈a, b, c; pa, pb, p2c, [a, b] = −pc, [a, c], [b, c]〉, we have p ≤ λ(P 4
8 ) ≤

expG = p2. Obviously, c is in the center of the group (it commutes
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with every generator), so [c, π] = 0 for all π ∈ P 4
8 , but pc 6= 0. So

λ(P 4
8 ) = p2. Since c ∈ Z(P 4

8 ), the center of P 4
8 has order p2.

|P(P 4
8 )| = p8

(11) The direct product of Zp with the non-abelian group of order p3 and
exponent p has exponent p, so λ(P 4

11) = p. Its center is isomorphic to
(Zp)2.

|P(P 4
11)| = p7

(14) This is the group P 4
14 = G × Zp, where G is the only group of order

p3, where λ(G) = p < exp G. So λ(P 4
14) = lcm(p, p) = p, by (1.4).

The center of P 4
14 is isomorphic to (Zp)2.

|P(P 4
14)| = p7

(15) The group P 4
15 = 〈a, b, c; p2a, pb, pc, [a, b] = −c, [a, c], [b, c]〉 has

λ(P 4
15) = expP 4

15 = p2. λ(P 4
15) = p is not possible: Since a com-

mutes with a and c, we would have pa = [a, π] = [a, ib] = −ic. But
−ic 6= pa, because both c and pa have order p and so −ic = pa would
imply |P 4

15| < p4. The center has size p2, since pa and c generate a
subgroup of Z(P 4

15) of order p2.

|P(P 4
15)| = p8

p = 3: For p = 3, a complete list of all groups can be found in [Huppert, 1967,
Chapter III, remarks before Definition 14.3]. This list differs from the one
for p > 3 only in the group (13), which we did not have to consider. This
group is replaced by another group of nilpotency class 3. Thus, the above
results also hold for p = 3.

3. A possible generalization: nilpotent groups of class 3

For nilpotent groups of class 1 or 2, nice term representations for polynomial
functions on these groups are known. For a class of nilpotent groups of class 3
fulfilling a specific property, a generalization of this presentation can be obtained.

3.1. Some elementary results.

From now on, [[A,B], C] is abbreviated by [A,B,C]. The following results are
presented in Huppert [1967], and in more detail in Hall [1969].
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1.23. Lemma. For all elements of an arbitrary group G the following holds:

i. [a, b] = −[b, a]
ii. [a, b+ c] = [a, b] + [a, c] + [a, b, c]
iii. [a+ b, c] = [a, c] + [a, c, b] + [b, c]
iv. [a+ b, c+ d] = [a, c] + [a, c, b] + [b, c] + [a, d] + [a, d, b] + [b, d] + [a+ b, c, d]
v. −[a, b] = [a,−b] + [a, b,−b] and −[a, b] = [a, b,−a] + [−a, b]

Proof. i. - iii. see Huppert [1967]
iv. and v. are consequences of ii. and iii.

3.2. Polynomial functions on nilpotent groups of class 3.

1.24. Lemma. If G is nilpotent of class 3, then for all x, a, b, c ∈ G

[x, a, c] + [x, b, c] = [x, a+ b, c]

Proof. By Lemma 1.23

[x, a, c] + [x, b, c] = [[x, a], c] + [[x, b], c]

= [[x, a] + [x, b], c]− [[x, a], c, [x, b]]

= [[x, a+ b]− [x, a, b], c]

= [[x, a+ b] + [a, x, b], c]

= [x, a+ b, c] + [[a, x, b], c]

= [x, a+ b, c]

1.25. Proposition. If G is nilpotent of class 3 and satisfies

∀ a, b, c, d ∈ G ∃ e, f ∈ G ∀x ∈ G [x, a, b] + [x, c, d] = [x, e, f ],(CL)

then every polynomial function has a term representation of the form

p = a+ kx+ [x, b] + [x, c, d] + [x, e, x]

for some a, b, c, d, e ∈ G, k ∈ N.

Proof. The idea is to transform a polynomial

p = g0 + x+ g1 + x+ · · ·+ x+ gl

into a polynomial of the form

a+ x+ [x, b] + [x, c, d] + [x, e, x].

We will proceed towards the desired form in 4 steps.
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1. x can change place with any group element producing a commutator. So we
can transform p into

p = g + [x, a0] + x+ [x, a1] + x+ · · ·+ x+ [x, ak]

for some g, a0, . . . , ak ∈ G and a suitable k ∈ N.
2. Now we start the same thing again:

[x, a] + x = x+ [x, a] + [x, a, x]︸ ︷︷ ︸
∗

Now ∗ commutes with everything and can be brought to the right hand
side. As a consequence of the fact that G is nilpotent of class 3 it holds
[x, a] + [x, b] = [x, a+ b] + [x, a, b]︸ ︷︷ ︸

∗∗

, and ∗∗ can again be brought to the right

hand side.
3. The result we get is of the form

p = g + kx+ [x, h] + [x, c0, d0] + · · ·+ [x, cr, dr] +

+ [x, e0, x] + · · ·+ [x, es, x]

where g, c0, . . . , cr, d0, . . . , dr, e0, . . . , es are from G and k, r, s ∈ N.
4. What remains to show is, that sums of expressions of the form ∗ and ∗∗ are

again of one of these forms.
∗. By Lemma 1.24, [x, a, x] + [x, b, x] = [x, a+ b, x].
∗∗. G satisfies (CL).

3.3. A sufficient condition for (CL).
Lemma 1.24 shows that in a class 3 nilpotent group with (CL) the operator

[., ., .] is “linear” in all three places.

1.26. Proposition. Let again G be a nilpotent group of class 3 and let ∼ be
the relation a ∼ b :⇐⇒ ∀c ∈ G′ [c, a] = [c, b]. Then ∼ is a congruence relation. If
G/∼ is cyclic then G satisfies (CL).

Proof. That ∼ is a congruence follows again from the fact that [., ., .] is linear
in all three places. Let a, b, c, d be arbitrary, but fixed elements of G. We have to
show that there exist elements e and f of G, s.t. for all x ∈ G:

[x, a, b] + [x, c, d] = [x, e, f ].

• If b ∼ 0 then [x, a, b] = [x, a, 0] = 0 and we can choose e = c and f = d,
analogously we get e = a and f = b for c ∼ 0.
• If b ∼ d then [x, a, b] = [x, a, d], since [x, a] ∈ G′. So [x, a, b] + [x, c, d] =

[x, a, d] + [x, c, d] = [x, a+ c, d], by Lemma 1.24.



18 Polynomial functions on groups

• Suppose b 6∼ d. Let g be the preimage of a generator of G/∼ with re-
spect to the natural epimorphism from G to G/∼. Then there exist nat-
ural numbers kb and kd, such that b ∼ kbg and d ∼ kdg. Now [x, a, b] =
[x, a, kbg] = kb[x, a, g] = [x, kba, g] and similarly [x, c, d] = [x, kdc, g]. So
[x, a, b] + [x, c, d] = [x, kba+ kdc, g].

1.27. Remark.

• If G is not nilpotent of class ≤ 3, ∼ need not be a congruence.
• The kernel of this congruence is the centralizer of G′ in G.
• By [Huppert, 1967, III,2.11] it holds [G′,G′] ≤ K4(G) = {0}. Hence

G′ ≤ ker ∼. So G/∼ is abelian.

3.4. Generalization.

Every abelian group is the direct product of cyclic groups. Let ∆(G) be the
smallest natural number d, such that G/∼ is a direct product of d cyclic groups.
With this notation we get the following simple corollary.

1.28. Corollary. If G is a class 3 nilpotent group then every polynomial
function over G has a term representation of the form

p = g0 + kx+ [x, g1] + [x, g2, x] + [x, c1, d1] + . . . [x, c∆(G), d∆(G)],(1.8)

where k ∈ N, g0, g1, g2, c1, . . . , c∆(G), d1, . . . , d∆(G) ∈ G.

3.5. Examples (p-groups).

order cl. 3 nilp. groups ∆(G) = 1 ∆(G) = 2 ∆(G) = 3

24 3 3 - -
25 15 15 - -
26 114 98 16 -
27 1137 803 290 44

34 4 4 - -
35 26 19 7 -
36 148 134 - -

1.29. Corollary. Let G be a nilpotent group of class 3. Then

|P(G)| ≤ |G| · λ(G) ·
(

[G : Z(G)] · [G : G′]
)2+∆(G)

4. Direct products

In this section we prove that every polynomial function on a direct product of
groups can be decomposed into polynomial functions on the direct factors. Fur-
thermore we characterize the direct products where the converse holds.
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1.30. Proposition. Let G and H be two arbitrary groups. For every zero-
symmetric polynomial function p on G × H and for all g ∈ G and h ∈ H, the
following holds:

p((g, h)) = p((g, 0)) + p((0, h))(1.9)

The function pG : G → G, g 7→ g′, where p((g, 0)) = (g′, 0), is a polynomial
function on G. The function pH : H → H, h 7→ h′, where p((0, h)) = (0, h′), is a
polynomial function on H.

Proof. We can write p in the form (x, y) 7→ (a0, b0) + (x, y) + · · · + (x, y) +
(am, bm) for suitable elements ai ∈ G, bi ∈ H, 0 ≤ i ≤ m ∈ N0. We start with

p((g, h)) = (a0, b0) + (g, h) + · · ·+ (g, h) + (am, bm)

= (a0 + g + · · ·+ g + am, b0 + h+ · · ·+ h+ bm).

p is zero-symmetric, which gives us

(0, 0) = p((0, 0)) = (a0 + a1 · · ·+ am, b0 + b1 + · · ·+ bm),

which allows us to write

p((g, 0)) = (a0 + g + · · ·+ g + am, 0) and

p((0, h)) = (0, b0 + h+ · · ·+ h+ bm)

Consequently,

p((g, h)) = p((g, 0)) + p((0, h)).

1.31. Corollary. Let G and H be two arbitrary groups. For every polynomial
function p on G×H there exist polynomial functions pG on G and pH on H such
that for all g ∈ G and h ∈ H, the following holds:

p((g, h)) = (pG(g), pH(h))(1.10)

The converse holds if and only if the lengths of G and H are coprime. I.e.,
in this case for every pair of functions pG ∈ P(G) and pH ∈ P(H) the function
(g, h) 7→ (pG(g), pH(h)) is a polynomial function. We show that this is the case, if
and only if every normal subgroup of G ×H is G-H-decomposable. This proves
Conjecture 2.10 in Pilz [1980]. We make use of the following theorem which char-
acterizes the prime factors of λ(G).
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1.32. Theorem ([Scott, 1969, Theorem 3.4]). If G is a group and
N0 /N1 / · · · /Nr = G is a chief series of G, then

q | λ(G) ⇐⇒ q |
r−1∏
i=0

σ(Ni+1/Ni),

where σ(Ni+1/Ni) =

[Ni+1 : Ni] if Ni+1/Ni ⊆ Z(G/Ni),

1 otherwise
.

1.33. Theorem. Let G and H be two groups. Then the following are equiva-
lent:

1. P(G×H) ∼= P(G)×P(H)
2. (λ(G), λ(H)) = 1
3. every normal subgroup of G×H is G-H-decomposable.

Proof.

1⇔ 2: This is a consequence of [Scott, 1969, Theorem 2.3].
2⇔ 3: By Theorem 0.13 and Theorem 1.32, it suffices to show that for every prime

number p

∃I,J E G, I ≺ J : p | [J : I] & J/I ≤ Z(G/I)

⇐⇒

∃J E G : p | [J : [G,J]].

⇒: By our assumptions, there exist I,J E G, I ≺ J, such that
p | [J : I] and J/I ≤ Z(G/I). Hence [G,J] ≤ I and consequently,
p | [J : I] | [J : [G,J]].

⇐: Let us assume that there is a normal subgroup J E G, such that
p | [J : [G,J]]. Clearly, [G,K] ≤ [G,J] for every K ≤ J. Let
K0, . . . ,Ks be such that [G,J] = K0 ≺ K1 ≺ · · · ≺ Ks = J. Since
p | [J : [G,J]], there exists an 1 ≤ i ≤ s, such that p | [Ki,Ki−1]. We
have [G,Ki] ≤ [G,J] ≤ Ki−1, so Ki/Ki−1 ≤ Z(G/Ki−1).

5. Other classes of groups

We gather some of the results on polynomial near rings.

1.34. Theorem.

a. Abelian groups ((1.3)): For an arbitrary finite abelian group A,

|P(A)| = |A| · exp A.
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b. Non abelian simple groups (Fröhlich [1958]): If G is a non abelian
simple group, then

|P(G)| = |G||G|.

c. Dihedral groups (Malone and Lyons [1972, 1973]): For n ∈ N,

|P(D2n)| =

4n4 if n is odd,
1
2n

4 if n is even.

d. Generalized quaternion groups (Malone [1973]): For every n ∈ N,

|P(Q2n)| = 24n−5.

e. Symmetric groups: (Lausch and Nöbauer [1976]; Fong and Mel-

drum [1981b])]

For n > 4,

|P(Sn)| = 4
(
n!
2

)n!

.

f. S3 and S4 (Fong [1979]; Fong and Meldrum [1981a]):

|P(S3)| = 2234 and

|P(S4)| = 23834.

g. Dicyclic groups (Lyons and Mason [1991]): Let n ∈ N. Then

|P(Q4n)| =

16n4 if n is odd,

8n4 if n is even.

h. Generalized dihedral groups (Lyons and Mason [1991]):

Let A be an abelian group. Assume that A is a direct product of d cyclic
groups of even order and some groups of odd order. Then d is well-defined
and

|P(Dih(A))| =

4|P(A)|2 if |A| is odd,
1
2d
|P(A)|2 if |A| is even.

i. Fong and Kaarli [1995]: Let G be a finite group with a unique minimal
normal subgroup H, and H the only nonzero normal subgroup with nonzero
centralizer in G. Then

|P(G)| = |P(G/H)| · |H|m(n+1),
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where m = |G/H| and n is the dimension of H over End HI(G). In par-
ticular, if G is a non-abelian group of order pq, where p < q are two prime
numbers, then the following holds:

|P(G)| = (pqp)2

1.35. Remark. The result in Lyons and Mason [1991] for abelian groups A of
odd order was already proved in Clay and Grainger [1989].

1.36. Proposition. Let G be a group, I,J E G, and N ≤M(G). We define
the Noetherian quotient

(I,J)N := {n ∈ N | n(J) ⊆ I}

With this notation

|P(G)| = |P(G/N)| · |(N : G)P(G)|(1.11)

Proof. Define

Φ : P(G)→ P(G/N)

p 7→ pN : G/N → G/N,

where pN maps g + N to p(g) + N. The mapping Φ is well-defined and a ho-
momorphism. Its kernel is (N : G)P(G), so this is an ideal of P(G). It is sur-
jective, since for an arbitrary polynomial function q ∈ P(G/N), q is of the form
x 7→ a0 + N + x + · · · + an−1 + N + x + an + N. The function p which maps x
to a0 + x + · · · + an−1 + x + an fulfills pN = q. The equation follows from the
homomorphism theorem P(G)/ ker(Φ) ∼= Im(Φ).

6. Generating polynomial near rings additively

A set of generating elements of a near ring uniquely determines the near ring.
In practice it is very difficult even to decide membership in a near ring which is given
by a set of generators.2 If the elements generate the near ring purely additively, the
problem is by far easier. A group given by a set of generators is “almost known”.
Efficient algorithms are described e.g. in Sims [1970] for permutation groups and
in Sims [1994] for finitely presented, in particular for polycyclic groups.

Let EG be a set of additive generators of G. The near ring P(G) of polynomial
functions on G is generated additively by the constant functions f : x 7→ e, for
e ∈ EG and id : x 7→ x.

A list of numbers of zero-symmetric polynomial functions on all groups of order
at most 100 – composed by a computer program – has been published in Saad et al.
[1997].

2For more details see e.g. Scott [1979]; Meldrum [1985]; Clay [1992].
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7. Storing polynomial functions

Let p be a polynomial function on the group G. If p(0) = a 6= 0, then
p0 : x 7→ p(x)− a is also a polynomial function and p0(0) = 0. From now on let p
be zero-symmetric, i.e. p(0) = 0.

If G is abelian, it contains an element e of order exp G. Let k be the least
natural number such that p(e) = ke. Then k is the length of p. It suffices to store
the length k.

If G is nilpotent of class 2, p is induced by a polynomial of the form kx+[x, π].
Clearly, if k and π are known, it is sufficient to store these. It is rather difficult
to find out k and π in practice. If p > 2 or exp G′ < exp(G/G′), we can choose
another representation, which is easier to determine: the quotient G/G′ is abelian,
so it is possible to find the length of the polynomial function p′ : x+G′ 7→ p(x)+G′

on G/G′. In this way we find the length of p modulo the exponent of G/G′. The
zero-symmetric polynomial function p behaves almost like a homomorphism:

p(x+ y) = p(x) + p(y)−
(
k

2

)
[x, y]

Since exp G′ ≤ exp(G/G′) and equality may only hold if p > 2, it suffices to store
k modulo exp G′ and the values of p for a set of generators of G.

8. Is the function polynomial?

A general method to test algorithmically, if f is a polynomial function is to
generate P(G) and test if f ∈ P(G) (see Section 6).

The method used for storing a polynomial function can also be used to test
whether a given function f on a class 2 nilpotent group G is polynomial: first we
check whether it is compatible with G′. If so, we check whether the induced function
on the abelian quotient G/G′ is polynomial. As a side-result we get the length of
f modulo exp G. Now we can test if f is polynomial. This test is analogous to the
test if f is a homomorphism.
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CHAPTER 2

Compatible functions on groups

Polynomial functions have the nice property that they can be written down
nicely, by a polynomial. Especially nice are groups, where every function is a
polynomial function. These are called polynomially complete. It turns out that
only very “few” groups are polynomially complete (c.f. Chapter 3). One reason
is, that polynomial functions are compatible, i.e., for every normal subgroup N, if
x and y are elements of the same coset modulo N, then their images under any
polynomial function will be in the same coset. Functions fulfilling this property are
called compatible. So, if the group we consider is not simple, it is not polynomially
complete. Or, with James I,

No Bishop, no King.

We might weaken our concept of completeness to so called affine completeness. We
demand that every compatible function is polynomial.

We shall only consider the case of unary functions on groups.

1. Definitions and basic results

2.1. Definition. Let G be a group and ϕ a function from G to G. Let N be
a normal subgroup of G. The function ϕ is called compatible with N, iff the
following implication holds for all x, y ∈ G:

x− y ∈ N =⇒ ϕ(x)− ϕ(y) ∈ N.

The function ϕ is called compatible, iff it is compatible with every normal sub-
group of G.

The following proposition shows that the set of compatible functions on a group
is closed under composition and point-wise addition. Like polynomial functions,
also compatible functions form a sub-near ring of the near ring of all self-maps on
a group.

2.2. Proposition. Let ϕ and ψ be compatible functions on a group G. Then
ϕ+ ψ and ϕ ◦ ψ are compatible functions on G, too.
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Proof. Take an arbitrary normal subgroup N of G and two elements x, y ∈ G,
such that x− y ∈ N . Then for a suitable n ∈ N ,

(ϕ+ ψ)(x)− (ϕ+ ψ)(y) = ϕ(x) + ψ(x)− ψ(y)︸ ︷︷ ︸
∈N

−ϕ(y)

= ϕ(x)− ϕ(y)︸ ︷︷ ︸
∈N

+ψ(x)− ψ(y)︸ ︷︷ ︸
∈N

+n

and

x− y ∈ N =⇒ ψ(x)− ψ(y) ∈ N

=⇒ ϕ(ψ(x))− ϕ(ψ(y)) ∈ N.

2.3. Notation. Let C(G) denote the near ring of all compatible functions on
a group G with point-wise addition and composition.

Polynomial functions are compatible: the near ring of polynomial functions is
generated by the identity function and all constant functions on a group. Clearly,
each of these are compatible. The converse is not true in general, as the group Z3

shows: every function on Z3 is compatible, since Z3 is simple, but only 9 of these
27 functions are polynomial functions. Groups, where every compatible function
is polynomial, are called 1-affine complete. Such groups will be considered in
Chapter 3.

For the following proofs we will be happy to have a few equivalent characteri-
zations of compatibility at hand.

2.4. Proposition. Let G be a group and ϕ : G→ G. Then the following are
equivalent:

1. ∀N E G ∀x, y ∈ G x−y ∈ N =⇒ ϕ(x)−ϕ(y) ∈ N (i.e., ϕ is compatible).
2. ∀x, y ∈ G ϕ(x)− ϕ(y) ∈ [x− y].
3. ∀N E G ∀x ∈ G ∀n ∈ N ϕ(x+ n)− ϕ(x) ∈ N .

Proof. We will prove 1 =⇒ 2 =⇒ 3 =⇒ 1.

1⇒ 2: Let x, y ∈ G. Then x− y ∈ [x− y], so also ϕ(x)− ϕ(y) ∈ [x− y].
2⇒ 3: Let N E G, x ∈ G and n ∈ N . Then ϕ(x+ n)− ϕ(x) ∈ [x+ n− x] =

[n] ⊆ N .
3⇒ 1: Let N E G. Suppose that x, y ∈ G and y − x ∈ N .

Then there is an element n ∈ N , such that y = x + n. Hence
ϕ(y)− ϕ(x) = ϕ(x+ n)− ϕ(x) ∈ N .
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Sometimes we want to express that a function respects a certain normal sub-
group, especially when it comes to generating near rings of compatible functions.

2.5. Notation. Let N be a fixed normal subgroup of G. Then CompN(G)
denotes the near ring of all functions on G compatible with N.

With this notation,

C(G) =
⋂

NEG

CompN(G).(2.1)

The key to a more efficient computation of compatible functions on a group is
the following lemma, which allows us to select a (small) subset of normal subgroups
for the intersection. Moreover, one may understand it as a technical lemma, very
helpful in some of the following proofs.

2.6. Lemma. Let G be a group, I and J two normal subgroups of G. Then the
following inclusions hold

CompI(G) ∩ CompJ(G) ⊆ CompI∩J(G)

CompI(G) ∩ CompJ(G) ⊆ CompI+J(G)

Proof. Let ϕ ∈ CompI(G) ∩ CompJ(G).
Take x, y ∈ G such that x − y ∈ I ∩ J . Then ϕ(x) − ϕ(y) ∈ I and analogously
ϕ(x)− ϕ(y) ∈ J , wherefore ϕ(x)− ϕ(y) ∈ I ∩ J . So ϕ ∈ CompI∩J(G).
For the “+” part, we notice that

ϕ ∈ CompN(G) ⇐⇒ ∀x ∈ G ∀n ∈ N ϕ(x+ n)− ϕ(x) ∈ N.

Consequently, for i ∈ I and j ∈ J ,
ϕ(x+ (i+ j))− ϕ(x) = ϕ((x+ i) + j)− ϕ(x+ i)︸ ︷︷ ︸

∈J

+ϕ(x+ i)− ϕ(x)︸ ︷︷ ︸
∈I

∈ I + J .

A nice characterisation of compatibility in terms of interpolation with polyno-
mial functions is the following.

2.7. Definition. Let N ≤ M(G). The near ring LnN is the near ring of all
functions f : G→ G for which for arbitrary g1, . . . , gn ∈ G there exists a function
p ∈ N such that p(gi) = f(gi) for all 1 ≤ i ≤ n.

2.8. Theorem ([Pilz, 1983, Proposition 7.131]).

C(G) = L2P(G)
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2. Quotients of a group

If G is a simple group, every function on G is polynomial.

2.9. Proposition. Let G be a group, then

G is simple ⇐⇒ C(G) = M(G)

Proof. By definition, every function is compatible with the normal subgroups
{0} and G.

There is a natural way to “project” a polynomial function to a quotient of a
group (c.f. the proof of Proposition1.36), simply project the coefficients. Compatible
functions share this property.

2.10. Definition. Let G be a group and N a normal subgroup of G. Every
right inverse of the natural epimorphism from G onto G/N is called a lifting of
G/N. For a fixed complete set R of coset representatives of N in G, we call the
unique lifting of G/N with range R the R-lifting of G/N .

2.11. Lemma. For ϕ ∈ C(G) and N E G we define

ϕN : G/N → G/N

g + N 7→ ϕ(g) + N

This function is compatible on G/N. The mapping ϕ 7→ ϕN is a near ring
homomorphism from C(G) to C(G/N), its kernel is the Noetherian quotient1

(N : G)C(G) and

|C(G)| ≤ |C(G/N)| · |(N : G)C(G)|

Proof. The function ϕN is well-defined, since for a− b ∈ N , ϕ(a)−ϕ(b) ∈ N ,
so ϕN(a) = ϕ(a) +N = ϕ(b) +N = ϕN(b). Let h be the natural epimorphism from
G onto G/N and I be a normal subgroup of G/N. By the diamond lemma, there is
a normal subgroup Ī of G, such that h(Ī) = I. Suppose that for a, b ∈ G, (a+N)−
(b+N) ∈ I. Then a−b ∈ Ī, whence ϕ(a)−ϕ(b) ∈ Ī and ϕN(a+ N)− ϕN(b+ N) =
ϕ(a)− ϕ(b) + N ∈ I. The mapping ϕ 7→ ϕN is a homomorphism:

(ϕ+ ψ)N(g + N) = (ϕ+ ψ)(g) + N

= ϕN(g + N) + ψN(g + N)

1c.f. Pilz [1983]
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and

ϕN ◦ ψN(g + N) = ϕN(ψ(g) + N)

= ϕ ◦ ψ(g) + N

= (ϕ ◦ ψ)N(g + N).

Its kernel consists of all functions in C(G) with range contained in N.

In Section 4, we will discuss, when this homomorphism ϕ 7→ ϕN is surjective.
We find a different point of view in Theorem 2.12. Given N E G, every

compatible function on G can be built from a compatible function on the quotient
G/N and a function mapping G into N .

2.12. Theorem (Lausch and Nöbauer [1976]). Let G be a finite group, N a
normal subgroup of index s in G. Let R = {r1, . . . , rs} be a complete set of coset
representatives of N in G and λ the R-lifting of G/N. Then for each ϕ ∈ C(G)
and i ∈ {1, . . . , s} there exist ψ ∈ C(G/N) and πi ∈ M(N), such that for all n ∈ N

ϕ(ri + n) = λ ◦ ψ(ri + N) + πi(n).

Proof. Let ϕ ∈ C(G) and ψ = ϕN. We fix an arbitrary 1 ≤ i ≤ s. There
exists an ni ∈ N such that ϕ(ri) = λ◦ψ(ri+N)+ni. Since ϕ maps cosets of N into
cosets of N, there is a function ρi ∈ M(N) such that ϕ(ri+n) = ϕ(ri)+ρi(n). So we
have ϕ(ri+n) = λ◦ψ(ri+N)+ni+ρi(n). We choose πi : n 7→ ni+ρi(n) ∈ M(N).

If the normal subgroup N has the very special property, that every other normal
subgroup of G is either contained in N or contains N, it is possible to characterize
the function mapping G into N, and even to say a little bit more.

2.13. Theorem ([Dorda, 1977, Satz 2]). Let G be a group, N a normal sub-
group of index s which is a member of every chief series of G. With the notation
of Theorem 2.12, we state: For each ϕ ∈ C(G) and i ∈ {1, . . . , s}, there ex-
ist πi ∈ M(N), compatible with all normal subgroups of G contained in N, and
ψ ∈ C(G/N), such that

ϕ(ri + n) = λ ◦ ψ(ri + N) + πi(n).

Conversely, any such function is a compatible function on G.

Proof. By Theorem 2.12, ϕ can be written in the form

ϕ(ri + n) = λ ◦ ψ(ri + N) + πi(n).

It remains to show that each πi is compatible with all normal subgroups of G

contained in N. Let M be a normal subgroup contained in N. Fix an arbitrary
i ∈ {1, . . . , s} and n1, n2 ∈ N with n1 − n2 ∈ M . Then (ri + n1)− (ri + n2) ∈ M
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and ϕ(ri + n1) − ϕ(ri + n2) ∈ M , since ϕ is compatible. From ϕ(ri + n1) =
λ ◦ ψ(ri + N) + πi(n1) and ϕ(ri + n2) = λ ◦ ψ(ri + N) + πi(n2), we see that also
πi(n1)− πi(n2) ∈M .
To show the converse, let ϕ be a function of the above form, M a nontrivial normal
subgroup of G and g, h ∈ G two elements, such that g − h ∈ M . We distinguish
two cases.

1. M ⊇ N : We can find coset representatives rig and rih and ng, nh ∈ N , such
that g = rig + ng and h = rih + nh. Since N ⊆ M , M/N E G/N, and
(modulo M)

ϕ(g) = ϕ(rig + ng)

= λ ◦ ψ(rig + N) + πig (ng)

≡ λ ◦ ψ(g + N) (πig (ng) ∈ N ⊆M)

≡ λ ◦ ψ(h+ N) (g ≡ h and ψ is compatible)

≡ λ ◦ ψ(rih + N) + πih(nh)

= ϕ(h)

2. M ⊆ N : We can find a coset representative ri and elements n ∈ N and
m ∈M such that g = ri + n and h = ri + n+m. Then (modulo M)

ϕ(g) = ϕ(ri + n)

= λ ◦ ψ(ri + N) + πi(n)

≡ λ ◦ ψ(ri + N) + πi(n+m)

= ϕ(h),

because πi is compatible with M.

So finally, ϕ is compatible on G.

We will often refer to the last theorem in the special case where all normal
subgroups of N are normal in G.

2.14. Corollary. Let G be a group, N a normal subgroup of index s that is
a member of every chief series of G. Suppose that every normal subgroup of N

is normal in G. Then with the notation from Theorem 2.12, we state: For each
ϕ ∈ C(G) and i ∈ {1, . . . , s}, there exist ψ ∈ C(G/N) and πi ∈ C(N), such that

ϕ(ri + n) = λ ◦ ψ(ri + N) + πi(n).

Conversely, any such function is a compatible function on G, whence

|C(G)| = |C(G/N)| · |C(N)|[G:N]
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The following result is older than the previous two, which in fact are a later
generalization. I find it convenient to present it as a corollary.

2.15. Corollary (Lausch and Nöbauer [1976]). Let G be a finite group with
unique minimal normal subgroup N. Then every function of the form given in
Theorem 2.12 is compatible.

Proof. The normal subgroup N is part of every composition series of G and
no nontrivial normal subgroup of G is properly contained in N.

The following corollary is useful in following proofs. It says that functions
constructed in the Lausch–Nöbauer-Dorda way are “by construction compatible
with the old normal subgroups”.

2.16. Corollary. Let N E G and ψ be a compatible function on G/N. For
1 ≤ i ≤ n let πi be an arbitrary function from N to N . Then the function

ϕ(ri + n) := λ ◦ ψ(ri + N) + πi(n)

is compatible with all normal subgroups of G containing N.

Proof. Follows from the first part of the proof of Theorem 2.13.

The strong relation between the functions ϕ and ψ in the last theorems and
lemmata can be expressed as simple as

ψ = ϕN

To see this, suppose that for i ∈ {1, . . . , s}, ϕN(ri+N) = rj+N. Since πi ∈ M(N),
ϕ maps ri into the coset rj + N. Hence ψ(ri + N) = rj + N, so ψ = ϕN.

We conclude this section with a small lemma, which will be needed later.

2.17. Lemma. Let M ≤ N be two normal subgroups of the group G, and ϕ a
function on G compatible with M and N. Then

(ϕM)N/M = ϕN

Proof. The function ϕM maps x + M to ϕ(x) + M, so (ϕM)N/M maps
(x+ M) + N/M to ϕ(x) + M + N/M, or equivalently, it maps x+ N to ϕ(x) + N.
So does ϕN.

These few results will suffice to characterize compatible functions on generalized
quaternion groups, symmetric groups, holomorphs of simple abelian groups, certain
dihedral and quaternion groups. Before we have a look at these examples, we are
going to gather a few more results. The existence of a normal subgroup which is
a member of every chief series is a rather restrictive condition. We are now going
to look in which direction we can expand. First we will study direct products.
Afterwards, distributivity will be our main point of interest.
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3. Direct Products of groups

Among the first discoveries in the area of compatible functions has been the
following: every compatible function on a direct product of two groups decomposes
into two compatible functions.

2.18. Lemma (Lausch and Nöbauer [1976]). Let G and H be two groups. For
every compatible function ϕ on G × H, there exist functions ϕG ∈ C(G) and
ϕH ∈ C(H) such that for all g ∈ G and h ∈ H, the following holds:

ϕ((g, h)) = (ϕG(g), ϕH(h))(2.2)

Proof. Choose ϕG := πG ◦ ϕ ◦ eG, where πG is the projection of G×H onto
G and eG is the embedding of G into G×H, and choose ϕH analogously.

Like zero-symmetric polynomial functions, also zero-symmetric compatible
functions on direct products can be decomposed.

2.19. Lemma. Let G and H be two arbitrary groups. For every zero-
symmetric, compatible function ϕ on G × H and for all g ∈ G and h ∈ H, the
following holds:

ϕ((g, h)) = ϕ((g, 0)) + ϕ((0, h))(2.3)

Proof. Let (g, h) be an arbitrary, but fixed element of G × H. Then there
exists a zero-symmetric polynomial function pg,h (depending on g and h) s. t.

ϕ((g, h)) = pg,h((g, h))

and by (1.9),

= pg,h((g, 0)) + pg,h((0, h))

In the same way, we get a zero-symmetric polynomial function pg,0 s. t.

ϕ((g, 0)) = pg,0((g, 0))

Now,

ϕ((g, h))− ϕ((g, 0)) = pg,h((g, 0)) + pg,h((0, h))− pg,0((g, 0))

By Proposition 2.4, ϕ((g, h))− ϕ((g, 0)) ∈ [(0, h)]. Therefore

pg,h((g, 0)) = pg,0((g, 0)) = ϕ((g, 0)).

Interchanging the roles of g and h, we get pg,h((0, h)) = ϕ((0, h)) and finally the
desired equation (2.3).
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It is natural to ask, under which conditions the converse of Lemma 2.18 holds.
In Pilz [1980], a direct product G×H of two groups is called nice, iff every function
ϕ obtained from two compatible functions on G and H like in (2.2) is compatible.
Nice direct products can be nicely characterized.

2.20. Proposition. Let G and H be two groups. Then the following are equiv-
alent:

1. Every normal subgroup of G×H is G-H–decomposable.
2. The direct product G×H is nice.
3. The near rings C(G×H) and C(G)×C(H) are isomorphic.

Proof. The equivalence 2⇔ 3 is clear from the definitions. A proof for 1⇒ 2
can be found in [Pilz, 1980, Proposition 2.8]. It remains to show 2⇒ 1.

Let N E G×H.
Firstly, I := {g | (g, 0) ∈ N} is a normal subgroup of G and

J := {h | (0, h) ∈ N} is a normal subgroup of H, since they are the images of N

under the projections of G×H onto G and H respectively.
Secondly, for every N E G ×H, if for some g ∈ G, h ∈ H, (g, h) ∈ N , then

also (g, 0) ∈ N : suppose (g, h) ∈ N . Let ϕ be the identity function on G, ψ be
the 0-function on H. Both functions are polynomial whence compatible. Since
G ×H is nice, the composed function ξ : (g, h) 7→ (ϕ(g), ψ(h)) is compatible on
G ×H. Now (g, 0) − (0,−h) = (g, h) ∈ N , thus ξ((g, 0)) − ξ((0,−h)) ∈ N . But
ξ((g, 0))− ξ((0,−h)) = (g, 0)− (0, 0) = (g, 0). So N = I× J.

Recall, that by Theorem 1.33, also the near rings P(G×H) and P(G)×P(H)
are isomorphic, if and only if every normal subgroup of G × H is G-H–
decomposable.

Now, we ask, what direct products of groups are nice, or with other words,
where do skew congruences come from. If G and H have coprime order, everything
is behaving nice.

2.21. Theorem (Lausch and Nöbauer [1976]). For any two groups G and H

with (|G|, |H|) = 1, the direct product G×H is nice.

Proof. By Lemma 2.18, every compatible function ϕ on G×H can be written
as ϕ((g, h)) = (ϕG(g), ϕH(h)), where ϕG ∈ C(G) and ϕH ∈ C(H). Every normal
subgroup of G ×H is the direct product of normal subgroups of G and H (since
(|G|, |H|) = 1), hence G-H–decomposable. Now Proposition 2.20 applies.

For quasi-nilpotent groups, the condition in Theorem 2.21 is necessary for nice-
ness:
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2.22. Definition. We call a torsion group G quasi-nilpotent, iff

∀p ∈ P [(∃g ∈ G ord(g) = p) =⇒ (∃N E G ∃h ∈ N/[G,N ] ord(h) = p)]

In English: Whenever G has an element of prime order p, then there is a normal
subgroup N E G such that N/[G,N] has an element of order p.

Nilpotent torsion groups are quasi-nilpotent. The group S3×Z3 is quasi-
nilpotent, yet not nilpotent.

2.23. Corollary ([Miller, 1975, Corollary 3]). If G and H are quasi-
nilpotent groups, then G×H is nice, if and only if (|G|, |H|) = 1.

The next step is to consider direct products, which are “almost nice”, which
means that they only have very few G-H-indecomposable normal subgroups.

2.24. Remark. For d ≥ 2, every compatible function on the group (Zp)d

is polynomial (see Corollary 3.3 in Chapter 3). For every polynomial func-
tion q on (Zp)d, there is a unique integer k ∈ {0, . . . , p − 1} and an element
(c1, . . . , cd) ∈ (Zp)d, such that q is of the form

q : (x1, . . . , xd) 7→ k(x1, . . . , xd) + (c1, . . . , cd)

= (kx1 + c1, . . . , kxd + cd)

=: (q1(x1), . . . , qd(xd)).

Recall, that k is the length of q as defined in Definition 1.8. We observe that the
lengths of q1, . . . , qd and q are equal.

2.25. Lemma. Let G1 and G2 be two groups, N1 E G1 and N2 E G2. Let
G := G1 ×G2 and N := N1 ×N2. Let ϕ be a compatible function on G, and let
ϕ1 and ϕ2 be such that ∀(g1, g2) ∈ G ϕ((g1, g2)) = (ϕ1(g1), ϕ2(g2)). Then

ϕN((g1, g2) + N) = (ϕN1
1 (g1 + N1), ϕN2

2 (g2 + N2))

Proof.

ϕN((g1, g2) + N) = ϕ((g1, g2)) + N

= (ϕ1(g1), ϕ2(g2)) + N

= (ϕ1(g1) + N1, ϕ2(g2) + N2)

= (ϕN1
1 (g1 + N1), ϕN2

2 (g2 + N2))

As we already know from Theorem 2.21, |C(G × Zp)| = pp · |C(G)|, if p does
not divide |G|. Here is more:
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2.26. Lemma. Let G be a group with a unique normal subgroup N of index 2.
If for every proper normal subgroup I of G, |I/[G, I]| is odd, then for d ≥ 1,

|C(G× (Z2)d)| = 2d · |C(G)| = 1
2
· |C(G)| · |C(Z2)d)|.

Proof. Let N be the normal subgroup of index 2 in G and ϕ ∈ C(G× (Z2)d).
Define N0 := N × {0}d E G × (Z2)d. There exist functions ϕ1 ∈ C(G) and
ϕ2 ∈ C((Z2)d) (by Theorem 2.36 or later by Corollary 3.3, C((Z2)d) = P((Z2)d)),
such that for all (g, z) ∈ G× (Z2)d, ϕ((g, z)) = (ϕ1(g), ϕ2(z)). The quotient G/N

is abelian of order 2, hence the quotient H := (G× (Z2)d)/N0 is isomorphic to the
elementary abelian group (Z2)d+1. By Lemma 2.25, the function ϕN0 fulfills

ϕN0((g, z) + N0) = (ϕN
1 (g + N), ϕ{0}

d

2 (z + {0}d)).

Since (Z2)d is 1-affine complete, ϕ{0}
d

2 is polynomial. The function ϕN
1 is also

polynomial: combining Lemmata 2.17 and 2.25, we may understand this func-
tion as the first coordinate of the function ϕN0 , which is polynomial, because
(G× (Z2)d)/N0

∼= (Z2)d+1 is 1-affine complete. Hence, its first coordinate func-
tion must also be polynomial. So by Remark 2.24, ϕN

1 and ϕ
{0}d
2 have the same

length, and ϕN
1 determines ϕ{0}

d

2 = ϕ2 up to a constant. Hence there are at most
2d · |C(G)| compatible functions on G× (Z2)d.

The quotient G/N is 1-affine complete. It remains to show that every function
of the form (ϕ1, ϕ2), where ϕ2 and ϕN

1 have the same length, is compatible. By
Theorem 0.13, the normal subgroups of G×(Z2)d are exactly the direct products of
normal subgroups of G with normal subgroups of (Z2)d, and the normal subgroups
between G × (Z2)d and N0. (Remember that G × (Z2)d/N0

∼= (Z2)d+1.) Let M

be a normal subgroup of G× (Z2)d.

• If M is one of the normal subgroups between G × (Z2)d and N0, then by
our construction, Corollary 2.16 applies and ϕ is compatible with M.
• M = M1×M2 for a normal subgroup M1 of G and a normal subgroup M2

of (Z2)d: Let (g, z)− (g′, z′) ∈M , i.e., g − g′ ∈M1 and z − z′ ∈M2. Then

ϕ((g, z))− ϕ((g′, z′)) = (ϕ1(g)− ϕ1(g′), ϕ2(z)− ϕ2(z′))

Since ϕ1 is compatible on G and ϕ2 is compatible on (Z2)d, this difference
is in M .

4. Liftings

In this section, we discuss, under which circumstances every compatible func-
tion ψ on a quotient G/N can be lifted to G, i.e., when there is a compatible
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function ϕ on G, such that ϕN = ψ. In this case the number of compatible func-
tions on G can be computed as

|C(G)| = |C(G/N)| · |(N : G)C(G)|.

2.27. Definition. Let G be a group. A normal subgroup N of G admits

lifting of compatible functions, iff every compatible function ψ on the quotient
G/N can be lifted to G, i.e.,

∀ψ ∈ C(G/N) ∃ϕ ∈ C(G) ϕN = ψ.

4.1. N is the unique minimal normal subgroup of G.

If N is the unique minimal normal subgroup of G, then, by Corollary 2.15,
it admits lifting of compatible functions: let π be the natural epimorphism from
G to G/N and λ a lifting of G/N. Then for ψ ∈ C(G/N), we may choose
ϕ := λ ◦ ψ ◦ π ∈ C(G) to get ϕN = ψ.

4.2. 1-affine complete quotients.

2.28. Lemma. If G/N is 1-affine complete, then N admits lifting of compatible
functions.

Proof. Every compatible function on the 1-affine complete group G/N is
polynomial, so by Lemma 1.36, it can can be lifted to a polynomial function on
G.

4.3. Noetherian quotients.

If every compatible function on a quotient G/A can be lifted, we can assemble
every compatible function on G from a compatible function on the quotient and
a compatible function on G mapping G into A. We study now the Noetherian
quotients (A : G)C(G). The sum K of all normal subgroups not containing the
minimal normal subgroup A turns out to play an important role.

2.29. Theorem. Let G be a group, A a minimal normal subgroup of G. Define
K to be the sum of all normal subgroups having trivial intersection with A. Then
the functions in (A : G)C(G) are precisely the functions which are constant on the
cosets of K in G.

If A is a minimal normal subgroup, then A admits lifting of compatible func-
tions, if and only if

|C(G)| = |C(G/A)| · |A|[G:K].

Proof. Let ϕ be a compatible function with ϕ(G) ⊆ A. Let us consider a
normal subgroup N of G, with A ∩ N = {0}. For g, h ∈ G and g − h ∈ N , we
have ϕ(g) − ϕ(h) ∈ N ∩ A = {0}, forcing ϕ(g) = ϕ(h). So ϕ is constant on the
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cosets of every N E G with N ∩ A = {0}. Let N1 and N2 be two such normal
subgroups. Consider S := N1 + N2. If g − h ∈ S, then g = n1 + n2 + h, and
ϕ(h) = ϕ(n2 + h) = ϕ(n1 + n2 + h) = ϕ(g). Consequently, ϕ is constant on the
cosets of K.

Conversely, let ϕ be a function mapping G into A and let ϕ be constant on the
cosets of K. Then ϕ is compatible on G: let I E G. If I ≥ A, then ϕ is compatible
with I, because ϕ(G) ⊆ A ⊆ I. If I 6≥ A, then by the definition of K, I ≤ K. So ϕ
is compatible with I, because it is constant on the cosets of I.

There are precisely |A|[G:K] functions mapping G into A, which are constant
on the cosets of K. The mapping Φ : C(G) → C(G/A), ϕ 7→ ϕA is a ho-
momorphism with kernel (A : G)C(G). The normal subgroup A admits lifting
of compatible functions, if and only if Φ is surjective, which holds, if and only if
|C(G)| = |C(G/A)| · |A|[G:K].

4.4. The A-K-Theorem.

The A-K-Theorem is stated here with a bunch of technical premises, which are
quite helpful in the proof. After a short outing to the realm of lattice theory, we
will be able to reformulate the theorem. The A-K-Theorem may be understood as
another generalization of Lausch and Nöbauer’s Corollary 2.15.

2.30. Theorem (A-K-Theorem). Let A be a minimal normal subgroup of G.
Suppose that G has a normal subgroup K, such that A∩K = {0} and the lattice of
normal subgroups of G is generated (w.r.t. ∩ and +) by K and the normal subgroups
of G containing A. Then

|C(G)| = |C(G/A)| · |A|[G:K].

Proof. For the following, we fix a complete set R = {r1, . . . , rn} of coset
representatives of A in G (n = [G : A]) and λ, the R-lifting of G/A. Let ϕ be a
compatible function on G. For g ∈ G, we define i(g) such that λ(g + A) = ri(g),
and define a(g) = −λ(g+A)+g. Finally, let us write ψ(g) for πi(g)(a(g)). We may
regard ψ as a function from G into A.

Let S be a complete set of coset representatives of K in G. Let x ∈ G, and
s ∈ S be the coset representative of the coset of K containing x. Then x− s ∈ K
and by Theorem 2.12,

K 3 ϕ(x)− ϕ(s) = λ ◦ ϕA(x+ A) + ψ(x)− ψ(s)− λ ◦ ϕA(s+ A).

Conjugating with λ ◦ ϕA(s+ A) gives

−λ ◦ ϕA(s+ A) + λ ◦ ϕA(x+ A)︸ ︷︷ ︸
=:dx

+ψ(x)− ψ(s) ∈ K.
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Since ϕA is compatible on G/A, λ ◦ ϕA(x + A) − λ ◦ ϕA(s + A) ∈ A + K, and
conjugating with λ ◦ϕA(s+ A) once more gives dx ∈ A+K. A∩K = {0} implies
that there exists exactly one cx ∈ A, such that dx + cx ∈ K. The equation

ψ(x)− ψ(s) = cx

uniquely determines ψ(x), once that ψ(s) is fixed. For fixed coset representatives
and a fixed s, there are exactly |A| possibilities to send a(s) to an element of
A. Once ψ(s) is fixed for all s ∈ S, it is determined for all x ∈ G. Since there
are [G : K] cosets of K in G, there can be at most |A|[G:K] · |C(G/A)| distinct
compatible functions.

It remains to be shown that for an arbitrary compatible function F on G/A

and arbitrary but fixed values for ψ(s) (s ∈ S), every function ϕ of the form

ϕ(x) = λ ◦ F (x+ A) + ψ(x),

where the values of ψ are chosen as described, is compatible. By Corollary 2.16
and Lemma 2.6, it suffices to check that ϕ is compatible with K. Let x, y ∈ s+ K

for some s ∈ S. Then

ϕ(x)− ϕ(y) = ϕ(x)− ϕ(s) + ϕ(s)− ϕ(y)

= λ ◦ ϕA(x+ A) + ψ(x)− ψ(s)− λ ◦ ϕA(s+ A)

+ λ ◦ ϕA(s+ A) + ψ(s)− ψ(y)− λ ◦ ϕA(y + A)

= λ ◦ ϕA(x+ A) + cx − λ ◦ ϕA(s+ A)︸ ︷︷ ︸
∈K

+ λ ◦ ϕA(s+ A) + cy − λ ◦ ϕA(y + A)︸ ︷︷ ︸
∈K

∈ K

4.5. Local distributivity.

We may reformulate Theorem 2.30 as follows:

2.31. Theorem. Let A be a minimal normal subgroup of G. Suppose that G

has a normal subgroup K, such that A∩K = {0} and the lattice of normal subgroups
of G is generated (w.r.t. ∩ and +) by K and the normal subgroups of G containing
A. Then every compatible function on G/A can be lifted to G in precisely |A|[G:K]

ways.

It is time now for a jaunt to lattice theory. The assumptions for A look very
technical. The next theorem shows that they are equivalent to A being a distribu-
tive normal subgroup of G, and that K is simply the sum of all normal subgroups
of G not containing A. But first of all, may I offer you a definition?
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2.32. Definition (Grätzer [1978]). An element a of a lattice is called dis-

tributive, iff for all elements x and y of the lattice

a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y)

and dually distributive, iff the dual of this equality holds. The element a is
standard, iff for all elements x and y of the lattice

x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y).

We call a normal subgroup N of a group G distributive, dually distributive or
standard, if it has this property as an element of the lattice of normal subgroups
of G.

The lattices of normal subgroups of a group is always modular. In this case
there is no difference between all these notions, which I (we?) would certainly
confuse anyway.

2.33. Remark.
2 In a modular lattice L, the following are equivalent for a ∈ L:

1. a is distributive.
2. a is standard.
3. ∀x, y ∈ L, the sub-lattice generated by a, x and y is distributive.
4. a is dually distributive.
5. for every x ∈ L, a has at most 1 complement in the interval
{y ∈ L | x ∧ a ≤ y ≤ x ∨ a}.

The distributive elements of a modular lattice L form a sub-lattice of L.

Distributivity of an atom can be expressed in a very nice way.

2.34. Lemma. Let a be an in the lattice L. Then the following are equivalent:

(i) a is distributive.
(ii) For all x, y ∈ L,

[a ∧ x = 0 & a ∧ y = 0] =⇒ a ∧ (x ∨ y) = 0

(iii) There exists an element k ∈ L, such that a ∧ k = 0 and L is generated
(w.r.t. ∧ and ∨) by k and the elements of L containing a.

Proof. We are going to show (iii)⇒ (ii)⇒ (i) and (i)⇒ (ii)⇒ (iii).

(iii)⇒ (ii) We assume that there is a k ∈ L not containing a which together with all the
elements of L containing a generates the whole lattice L. We show that every
element of the sub-lattice of L generated by k and all elements containing
a, is either contained in k or contains a. This will imply (ii) immediately.

2c.f. [Grätzer, 1978, p. 138-144], Grätzer and Schmidt [1961]
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Joins and meets of elements containing a contain a. The only way to
generate an element not containing a is to intersect elements containing a

with k and add and intersect the results. What comes out is contained in k
in this case.

(ii)⇒ (i) By Grätzer and Schmidt [1961], a is standard, if and only if

∀ x, y ∈ L x ≤ a ∨ y =⇒ x = (x ∧ a) ∨ (x ∧ y).(2.4)

If a is not distributive, this implication has to be false. The implication
in (2.4) is always true, if any of the three elements is contained in any other
of the three. So we may assume that (2.4) is false for some fixed pairwise
incomparable a, x and y. So, x ∧ a = 0, and (2.4) says

x ≤ a ∨ y =⇒ x = x ∧ y,

or equivalently,

x 6≤ y =⇒ x 6≤ a ∨ y.

So far, we have found out that a is not distributive, if and only if there are
pairwise incomparable elements x, y 6≥ a, with x ≤ a∨y. It remains to show
that x ∨ y ≥ a. We see that y < x ∨ y ≤ a ∨ y, because x ≤ a ∨ y. Since a
is an atom, there are no elements in L between 0 and a, hence there are no
elements between y and a ∨ y. So x ∨ y = a ∨ y ≥ a.

(i)⇒ (ii) If a is distributive, then a ∧ (x ∨ y) = a ∧ x ∨ a ∧ y = 0.
(ii)⇒ (iii) We assume that a is distributive. Let k be the join of all x ∈ L with x∧a = 0.

Then by (ii), k∧a = 0 and for any a 6≤ x ∈ L, (a∨x)∧k = a∧k∨x∧k = x,
because a is standard.

On the one hand, the previous lemma suggests a good algorithm for deciding
distributivity. On the other hand it shows, that the technical premises of the A-K-
Theorem are equivalent to the distributivity of A, and that K is simply the sum
of the normal subgroups of G not containing A.

In particular, if the lattice of normal subgroups of a group G is distributive,
every minimal normal subgroup A is distributive, whence every compatible function
on G/A can be lifted to G. As a consequence, this holds for every normal subgroup,
and the lifting process of a function can be iterated.

There are groups having non-distributive minimal normal subgroups with non
1-affine-complete factor group admitting lifting of compatible functions. An exam-
ple is the group (Z2)2 × Z3 with minimal normal subgroup Z2 × {0} × {0}, which
can easily be checked using Theorem 2.29 and Corollary 2.39 (which is to follow).
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4.6. Global distributivity.

2.35. Theorem. Let s ∈ N and G be a group having s minimal nor-
mal subgroups M1, . . . ,Ms, such that the normal subgroups of G contained in
M :=

∑s
i=1 Mi form a distributive lattice. If all compatible functions on G/Mi

(i ∈ {1, . . . , s}) and G/M can be lifted to compatible functions on G, then

|C(G)| = s−1

√ ∏s
i=1 |C(G/Mi)|

|C(G/(
∑s
i=1 Mi))|

Proof. We will show that

×si=1(Mi : G)C(G)
∼= (M : G)C(G).(2.5)

Then by Lemma 2.11 and our liftability assumptions,

|C(G)| = |C(G/Mj)| · |(Mj : G)C(G)| = |C(G/M)| · |(M : G)C(G)|,

for each j ∈ {1, . . . , s}. Hence
s∏
i=1

|C(G)|
|C(G/Mi)|

=
|C(G)|

C(G/M)

and

|C(G)|s−1 =
∏s
i=1 |C(G/Mi)|
|C(G/M)|

.

In order to verify equation (2.5), we show that the mapping

b : ×si=1(Mi : G)C(G) → (M : G)C(G)

(ϕ1, . . . , ϕs) 7→
s∑
i=1

ϕi

is a (group) isomorphism.
We observe that for distinct k, l ∈ {1, . . . , s}, the functions from (Mk : G)C(G)

and (Ml : G)C(G) commute (w.r.t. addition), i.e., for ϕk in (Mk : G)C(G) and
ϕl in (Ml : G)C(G), we have [ϕk, ϕl] = 0, because this function maps G into
[Mk,Ml] ≤Mk ∩Ml = {0}.
The mapping b is a homomorphism, since

b((ϕ1, . . . , ϕs) + (ϕ′1, . . . , ϕ
′
s)) = b((ϕ1 + ϕ′1, . . . , ϕs + ϕ′s))

= ϕ1 + ϕ′1 + · · ·+ ϕs + ϕ′s

=
s∑
i=1

ϕi +
s∑
i=1

ϕ′i

= b((ϕ1, . . . , ϕs)) + b((ϕ′1, . . . , ϕ
′
s)).
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The mapping b is injective: suppose (ϕ1, . . . , ϕs) ∈ ker b, then
b((ϕ1, . . . , ϕs)) =

∑s
i=1 ϕi = 0, and consequently ϕi = 0 for each i ∈ {1, . . . , s}.

The mapping b is surjective: for j ∈ {1, . . . , s}, let πj be the projection from M

onto Mj , and for ψ ∈ (M : G)C(G), we define ϕj := πj ◦ ψ. It remains to show
that ϕj ∈ (Mj : G)C(G).
By definition, ϕj(G) ⊆ Mj . We show that it is compatible. Let N E G be
arbitrary and define IN := {i ∈ {1, . . . , s} |Mi ≤ N}. For g, h ∈ G and g−h ∈ N ,
ψ(g)− ψ(h) ∈ N ∩M =

∑
i∈IN(Mi ∩N) =

∑
i∈IN Mi. Finally,

ϕj(g)− ϕj(h) = πj ◦ ψ(g)− πj ◦ ψ(h)

= πj ◦ (ψ(g)− ψ(h)︸ ︷︷ ︸
∈
∑
i∈IN

Mi

) ∈

Mj ≤ N if j ∈ IN,

{0} ≤ N if j 6∈ IN
.

This theorem allows to recursively compute the size of C(G) for a group G with
distributive lattice of normal subgroups, but it does not show, what the compatible
functions look like.

5. Examples

We continue this chapter with a small assemblage of examples. We start with
abelian groups. The compatible functions on finite abelian groups have been char-
acterized by Hans Lausch and Wilfried Nöbauer in Lausch and Nöbauer [1976]. A
few examples then show, where the results in Dorda [1977] can be applied. Finally,
we will mention some classes of groups, where the newer results can help. As a
reward for our work, we will happen to find new 1-affine complete groups among
the examples.

5.1. Abelian groups.

We give recursive formulae for the numbers of compatible functions on abelian
p-groups.

5.1.1. Cyclic p-groups.

2.36. Theorem ([Lausch and Nöbauer, 1976, Folgerung 1]). For all n ≥ 0 the
following equation holds.

|C(Zpn)| =
n∏
i=1

pp
i

= pp
pn−1
p−1(2.6)
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Figure 2.1. The lattice of normal subgroups of a cyclic p-group

Proof. Let G = Zpn . The (normal) subgroup N = pn−1G is the unique
minimal normal subgroup of G. We see that |N| = p and G/N ∼= Zpn−1 . Applying
Corollary 2.15, we get

|C(Zpn)| = |C(Zpn−1)| · pp
n

From this recursion and |C(Zp)| = pp we get the desired formula.

5.1.2. Abelian p-groups.

2.37. Theorem (Lausch and Nöbauer [1976]).
For all s ∈ N, m1 ≥ · · · ≥ ms ∈ N and G = Zpm1 × · · · × Zpms the following holds:

|C(G)| = |G| · p2m2−m1 · |C(Zpm1−m2 )|(2.7)

Moreover, with N = pm2G, e the natural epimorphism from G to G/N and λ a
lifting of G/N, the near ring C(G) consists exactly of the functions

x 7→ p(x) + pm2 · λ(c(e(x))),

where p ∈ P(G) and c ∈ C(G/N).

Together with Theorem 2.21, this theorem enables us to describe the compatible
functions on every finite abelian group.

5.1.3. Cyclic groups.

2.38. Corollary. Let n = pα1
1 . . . pαss ∈ N (i 6= j =⇒ pi 6= pj). Then

|C(Zn)| =
s∏
i=1

p
pi
p
αi
i
−1

pi−1

i

Proof. Zn
∼= Zp

α1
1
× . . . × Zpαss . The result follows from Theorem 2.21 and

Theorem 2.36.
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5.1.4. Abelian groups.

2.39. Corollary. Let A =
⊗s

i=1 Gi, where Gi
∼=

⊗si
j=1 Zp

mi,j
i

and
mi,1 ≥ mi,2 ≥ · · · ≥ mi,si for all 1 ≤ i ≤ s. Then

|C(A)| =
s∏
i=1

|C(Gi)| = |A| ·
s∏
i=1

p
2mi,2−mi,1
i · |C(Z

p
mi,1−mi,2
i

)|

5.1.5. Liftings.

Which of the minimal normal subgroups of an abelian p-group admit lifting of
compatible functions?

2.40. Theorem. Let α ≥ β be two natural numbers and G = Zpα×Zpβ . Then
the minimal normal subgroup N admits lifting of compatible functions, if

• N is a subgroup of Zpα × {0} or
• α = β and p = 2.

Proof. In Vogt [1995], it is shown that the lattice of subgroups of the finite
abelian p-group G with two cyclic factors can be obtained from the lattice of sub-
groups of the group pG by replacing each subgroup in the subgroup lattice of pG
([Vogt, 1995, Theorem 3.4]) by a block isomorphic to the subgroup lattice of the
group (Zp)2 ([Vogt, 1995, Theorem 3.5]). If for two blocks B1 and B2, the inter-
val (B1, B2) has length l, then these two blocks intersect in a block isomorphic to
(Zp)2−l ([Vogt, 1995, Proposition 3.4]). Figure 2.2 illustrates the transition from
pG to G.
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Figure 2.2. The transition from Z2 to Z2 × Z4

By Theorem 2.37,

|C(G)| = |G| · p2β−α · |C(Zpα−β )|.

N ≤ Zpα × {0}:

|C(G/N)| = |G|
|N|
· p2β−α+1 · |C(Zpα−β−1)|.

Hence |C(G)|
|C(G/N)| = pp

α−β
. We show that [G : K] = pα−β , whence N admits

lifting of compatible functions.
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If β = 1, then clearly [G : K] = pα−1. Suppose β ≥ 2. There exists
precisely one minimal normal subgroup of G1 := Zpα−1×Zpβ−1 ∼= pG, which
is contained in 〈(1, 0)〉 ≤ pG. Let N1 denote this normal subgroup and let
K1 be the sum of all normal subgroups of G1 not containing N1. We show
that [G : K] = [G1 : K1]: By Vogt [1995], if the vertices in the lattice
of normal subgroups of G1 are replaced by the subgroup lattice of Zp2 in
the correct manner, we get the lattice of normal sugroups of G. Therefore,
|K| = p2 · |K1|. Since |G| = p2 · |G1|, the index is the same in both cases.

We conclude that [G : K] = pα−β .
N 6≤ Zpα × {0}: Each automorphism (x, y) 7→ (x + kpα−1, y) (0 < k < p)

permutes the minimal normal subgroups of G not contained in Zpα × {0}.
Therefore it suffices to consider the case where the minimal normal subgroup
N is contained in {0} × Zpβ .

|C(G/N)| = |G|
|N|
· p2β−α−2 · |C(Zpα−β+1)|.

Hence |C(G)|
|C(G/N)| = p3−pα−β+1

. Since α ≥ β and p ≥ 2, the exponent
3− pα−β+1 is positive only if p = 2 and α = β. We are back in the first
case.

5.2. Small p-groups.

Groups of order p or p2 are abelian.

2.41. Proposition. If G is a non-abelian group of size p3, then

|C(G)| = pp
3+3

Proof. These groups are of maximal class, so by
[Huppert, 1967, III,14.2], G′ is the unique minimal subgroup of G and
G/G′ ∼= (Zp)2. By Corollary 2.15, |C(G)| = pp

3+3.

5.3. Alternating groups.

2.42. Theorem. Let An (n ≥ 3) be the alternating group on n elements.
Then

|C(An)| =
(
n!
2

)n!
2

, if n 6= 4 and

|C(A4)| = 22433.

Proof. For n 6= 4, An is simple, so every function on An is compati-
ble. The group A4 has one normal subgroup of index 3. So by Corollary 2.15,
|C(A4)| = 41233.
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5.4. Symmetric groups.

2.43. Theorem. Let Sn (n ≥ 3) be the symmetric group on n elements.
Then

|C(Sn)| = 4|C(An)|2

Proof. The normal subgroups of Sn are precisely the normal subgroup An of
index 2 and its normal subgroups. Now we use Corollary 2.14.
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Figure 2.3. The lattice of normal subgroups of Sn (n ≥ 5)

5.5. Dihedral groups.

The finite dihedral group, D2n, of order 2n is the group
〈a, b;na, 2b, 2(a+ b)〉. These groups will appear as quotients of some of the groups
in the following examples.

We will distinguish the following three cases:

1. n ≡ 1 or 3 (mod 4),
2. n ≡ 2 (mod 4) and
3. n ≡ 0 (mod 4)

In the first case we find a unique maximal normal subgroup and will be able to
apply Theorem 2.13. In the second case our group is the direct product of Z2 with
a group of the first type. Lemma 2.26 can be applied. In the third case we find a
distributive minimal normal subgroup and use Theorem 2.30.

5.5.1. n ≡ 1 or 3 (mod 4).

2.44. Lemma ([Malone and Lyons, 1972, Lemma 1.1]). The proper normal
subgroups of D2n (n odd) are precisely the (cyclic) subgroup A := 〈a〉 and its
subgroups.
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Figure 2.4. The lattices of normal subgroups of D30 and D90

2.45. Theorem. The compatible functions on D2n (n odd) are precisely the
functions of the form

ϕ(ib+ ja) = λ ◦ ψ(ib+ A) + πi(ja) , 0 ≤ i ≤ 1, 0 ≤ j < n

where ψ is a function on D2n /A ∼= Z2, λ is the {0, b}-lifting of D2n /A and πi is
a compatible function on A. In particular,

|C(D2n)| = 4|C(Zn)|2

Proof. The normal subgroup A fulfills the requirements of Theorem 2.13. All
normal subgroups of A are normal in D2n. The index [D2n : A] is equal to 2. Now
Corollary 2.14 and Corollary 2.38 give the formula for |C(D2n)|.

5.5.2. n ≡ 2 (mod 4).

2.46. Lemma. The proper normal subgroups of D2n (n even) are precisely

1. the subgroup A = 〈a〉 and its subgroups,
2. the normal subgroup [b] of index 2 and
3. the normal subgroup [a+ b] of index 2.

Proof (also in Malone and Lyons [1973]).

1. The subgroups of A are clearly normal in D2n.
2. −a + b + a = −2a + b ∈ [b] and b − 2a + b = 2a ∈ [b]. Hence

[b] = {2ka+ lb | 0 ≤ k < n
2 ∧ 0 ≤ l ≤ 1}. Moreover [2ka + b] = [b] for all

0 ≤ k < n
2 .

3. −a + (a + b) + a = b + a ∈ [a + b] and a + b + b + a = 2a ∈ [a + b]. Hence
[a+ b] = {2ka | 0 ≤ k < n

2 } ∪ {(2k + 1)a+ b | 0 ≤ k < n
2 }.
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2.47. Lemma. For even n and G = D2n, the following holds:

1. The center Z of G is {0, n2 a}.
2. G/Z ∼= D2n2

.
3. The subgroups [b] and [a+ b] are isomorphic to D2n2

.

Proof.

1. Suppose that xb + ya ∈ Z. Then the equation (xb + ya) + (kb + la) =
(kb+ la) + (xb+ ya) must hold for all k ∈ {0, 1} and l ∈ {0, . . . , n− 1}.

Assuming that x = 1, we get b+ya+kb+ la = kb+ la+b+ya. Choosing
k = 0, this equation becomes b+ (y + l)a = b+ (y − l)a, which can only be
fulfilled for 2l ≡ 0 (mod n). Since this restricts our choice of l, x cannot be
1.

Assume now that x = 0. Choosing k = 1, we get the equa-
tion b+ (l − y)a = b+ (l + y)a, which forces y to fulfill the equation
2y ≡ 0 (mod n).

Finally, we observe that both 0 and n
2 a commute with every element of

D2n.
2. In G/Z, the element 2a+ Z has order n

2 and the element b+ Z has order 2.
Moreover, 2(2a+ b) + Z = Z. So, G/Z is a group of order n satisfying the
same relations as D2n2

.
3. The normal subgroups [b] and Z intersect trivially. By 2., G/Z ∼= D2n2

, and
by the isomorphism theorem G/Z ∼= [b]/{0} ∼= [b]. The same holds for the
normal subgroup [a+ b].

The following is a well known result which can be found e.g. in Coxeter and
Moser [1965]. Later we will prove a generalization of this result for generalized
dihedral groups.

2.48. Lemma. Let k ∈ N be odd, n = 2k. Then

D2n
∼= D2k ×Z2

2.49. Theorem. Let k ∈ N be odd, n = 2k. Then

|C(D2n)| = 2 · |C(D2k)|

Proof. By Lemma 2.48, D2n
∼= D2k ×Z2. By Lemma 2.44, D2k has a (cyclic)

unique normal subgroup of index 2, so Lemma 2.26 applies and gives the desired
result.
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Figure 2.5. The lattice of normal subgroups of D60

5.5.3. n ≡ 0 (mod 4).

2.50. Lemma. For n ≡ 0 (mod 4), precisely the normal subgroups of even or-
der contain the center of D2n.

Proof. Follows directly from Lemma 2.46 and Lemma 2.47.

2.51. Theorem. Let n = 2ek, where k is odd and e ≥ 2. Then

|C(D2n)| = 22e+1
· |C(D2n2

)|

Proof. Let G = D2n, A = Z(G) and K be the unique normal subgroup of
order k. Then A ∩ K = {0}. By Lemma 2.50, every normal subgroup of even
order contains A and every normal subgroup of odd order m is the intersection
of the unique normal subgroup of (even) order 2m (containing A) with K. So
Theorem 2.30 applies and gives the desired result.

2.52. Remark. The case, where n = 2e is a special case for the last theorem,
which can also be proved directly, using Corollary 2.15.

When playing with generalized dihedral groups later, we will obtain a general-
ization of these results, without distinction of cases, in only a few lines, but with a
very special technique. This is why I like the above proofs, as a demonstration of
the applicability of all these general results.
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Figure 2.6. The lattice of normal subgroups of D120

5.6. Semi-dihedral groups.

The semi-dihedral group, SD2n , of order 2n, n ≥ 3, is the group
〈a, b; 2n−1a, 2b, a+ b = b+ (2n−2 − 1)a〉.

2.53. Lemma. For n > 3, the normal subgroups of SD2n are precisely

• the subgroup A := 〈a〉 and its subgroups,
• the normal subgroup [b] of index 2 and
• the normal subgroup [a+ b] of index 2.

2.54. Theorem. For n > 3,

|C(SD2n)| = 22n |C(D2n−1)|

and

SD8
∼= Z2 × Z4

Proof. First, we notice that 〈2n−2a〉 E SD2n and the quotient SD2n /〈2n−2a〉
is isomorphic to D2·2n−2 , simply by adding 2n−2a = 0 to the set of defining relations
and simplifying the other relations, and checking that the order of the quotient is
2n−1. The result follows from Corollary 2.15. From its presentation it is clear that
the semi-dihedral group of order 8 is isomorphic to Z2 × Z4.
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Figure 2.7. The lattice of normal subgroups of SD32

5.7. Generalized quaternion groups.

The generalized quaternion group Q2n , of order 2n, n ≥ 3, is the group
〈a, b; 2n−1a, b+ a− b+ a, 2n−2a+ 2b〉.

2.55. Lemma ([Malone, 1973, Lemma 1]). The normal subgroups of Q2n are
precisely

• the subgroup A := 〈a〉 and its subgroups,
• the normal subgroup [b] of index 2 and
• the normal subgroup [a+ b] of index 2.
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Figure 2.8. The lattice of normal subgroups of Q16

2.56. Theorem. For n ≥ 3,

|C(Q2n)| = 22n |C(D2n−1)|



52 Compatible functions on groups

Proof. Let n ≥ 3 and N = 〈2n−2a〉 E Q2n . Then N is the unique minimal
normal subgroup of Q2n . The quotient Q2n /N is isomorphic to D2n−1 . Corol-
lary 2.15 yields the formula.

5.8. An extension of a cyclic by an abelian group.

A group of order pn has a cyclic maximal subgroup if and only if it is cyclic, a
direct product of a cyclic group with a group of order p, a dihedral group of order a
power of two, a generalized quaternion group, a semi-dihedral group, or a group of
the form CMpn := 〈pn−1a, pb, ab = (1 +pn−2)a〉 ([Robinson, 1996, Theorem 5.3.4]).
The only class of groups among these that we have not studied, yet, are next.
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Figure 2.9. The lattice of normal subgroups of CM16

2.57. Theorem. For n ≥ 3,

|C(CMpn)| = pp
n

· |C(Zp × Zpn−2)|

Proof. Factoring CMpn by the unique minimal normal subgroup
M = 〈pn−2a〉, we get the group Zp × Zpn−2 . Corollary 2.15 yields the for-
mula.

5.9. Generalized dihedral groups.

For an abelian group A, the dihedral group of A, Dih(A), is the semi-direct
product of A with Z2, where the non-zero element of Z2 takes a to −a, for a ∈ A.
This is a generalization of dihedral groups, as Dih(Zn) ∼= D2n.

2.58. Lemma. For every abelian group A and every d ≥ 0, the following holds.

Dih(A)× Zd2 ∼= Dih(A× Zd2)

Proof. In Zd2, the function x 7→ −x is the identity function.
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2.59. Lemma. The proper normal subgroups of Dih(A) are precisely

1. the subgroups of A (embedded via a 7→ (a, 0))
2. the sums of the normal subgroups [(r, 1)] = (r + 2A, 1) ∪ (2A, 0), where r

runs through a complete set of coset representatives of 2A in A.

Proof.

1. [(a, 0)] = 〈(a, 0)〉 = (〈a〉, 0), since

(a, 0)(b,z) =

(a, 0) if z = 0,

(−a, 0) if z = 1
.

2.

(a, 1)(b,z) =

(a+ 2b, 1) if z = 0,

(−a− 2b, 1) if z = 1
,

and (a+ 2b, 1) + (a, 1) = (−2b, 0). Hence [(a, 1)] = (a+ 2A, 1) ∪ (2A, 0).
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Figure 2.10. The lattice of normal subgroups of Dih(Z2 × Z4)

2.60. Lemma. Let G = Dih(A), where A is the direct product of d cyclic
groups of even order and some cyclic groups of odd order. Then the derived subgroup
of Dih(A) is (2A, 0) and for every a ∈ A, [(a, 1)] ⊇ (2A, 0). Moreover,

Z(G) ∼= (Z2)d

G′ ∼= 2 ·A

G/G′ ∼= (Z2)d+1,

Proof. As in the proof of the previous lemma, we can find G′ = (2A, 0) ∼= 2·A
by straightforward computation of commutators. The center of G is found in the
same way. The quotient G/G′ is isomorphic to Z2 ×A/2A ∼= (Z2)d+1.
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Now we come to the point, where this method becomes a little bit specific,
elegant, but not generally applicable.

2.61. Lemma. Let G = Dih(A), where A is an abelian group. Then

|(G′ : G)C(G)| = |(G′ : A)C(A)|2.

Proof. Let c1, c2 ∈ (G′ : A)C(A). We show that the function c : G→ G, which
maps (a, i) to ci(a), for a ∈ A and i ∈ {0, 1}, is an element of (G′ : G)C(G). By
definition, c(G) ⊆ G′, so it remains to show that c is compatible, i.e., for arbitrary
g, h ∈ G, c(g)− c(h) ∈ [g − h]. We distinguish 3 cases:

• If there are a, b ∈ A such that g = (a, 0) and h = (b, 0), then

c(g)− c(h) = c0(a)− c0(b) ∈ [(a− b, 0)]

= [(a, 0)− (b, 0)] = [g − h].

• If there are a, b ∈ A such that g = (a, 1) and h = (b, 1), then

c(g)− c(h) = c1(a)− c1(b) ∈ [(a− b, 0)] = [(a, 1) + (b, 1)]

= [(a, 1)− (b, 1)] = [g − h].

• If there are a, b ∈ A such that g = (a, 1) and h = (b, 0), then [g − h] ≥ G′,
but trivially, c(g)− c(h) ∈ G′. The same holds, if g = (a, 0) and h = (b, 1).

Conversely, we show that for every function c ∈ (G′ : G)C(G), the functions
ci : A→ G′, a 7→ c(a, i) (i ∈ {0, 1}), are compatible on A.

• Let a, b ∈ A, then

c0(a)− c0(b) = c(a, 0)− c(b, 0) ∈ [(a, 0)− (b, 0)] = [(a− b, 0)]

= ([a− b], 0).

• Let a, b ∈ A, then

c1(a)− c1(b) = c(a, 1)− c(b, 1) ∈ [(a, 1)− (b, 1)] = [(a, 1) + (b, 1)]

= [(b− a, 0)] = ([a− b], 0).

2.62. Theorem. Let G = Dih(A), where A is the direct product of d cyclic
groups of even order and some cyclic groups of odd order. Then

|C(G)| = 2d+2 ·
[
|C(A)|
|C(A/2A)|

]2

Proof. In this proof we use a result from Chapter 3. As an immediate conse-
quence of Theorem 2.37, Corollary 3.3 will tell us that elementary abelian groups
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are 1-affine complete. We know that 2A is normal in A and A/2A ∼= (Z2)d. By
Lemma 2.28,

|C(A)| = |C(A/2A)| · |(2A : A)C(A)|,

or equivalently,

|(2A : A)C(A)| =
|C(A)|
|C(A/2A)|

(2.8)

Recall that G/G′ is elementary abelian and G′ = (2A, 0) ∼= 2A. Using Lemma 2.28
once more, for G instead of A, we get

|C(G)| = |C(G/G′)| · |(G′ : G)C(G)|

= |C(G/G′)| · |(2A : A)C(A)|2 by Lemma 2.61

= 2d+2 ·
[
|C(A)|
|C(A/2A)|

]2

by (2.8)

This completes the proof.

Yes, dear reader, you are right. Here we have found a large class of 1-affine
complete non-abelian groups. I will prove this in the next chapter. But first, let
me present the rest of my examples.

5.10. Dicyclic groups.

The finite dicyclic group of order 4n is the group

Q4n := 〈a, b; 2na, na− 2b, a+ b+ a− b〉.

This generalizes generalized quaternion groups. From the presentation above we
can see that Q4·2m−2

∼= Q2m , as this notation suggests.

2.63. Lemma ([Lyons and Mason, 1991, Lemma 2.1]). The normal subgroups
of Q4n are precisely

• the subgroup A := 〈a〉 and all its subgroups

and in addition, if n is even,

• the normal subgroups [b] and [a+ b].

2.64. Lemma. For n ≡ 0 (mod 2), the following holds:

1. The center Z of Q4n is {0, na}.
2. Q4n /Z ∼= D2n.

Proof. The first part is proved in [Lyons and Mason, 1991, Lemma 2.1]. For
the second part, we simply add na to the set of defining relations of the group and
reduce this set obtaining 〈a, b;na, 2b, 2(a+ b)〉, which is a presentation of the group
D2n. Finally, we compare the orders.
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2.65. Theorem. Let n be odd. Then

|C(Q4n)| = 4 · |C(Z2n)|2

Proof. This is a consequence of Lemma 2.63 and Corollary 2.14 (with
N = A).
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Figure 2.11. The lattice of normal subgroups of Q60

2.66. Lemma. For even n and G = Q2n, precisely the normal subgroups of
even order contain the center of G.

Proof. Follows directly from Lemma 2.63 and Lemma 2.64.

2.67. Theorem. Let n = 2ek, where k is odd and e ≥ 1. Then

|C(Q4n)| = 22e · |C(D2n)|

Proof. Let G = Q4n, A = Z(G) and K be the unique normal subgroup of
order k generated by 2e+1a. Then A ∩ K = {0}. By Lemma 2.66, every normal
subgroup of even order contains A and every normal subgroup of odd order m is
the intersection of the unique normal subgroup of (even) order 2m (containing A)
with K. So Theorem 2.30 applies and together with Lemma 2.63 gives the desired
result.
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Figure 2.12. The lattice of normal subgroups of Q48

5.11. Special Linear Groups.

2.68. Theorem. Let m ≥ 3 or m = 2 and q > 3. Then with d = (m, q − 1),

|C(SL(m, q))| =
(
|PSL(m, q)| · |C(Zd)|

)|PSL(m,q)|
.

In addition,

|C(SL(2, 2))| = 2236 and |C(SL(2, 3))| = 24833.

Proof. Let m ≥ 3 or m = 2 and q > 3. Any standard proof of the Jordan-
Dickson theorem (e.g. in [Huppert, 1967, II,6.13]), shows that the proper normal
subgroups of SL(m, q) are precisely the subgroups of its center, which is a cyclic
group of order d. Now we apply Corollary 2.14.

The group SL(2, 2) ∼= S3 has been dealt with in Theorem 2.43. The center of
SL(2, 3) has 2 elements. The quotient of SL(2, 3) by its center is PSL(2, 3) ∼= A4.
Now we use Corollary 2.15 and Theorem 2.42.

5.12. General Linear Groups.

In this section we treat a class of general linear groups with a very nice structure.

2.69. Theorem. Suppose that m ∈ N and q is a prime power, such that
(m, q − 1) = 1. Then

|C(GL(m, q))| = |C(Z∗q)| · |C(SL(m, q))|
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Proof. By [Meldrum, 1979, Lemma 1.13], Z(GL(m, q)) ∩ SL(m, q) = {0} and
GL(m, q) = Z(GL(m, q)) × SL(m, q). If (m, q) 6= (2, 2), then SL(m, q) is a non-
abelian simple group, hence super-perfect. The center Z(GL(m, q)) is isomorphic
to the cyclic group Z∗q . The result follows from Theorem 0.13. For (m, q) = (2, 2),
we observe that GL(2, 2) ∼= SL(2, 2) and |Z∗2| = 1. The formula is also valid in this
case.

5.13. The holomorph of a cyclic p-group.

In this section we develop a recursive formula for the number of compatible
functions on the groups Hol(Zpn). The main part is to proof that the lattices of
normal subgroups of these groups are distributive. We begin with the case n = 1.

2.70. Lemma. Let p be a prime and G = Hol(Zp). Then G has a unique
minimal normal subgroup M isomorphic to Zp and G/M ∼= Aut(Zp) ∼= Zp−1.

Proof. Notice that Hol(Z2) ∼= Z2, in this case the result follows trivially.
From now on we assume p > 2.

We work with G as the semi-direct product of P = Zp with its automorphism
group A, where the automorphisms act on P in the natural way. Of course, G/P ∼=
A ∼= Zp−1. The subgroup (P, id) is normal in G. We show that if a normal subgroup
N contains a nonzero element (x, α), then it contains every element (z, id), and
conclude that (P, id) is the unique minimal normal subgroup of G.

First, assume that x 6= 0. There exists an automorphism β ∈ A, such that
β(x) 6= α(x). If (x, α) ∈ N , then (x, α)(0,β) = (β(x), α) ∈ N , and (x, α)(0,α) =
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(α(x), α) ∈ N , since N is normal. Consequently, (β(x), α)− (α(x), α) =
(x+ α−1 ◦ β(−x)︸ ︷︷ ︸

=:y

, id) ∈ N . Since β(x) 6= α(x), y 6= 0, and (y, id) generates (P, id).

If x = 0, we choose an element x′ ∈ P , such that α(x′) 6= x′. Such an x′ exists,
since α 6= id. Then (0, α)(x′,id) = (x′ − α(x′), α) ∈ N and x′ − α(x′) 6= 0.

Z13
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1111111111
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�������

1111111111

0/.-,()*+

��������

Figure 2.14. The lattice of normal subgroups of Hol(Z13)

2.71. Theorem. Let G = Hol(Zp). Then

|C(G)| = pp(p−1) · |C(Zp−1)|

Proof. By Corollary 2.15 and Lemma 2.70,

|C(G)| = |C(Zp−1)| · |Zp||G|.

2.72. Proposition. Let n ≥ 2, p > 2, and G = Hol(Zpn). Then

1. G has a distributive lattice of normal subgroups.
2. G has a unique minimal normal subgroup M and |M| = p.
3. G/M has a minimal normal subgroup N/M, such that G/N ∼= Hol(Zpn−1),

and the sum K/M of all normal subgroups of G/M having trivial intersec-
tion with N/M has index pn−1 in G/M.

Proof.

1. Let N be a normal subgroup of G and (x, α) ∈ N . Let ξ be the automor-
phism x 7→ −x on Zpn . Then [(x, α), (0, ξ)] = (−2x, id) ∈ N . Since −2
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is invertible modulo pn, also (x, id) ∈ N and as consequence (0, α) ∈ N .
So every normal subgroup can be written as a semidirect sum Io J, where
I E Zpn and J E Aut(Zpn). The lattice of normal subgroups is therefore a
sublattice of the direct product of the lattices of the cyclic groups Zpn and
Z(p−1)pn−1 .

The normal subgroups containing (Zpn , id) are known to form a dis-
tributive lattice (isomorphic to the lattice of subgroups of the cyclic group
Z(p−1)pn−1).

Let β be a fixed point free automorphism on Zpn (i.e.,
x ∈ Zpn \ {0} =⇒ β(x) 6= x). Then the mapping σ : x 7→ x − β(x)
is an isomorphism on Zpn (it is clearly a homomorphism on the abelian
group and its kernel is equal to {0}). If N contains an element (y, β) (β
fixed point free), then it contains (0, β) also. As a consequence, it contains
(0, β)(x,id) = (x − β(x), β) and (x − β(x), id), where x is an arbitrary
generator of Zpn . Since σ is an automorphism, σ(x) is also a generator of
Zpn , whence N contains (Zpn , id). Since the fixed point free automorphisms
on Zpn are precisely the automorphisms, the order of which is not a power
of p, the lattice of normal subgroups of G is a sublattice of the direct
product of two chains. Therefore the normal subgroups not containing
(Zpn , id) form a distributive lattice.

2. The proof is the same as in Lemma 2.70.
3. Since there is only one minimal normal subgroup, G has at most

two normal subgroups of order p2. The subgroups pn−2
Zpn o {0}

and N := pn−1
Zpn o (p− 1)pn−2

Z(p−1)pn−1 are normal in G. Clearly,
G/N ∼= Hol(Zpn−1). The normal subgroup K is Zpn o (p− 1)Z(p−1)pn−1 .

2.73. Corollary. Let p > 2 be prime, n ≥ 2. Then

|Hol(Zpn)| = (p− 1)p2n−1

and

|C(Hol(Zpn))| = pp
2n−p2n−1+pn−1

· |C(Hol(Zpn−1))|

Proof. The automorphism group of Zpn is cyclic of order (p − 1)pn−1,
whence |Hol(Zpn)| = (p − 1)p2n−1. With the notation from the last proposition,
|C(G/N)| = |C(Hol(Zpn−1))|. By Theorem 2.31, |C(G/M)| = |C(G/N)| · ppn−1

.
Now by Corollary 2.15, |C(G)| = |C(G/M)| · p(p−1)p2n−1

.



5 Examples 61

0/.-,()*+
Z3

N ��������
�������� ��������

�������� ��������
Z34

�������� ��������
K

�������� �������� ��������

�������� ��������
Hol(Z34)

�����

8888

������

������

88888888

��������

88888888

��������

88888888

������

��������

88888888

��������

888888 rrrr

88888888

��������

88888888

rrrrrrrr

888888

��������

88888888

rrrrrrrr

88888888

rrrrr
888888

Figure 2.15. The lattice of normal subgroups of Hol(Z34)

5.14. The groups 16/9 and 16/10.

With the results so far, it is possible to determine the near rings of compati-
ble functions for almost every group with less than 32 elements. Apart from our
examples there are some more groups, which can also be handled easily.

The smallest examples have order 16. The groups 16/8, 16/11, 16/13 are all
subdirectly irreducible, therefore are treated in Corollary 2.15. The group Z2×Q8

will be dealt with in Section 11 of the next chapter.
We are not going to work through the groups of order 17 to 31, each of which

can be treated with the methods demonstrated, as soon as its lattice of normal
subgroups is known. The groups of order 32 pose problems because of their complex
lattices of normal subgroups.

As a last application let us use the results obtained to compute the number of
compatible functions on the groups 16/9 and 16/10.

Let G be any of these groups. The quotient G/G′ is isomorphic to Z2 × Z4,
which is 1-affine complete, so G′ admits lifting of compatible functions. The sum
of the normal subgroups not containing the minimal normal subgroup G′ is Z(G),
which has index 4 in G. By Theorem 2.29, there are |C(G/G′)| · |G′|[G:K] =
25 · 24 = 29 compatible functions on G.
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Figure 2.16. The lattice of normal subgroups of 16/9 and 16/10

6. Compatible endomorphisms

• Let h be an endomorphism on the group G, N a normal subgroup of G.
Then h is compatible w. r. t. N , iff

x− y ∈ N =⇒ h(x)− h(y) = h(x− y) ∈ N for all x, y ∈ N(2.9)

or equivalently

h(N) ⊆ N(2.10)

• For any group G the following holds

C(G) ∩ End(G) ≥ Inn(G)(2.11)

For which groups does equality hold? (It does not hold for 8/4, 8/5 and
12/4.) When is every nonzero compatible endomorphism an inner automor-
phism?

7. Generating compatible function near rings additively

Since we have seen Lemma 2.6, we are interested in a set of generators of the
lattice of normal subgroups of G, which can be computed easily. There are of course
very fast algorithms for computing the lattice of normal subgroups (e.g. Hulpke
[1998]), nevertheless it seems to be more suitable to generate only the generators,
which are really needed.

7.1. Generators of the lattice of normal subgroups.

Let C1, . . . , Cs be the conjugacy classes of G, r1, . . . , rs a set of representatives
of the conjugacy classes. The lattice of normal subgroups is generated by the normal
subgroups that are generated by single elements. These are the subgroups generated
by conjugacy classes of elements. If for two such normal subgroups Ni = [ri] and
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Nj there exists a number k, such that kri ∈ Cj , then Ni ≤ Nj . We consider the
following cases.

1. If (k, ord ri) = 1, then k is invertible modulo ri, and as a consequence,
k−1(kri) = ri is a multiple of kri ∈ Cj . So Nj ≤ Ni, whence Nj = Ni.

2. If (k, ord ri) 6= 1, then Ni < Nj .

We summarize these observations in Algorithm 1.

Algorithm 1 Additive generators of the normal subgroup lattice

Require: r1, . . . , rs representatives for the s different conjugacy classes C1, . . . , Cs

of the group G

Ensure: generatingClasses is a subset of {1, . . . , s}, s.t. the lattice of normal
subgroups of G is generated additively by {[ri] | i ∈ generatingClasses}
generatingClasses := {1, . . . , s};
for i ∈ generatingClasses do

for k ∈ {q ∈ N | q < ord ci & (q, ord ci) = 1} do

for j ∈ generatingClasses, s.t. j > i do

if kri and rj are conjugate then

Delete j from generatingClasses;
end if

end for

end for

end for

In the case of the elementary abelian group of order 2n, the set of generators
for the lattice of normal subgroups is as big as |G| − 1.

7.2. Additive generators for C(G).

7.2.1. The generic solution.

For a set N of normal subgroups of G, let

CompN (G) :=
⋂

N∈N

CompN(G).

Let E be a set of generators of the normal subgroup lattice of G as computed
with Algorithm 1. Then, by Lemma 2.6, C(G) can be computed as

C(G) = CompE(G).

We can describe a set of additive generators for CompN (G), if N is a chain of
normal subgroups of G.
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2.74. Theorem. Let N = (G = N0,N1, . . . ,Ns = {0}) be a descending chain
of normal subgroups of G, and let Ei be a set of additive generators of Ni and Ri
a complete set of coset representatives of Ni in G, for all 0 ≤ i ≤ s. Then the
following functions generate CompN (G) additively:

cir→e : x 7→

e if x− r ∈ Ni,

0 otherwise

where r ∈ Ri, e ∈ Ei−1, 1 ≤ i ≤ s.

Proof. The functions of type cir→e are constant on the cosets of Ni in G.
They are compatible with Nj for j < i, since their range is contained in Ni. They
are compatible with Nj for j ≥ i, because they are constant on the cosets of Nj in
G.

We show, that every function f from CompN (G) can be written as a sum of
certain ones of these:
For i ∈ {1, . . . , s} set ni = [G : Ni] and suppose that for 1 ≤ i ≤ s, the set Ri of
coset representatives of Ni in G is {ri1, . . . , rini}.

In s steps we will decompose f into a sum of type cir→e. Starting with f1 := f ,
let us describe the i-th step:
Assume that fi maps the coset rij + Ni into the coset riϕi(j) + Ni of Ni−1. Now
define fi+1 as follows:

fi+1 := fi −
ni∑
j=1

cirij→riϕi(j)

Note, that for different j1, j2 the functions ci
rij1
→x and ci

rij2
→y commute (additively)

for all x, y ∈ G. The function fi+1 maps G into Ni and cosets of Ni+1 in G into
cosets of Ni+1 in Ni(!).

Continuing with this process, we get a function fs+1, which maps G into Ns =
{0}, so fs+1 is the zero-function on G. We finally get that

f =
s∑
i=1

ni∑
j=1

crij→riϕi(j)

(where i runs from s to 1). Factoring riϕi(j) in G, we find how the summand
ci
rij→riϕi(j)

can be written as a sum of functions of the form ci
rij→e

.

The following example illustrates, how this procedure of decomposition into a
sum works.

2.75. Example. Let G = Z8, we denote the elements of G 0, 1, . . . , 7. The
group G is generated by 1. For the sake of simplicity, let us write the function
mapping i ∈ Z8 to fi as the vector (f0, f1, . . . , f7). We will now decompose the
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(compatible) function f : x 7→ 3x3 + 1 on Z8. Using our notation, this function is
(1, 4, 1, 2, 1, 0, 1, 6).

Let N0 = G = Z8, N1 = 2Z8, N2 = 4Z8, and N3 = {0}. Let R1 = {0, 1},
R2 = {0, 1, 2, 3}, and R3 = {0, 1, . . . , 7} be the corresponding sets of representa-
tives.

We start with f1 = f = (1, 4, 1, 2, 1, 0, 1, 6). The coset 0 + N1 is mapped into
the coset 1 + N1, the coset 1 + N1 is mapped into the coset 0 + N1. So we have to
subtract the functions c10→1 = (1, 0, 1, 0, 1, 0, 1, 0) and c11→0 = (0, 0, 0, 0, 0, 0, 0, 0).

Subtracting, we find f2 = (0, 4, 0, 2, 0, 0, 0, 6). This function maps G into N1,
and it is compatible, because it is the difference of compatible functions.

The function f2 maps the coset 3 + N2 into the coset 2 + N2, and all other
cosets of N2 into the coset 0 + N2. We have to subtract the functions c20→0 =
c21→0 = c22→0 = (0, 0, 0, 0, 0, 0, 0, 0) and c23→2 = (0, 0, 0, 2, 0, 0, 0, 2).

We subtract and get f3 = (0, 4, 0, 0, 0, 0, 0, 4). This function maps G into N2.
The function f3 maps the cosets 1 + N3 and 7 + N3 into the coset 4 + N3, and

all other cosets of N3 into the coset 0 + N3. We have to subtract the functions
c31→4 = (0, 4, 0, 0, 0, 0, 0, 0), c37→4 = (0, 0, 0, 0, 0, 0, 0, 4) and c30→0 = c32→0 = c33→0 =
c34→0 = c35→0 = c36→0 = (0, 0, 0, 0, 0, 0, 0, 0).

Finally, the result is f4 = (0, 0, 0, 0, 0, 0, 0, 0). So, f can be written as the sum
f = c37→4 + c31→4 + c23→2 + c10→1 = 4c37→1 + 4c31→1 + 2c23→1 + c10→1.

Summarizing, if the set of generators of the normal subgroup lattice of G as
computed in section 7.1 is the union of the chains (Nj)j∈J , then C(G) can be
computed as the intersection of near rings with known additive generators:

C(G) =
⋂
j∈J

CompNj (G)

It is useful to avoid disjoint unions of chains and prefer longer chains. In this
way, smaller near rings will have to be intersected.

The near ring of zero-symmetric compatible functions is generated additively
by the zero-symmetric functions in the last theorem. In practice, it is useful to
generate only the zero symmetric parts, intersect the near rings, and finally add a
constant function x 7→ e for every generator e of the group.

7.2.2. Congruence lattice is a chain.

If the normal subgroup lattice of a group G is a chain, Theorem 2.74 gives a
set of additive generators for C(G) explicitly.

7.2.3. Finite abelian groups.

Congruence lattices of cyclic p-groups are chains, so Theorem 2.74 applies.
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Following Theorem 2.37, we can explicitly give a set of additive genera-
tors of C(G) for every finite abelian p-group G = Zpm1 × · · · × Zpms , where
m1 > m2 ≥ . . . ≥ ms (in the case that m1 = m2, the group is known to be 1-
affine complete by Corollary 3.3), in the following way: For the generation of P(G)
we need the identity function on G and the constant functions fi(x) = gi, where gi
is a generating element of the cyclic subgroup {0}× . . . {0}×Zpmi ×{0}× · · ·×{0}
of G. Furthermore, we find generators for the cyclic group G/pm2G and use The-
orem 2.37 to transform them into the corresponding generators for C(G).

Direct products of groups of coprime order are nice, so with Theorem 2.21 we
get generators explicitly in the case of abelian groups.

7.2.4. A distributive minimal normal subgroup.

Let M be a distributive minimal normal subgroup of G, and let G be generated
by E. Then the proof of Theorem 2.30 shows how to construct a set of additive
generators of C(G) from a set of additive generators of C(G/M): For every additive
generator F of C(G/M), we may fix arbitrary values for ψ at every point in S.
The function ψ can then be extended to a function from G to M in a unique way,
as described in the proof of Theorem 2.30. We choose

ψ(si) =

0 if i 6= j

e if i = j
,

for each j ∈ {1, . . . , [G : M]} and each e ∈ E. In this way we obtain [G : M] · |E|
generators for C(G) for each generator of C(G/M).

8. Testing compatibility of a function

What do we have to test to find out, whether a given function ϕ is compatible
with a certain normal subgroup N of G?

2.76. Lemma. Let G be a group, N E G and E a set of (subgroup) generators
of N. Then for every ϕ ∈ M(G),

ϕ ∈ CompN(G) ⇐⇒ ∀g ∈ G ∀e ∈ E ϕ(g + e)− ϕ(g) ∈ N

Proof. The “only-if-part” is clear by Proposition 2.4. For the “if-part”, it
suffices to show that ϕ(x+n)−ϕ(x) ∈ N for all n ∈ N and x ∈ G. For an arbitrary
but fixed n ∈ N , there exist s ∈ N and e1, . . . , es ∈ E, such that n =

∑s
i=1 ei.
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Then for arbitrary x ∈ G

ϕ(x+ n)− ϕ(x) = ϕ(x+ e1 + · · ·+ es)− ϕ(x)

= ϕ((x+ e1 + · · ·+ es−1) + es)− ϕ(x+ e1 + · · ·+ es−1)

+ ϕ((x+ e1 + · · ·+ es−2) + es−1)− ϕ(x+ e1 + · · ·+ es−2)

+ . . .

+ ϕ(x+ e1)− ϕ(x)

By our assumption, this is a sum of elements of N.

This gives a time complexity of |G| · |E|. In order to decide compatibility we
have to do this for more than one normal subgroup, precisely for up to every normal
subgroup in a generating set of the lattice of normal subgroups. In many cases we
can then speed up some of the tests.

If we know that ϕ is compatible with I and we want to test compatibility of
ϕ with a normal subgroup J containing I, we should somehow be able to use our
knowledge. The following lemma says, that we are allowed to project everything
down to the quotient G/I. Of course, this cheapens the test by the factor |I|: if J

is generated by j elements, the test costs |G/I| · j instead of |G| · j.

2.77. Lemma. Let G be a group and I < J be two normal subgroups of G. Let
ϕ ∈ M(G) be compatible with I. Then

ϕ ∈ CompJ(G) ⇐⇒ ϕI ∈ CompJ/I(G/I)

Proof. First, let us remark that the assumption that ϕ is compatible with I

is necessary and sufficient for ϕI to be well-defined. Let λ be an arbitrary lifting of
G/I.

Assume that ϕ ∈ CompJ(G). If x + I, y + I ∈ G/I, such that
x+ I− y + I ∈ J/I, then λ(x+ I)−λ(y+ I) ∈ J , so ϕ(λ(x+ I))−ϕ(λ(y+ I)) ∈ J .
Thus ϕI(x+ I)− ϕI(y + I) ∈ J/I.

Conversely, if ϕ 6∈ CompJ(G), then there are x, y ∈ G, such that x− y ∈ J ,
but ϕ(x) − ϕ(y) 6∈ J . As a consequence, x + I − y + I ∈ J/I, but
ϕI(x+ I)− ϕI(y + I) 6∈ J/I.

On a computer, it does not make sense to generate the whole near ring of
compatible functions on a group in order to decide compatibility for a single function
(by simply testing membership). These near rings use to be extraordinarily large,
so that even storing them can be difficult. Even in the case that many functions
have to be tested, it is wise to test them this way.



68 Compatible functions on groups

Algorithm 2 Testing compatibility

Require: ϕ ∈ M(G); N a list of generators of the lattice of normal subgroups of
G, s.t. Ni 6≥ Nj for i < j.

Ensure: answer ⇐⇒ ϕ ∈ C(G)
answer := TRUE;
for N ∈ N do

I :=
∑
N≥J∈N J ;

for g ∈ G/I, e ∈ Generators(N/I) do

if ϕI(g + e)− ϕI(e) 6∈ N/I then

answer := FALSE;
return ;

end if

end for

end for

9. Results

Table 2.1 shows the number of compatible functions on all non-abelian groups
up to order 32. They have been computed using the near ring package SONATA
for GAP (Aichinger et al. [1997b]; GAP [1999]). These results have lead to good
guesses for the results in this chapter. A (valid) conjecture for the formula for
the number of compatible functions on dihedral groups and holomorphs of cyclic
p-groups existed long before the proofs.
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G |C(G)| G |C(G)| G |C(G)| G |C(G)|
6/2 22 · 36 21/2 33 · 721 32/8 29 32/30 217

8/4 211 22/2 22 · 1122 32/9 29 32/31 241

8/5 211 24/4 24 · 36 32/10 213 32/32 241

10/2 22 · 510 24/5 226 · 33 32/11 210 32/33 210

12/3 23 · 36 24/6 25 · 36 32/12 210 32/34 210

12/4 224 · 33 24/7 211 · 33 32/13 214 32/35 210

12/5 26 · 36 24/8 211 · 33 32/14 210 32/36 212

14/2 22 · 714 24/9 25 · 36 32/15 210 32/37 212

16/6 28 24/10 211 · 36 32/16 214 32/38 216

16/7 28 24/11 211 · 36 32/17 238 32/39 216

16/8 220 24/12 250 · 36 32/18 210 32/40 216

16/9 29 24/13 248 · 33 32/19 214 32/41 228

16/10 29 24/14 214 · 36 32/20 213 32/42 237

16/11 221 24/15 211 · 36 32/21 213 32/43 237

16/12 227 26/2 22 · 1326 32/22 241 32/44 240

16/13 227 27/4 330 32/23 216 32/45 240

16/14 227 27/5 330 32/24 216 32/46 241

18/3 22 · 39 28/3 23 · 714 32/25 216 32/47 241

18/4 22 · 324 28/4 26 · 714 32/26 240 32/48 241

18/5 22 · 36 30/2 22 · 33 · 510 32/27 217 32/49 259

20/3 23 · 510 30/3 22 · 36 · 55 32/28 217 32/50 259

20/4 26 · 510 30/4 22 · 36 · 510 32/29 217 32/51 259

20/5 26 · 520

Table 2.1. The numbers of compatible functions on small non-
abelian groups
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CHAPTER 3

1-affine complete groups

1. Polynomially complete groups

Polynomial completeness is the best that can happen, every function can be
written down as a polynomial.

3.1. Definition. A group G is called polynomially complete, iff P(G) =
M(G). It is called 1-affine complete, iff P(G) = C(G).1

Obviously, polynomially complete groups are 1-affine complete. They can be
characterized in a nice way, but turn out to be a very particular class of groups.

3.2. Theorem (Lausch and Nöbauer [1973]). The polynomially complete
groups are exactly Z2 and all finite non-abelian simple groups.

2. Abelian groups

A characterization of abelian 1-affine complete groups has been given by Lausch
and Nöbauer (Lausch and Nöbauer [1976]). We will only consider the finite case,
which has been solved completely in Lausch and Nöbauer [1976]. In Nöbauer [1978]
and Kaarli [1982] the infinite case is treated. The result follows almost immediately
from the results in the previous chapters, we only need to compare the numbers of
polynomial and compatible functions.

3.3. Corollary. (to Remark 1.2 and Theorem 2.37, Lausch and Nöbauer
[1976]) Precisely the following finite abelian p-groups are 1-affine complete.

1. Zpα1 × Zpα2 × · · · × Zpαr , where α1 = α2 ≥ · · · ≥ αr and
2. Z2α1 × Z2α2 × · · · × Z2αr , where α1 − 1 = α2 ≥ · · · ≥ αr,

for all r ≥ 2 and α1, . . . , αr ∈ N.

Proof. Every abelian group A can be written as Zpα1 ×Zpα2 ×· · ·×Zpαr , for
suitable r ∈ N and α1 ≥ . . . ≥ αr ∈ N0. The number of polynomial functions on
such a group is

|A| · exp A = |A| · pα1 .

1More generally, algebras, where every compatible n-ary function is polynomial, are called

n-affine complete. For details see . . . .
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By Theorem 2.37, the number of compatible functions is

|A| · p2α2−α1 · |C(Zpα1−α2 )|.

Plugging in Theorem 2.36, a simple computation shows that these numbers are
equal, if and only if α1 = α2, or p = 2 and α1 = α2 + 1.

3. Nilpotent groups

We may see nilpotent groups as a generalization of abelian groups. The follow-
ing results are from Dorda [1977] and express that 1-affine complete p-groups are
usually rather big. We will later see Dorda’s example of a 1-affine complete p-group
of order p6.

3.4. Theorem (Dorda [1977]). Let G be a 1-affine complete, non-abelian
p-group, where p > 2. Then

1. G′ ∩ Z(G) is not cyclic. (Satz 1)
2. G′ is 1-affine complete. (Satz 2, Satz 2a)

Furthermore, if G is nilpotent of class 2, then

3. Neither G′ nor Z(G) are cyclic.
4. G/Z(G) is 1-affine complete. (Satz 3)
5. G/Z(G) is the direct product of at least 3 cyclic groups or isomorphic to
Z2 × Z2. (Satz4, Satz 4a)

6. For no a ∈ N, the set {ag | g ∈ G} forms a cyclic subgroup of G with more
than 2 elements.

7. |Z(G)| ≥ |G′| > p2. (Satz 9)
8. The order of G is at least p6.

4. and 5. also hold, if p = 2.

Among the examples of 1-affine complete groups later in this chapter one can
find a lot of 2-groups for which the above statements are not true. In particular,
there are examples of 1-affine complete groups of order 24, 25 and 26.

4. Symmetric groups

3.5. Theorem (Kaiser [1977]). Let G be a finite group having precisely one
minimal normal subgroup N of order not equal to 2. Then G is 1-affine complete,
if and only if N is a non abelian simple group and G/N is 1-affine complete.

3.6. Corollary (Kaiser [1977]). The symmetric group Sn of degree n is
1-affine complete precisely for n 6∈ {3, 4}.
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5. Generalized dihedral groups

Combining the results about compatible functions on generalized dihedral
groups from the last chapter with the results on polynomial functions on these
groups in Lyons and Mason [1991], we can easily describe the 1-affine complete
generalized dihedral groups. This gives another infinite class of 1-affine complete
groups.

3.7. Corollary (to Theorem 1.34.h and Theorem 2.62). Let A be an abelian
group. Then

Dih(A) is 1-affine complete ⇐⇒ A is 1-affine complete.

Proof. Assume that A is a direct product of d cyclic groups of even order
and some groups of odd order. By Theorem 1.34.h,

|P(Dih(A))| =

4|P(A)|2 if |A| is odd,
1
2d
|P(A)|2 if |A| is even.

If |A| is odd, then 2A = A, so by Theorem 2.62,

|C(Dih(A))| = 4|C(A)|2.

If |A| is even, then A/2A ∼= (Z2)d. By Corollary 3.3, |C((Z2)d)| = 2d+1, and by
Theorem 2.62,

|C(Dih(A))| = 2d+2 ·
[
|C(A)|
2d+1

]2

=
1
2d
· |C(A)|2

In both cases, the numbers |P(Dih(A))| and |C(Dih(A))| coincide, if and only if
|P(A)| = |C(A)|.

6. Quotients

Is 1-affine completeness hereditary? Are quotients of 1-affine complete groups
1-affine complete? Good ones are, others may be.

3.8. Theorem. Let G be a 1-affine complete group, N E G such that N admits
lifting of compatible functions. Then G/N is 1-affine complete.

Proof. Let ψ ∈ C(G/N). Then ψ can be lifted to some ϕ ∈ C(G) = P(G).
Thus ψ = ϕN is polynomial.

It is interesting to read this theorem in the following way: If G has a normal
subgroup N, which admits lifting of compatible functions, but G/N is not 1-affine
complete, then G is not 1-affine complete.
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If there are compatible functions on the quotient, which can not be lifted, then
the quotient may be 1-affine incomplete. The 1-affine complete group Z4 × Z2 has
two normal subgroups with quotient isomorphic to the 1-affine incomplete group
Z4.

The converse of Theorem 3.8 is not true in general. The group Z4 has a quotient
isomorphic to Z2, which is 1-affine complete. So every compatible function on the
quotient can be lifted, by Lemma 2.28. After all, Z4 is not 1-affine complete.

7. Direct products

By Corollary 3.3, the direct product of an abelian group G with itself is
1-affine complete and the direct product of abelian 1-affine complete groups is
1-affine complete. In the non-abelian case nothing of this kind is true anymore
in general, as the following examples show.

7.1. The direct product of a group by itself.

The direct product of the symmetric group S3 with itself is not 1-affine com-
plete: Let N be the unique nontrivial normal subgroup of S3. Factoring S3×S3 by
the normal subgroup N× {0}, we get a quotient isomorphic to Z2 × S3

∼= D12. By
Corollary 3.7, this quotient is not 1-affine complete. Since N× {0} is minimal and
distributive as an element of the lattice of normal subgroups of S3×S3, every com-
patible function on the quotient can be lifted to a compatible function on S3×S3,
so the group S3×S3 is not 1-affine complete, by Theorem 3.8.

0/.-,()*+

N× {0} ��������
::::::

��������

�������� �������� ��������:::::::

�������

:::::::::

���������

�������� �������� �����������������

:::::::::

���������

:::::::::

S3×S3
�������

:::::::

Figure 3.1. The lattice of normal subgroups of S3×S3

7.2. The direct product of 1-affine complete groups.
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The direct product of 1-affine complete groups is 1-affine complete, if their
lengths are coprime, because in this case

C(G×H) ∼= C(G)×C(H) = P(G)×P(H) ∼= P(G×H).

But not even the direct product of a 1-affine complete group with itself is always
1-affine complete. An example is the direct product G of D := Dih(Z2 × Z4) ∼=
Z2×D8 (by Lemma2.58) with itself. The normal subgroup A := {0}×D′ is of order
2, the quotient G/A is isomorphic to D×(Z2)2 ∼= Dih((Z2)4×Z4), which is 1-affine
complete. So A admits lifting of compatible functions. Every normal subgroup not
containing A is contained in D× Z2 ×D′8, which is a normal subgroup of index 4.
Hence the sum of all normal subgroups not containing A has at least index 4 in G.
Therefore, |C(G)| ≥ |C(Dih((Z2)4 × Z4))| · 24 = 215. The number of polynomial
functions can be computed as |G| · λ(G) · [G : Z(G)] = 28 · 22 · 24 = 214, by (1.3).
Hence G is not 1-affine complete. Alternatively, we could show that the function
ϕ : D ×D → D ×D, (x, y) 7→ (0, 2y) is compatible on G. It is not polynomial, by
[Scott, 1969, Theorem 2.3].

8. Conditions on the normal subgroups

In this section we try to gather restrictions to the lattice of normal subgroups
or particular normal subgroups of a group, which ensure its 1-affine completeness.

3.9. Theorem ([Dorda, 1977, Lemma 8]). Let G be a group, such that G′ is
non-abelian, G′ is the only minimal normal subgroup of G, and G/G′ ∼= (Z2)n,
for some n ∈ N. Then G is 1-affine complete and

|C(G)| = |P(G)| = 2n+1|G′|2
n|G′|.

Examples of such groups are the symmetric groups Sn, for n > 4.

3.10. Corollary (to Theorem 2.29). Let G be a group having a normal sub-
group M, such that G/M is 1-affine complete. Let K be the sum of all normal
subgroups having trivial intersection with M. Then every compatible function ϕ,
with ϕ(G) ⊆M is constant on the cosets of K in G.

In particular, if K = G, then G is 1-affine complete.

Proof. Every compatible function on G/M is polynomial. By Theorem 2.29,
every compatible function from G into M is constant on the cosets of K in G.

If K = G, then every compatible function ϕ, with ϕ(G) ⊆M is constant, hence
it is polynomial. As a consequence, every compatible function on G is polynomial.

As an application of Corollary 3.10, we show, how it can be used to find some
more 1-affine complete groups. In the following examples, the normal subgroup K
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constructed as in Corollary 3.10, is a proper normal subgroup. Nevertheless we will
be able to prove 1-affine completeness. The only additional work is to show that
every compatible function, that is constant on the cosets of K, is polynomial.

8.1. The groups Q8×(Z2)d.
We have seen, that the group D8×(Z2)d (d ∈ N) is isomorphic to

Dih(Z4 × (Z2)d), which is 1-affine complete. The groups Q8 and D8 are so sim-
ilar, let us prove that the groups Q8×(Z2)d are also 1-affine complete.

In this example we use a counting argument to guarantee that every compatible
function, that is constant on the cosets of K, is polynomial.

Let G be the group Q8×(Z2)d. Then M = G′ is a minimal normal subgroup
and the quotient G/M ∼= (Z2)d+2 is 1-affine complete. The sum of the minimal
normal subgroups not equal to M is the center of G, which has index 4 in G.
Hence there are 4 cosets and as a consequence 24 functions from G to M, which
are constant on these cosets. It remains to show that each of these is polynomial.
By equation (1.11),

|P(G)| = |P(G/M)| · |(M : G)P(G)|.

By (1.3), |P(G)| = |G| · λ(G) · [G : Z(G)] = 2d+3 · 22 · 22 = 2d+7 and
|P(G/M)| = 2d+3, whence |(M : G)P(G)| = 24. So all of these functions are
polynomial.

8.2. The group 32/33.

This example is a semidirect product, which can be easily described. This time
we simply list all zerosymmetric compatible functions, which are constant on the
cosets of K, and check that each of them is polynomial. This makes sense, because
the index of K is only 2.

Let G be the semi-direct product of A = (Z2)4 with Z2, where Z2 acts on A

via the automorphism α : A → A, (x1, x2, x3, x4) 7→ (x1 + x3, x2 + x4, x3, x4). We
show that this group is 1-affine complete. We write elements of G as pairs of such
vectors and elements from {0, 1}.

We choose the minimal normal subgroup on

M := {((0, 0, 0, 0), 0), ((1, 0, 0, 0), 0)}.

The quotient G/M is isomorphic to Dih(Z2 × Z4), which is 1-affine complete, by
Corollary 3.7. We can see this easily in the following way: A presentation for G is:
〈a, b, c, d, e; 2a, 2b, 2c, 2d, 2e, ce = a+ c, de = b+ d, all other generators commute 〉.
Now we factor by the normal subgroup {0, a}, and get the following presentation
for G/M: 〈b, c, d, e; 2b, 2c, 2d, 2e, de = b + d, all other generators commute 〉. A
presentation for Dih(Z2×Z4) is 〈A,B,C; 4A, 2B, 2C,AC = 3A, all other generators
commute 〉. It is now easy to check that the homomorphism defined by A 7→ d+ e,
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B 7→ c and C 7→ e (and as a consequence 2A 7→ b), is an isomorphism between
Dih(Z2 × Z4) and G/M.

The subgroups I1 generated by ((1, 1, 0, 0), 0) and ((0, 0, 1, 1), 0) and I2 gener-
ated by ((1, 0, 0, 1), 0) and ((0, 1, 0, 0), 0) are two normal subgroups, they are both
2-dimensional subspaces of the 4-dimensional vector space (A, 0). Their intersec-
tion is trivial, whence their sum is (A, 0). Both I1 ∩M and I2 ∩M are trivial,
so the sum of all normal subgroups having trivial intersection with M is at least
I1 + I2 = (A, 0).

By Corollary 3.10, it remains to show that every compatible zero-symmetric
function, which is constant on the cosets of (A, 0), is polynomial. The polynomial
function x 7→ [x, ((0, 0, 1, 0), 0)] maps every g ∈ (A, 0) to ((0, 0, 0, 0), 0) and every
g ∈ (A, 1) to ((1, 0, 0, 0), 0). This is the only nonzero compatible zero-symmetric
function, which is constant on the cosets of (A, 0).

Center and derived subgroup of this group coincide with the subgroup of G

generated by ((1, 0, 0, 0), 0) and ((0, 1, 0, 0), 0). So G is nilpotent of class 2. From
Chapter 1, we know that

|C(G)| = |P(G)| = |G| · λ(G) · [G : Z(G)] = 25 · 22 · 23 = 210

and every compatible function is of the form

x 7→ a+ kx+ [x, b],

where a, b ∈ G and k ∈ {0, 1, 2, 3}.

8.3. The group 32/35.

Computer investigations have shown that the small non-abelian 1-affine groups
we have seen so far are Dih(Z2 × Z4), Dih((Z2)2 × Z4), Dih((Z4)2), Dih((Z3)2),
Q8×Z2, Q8×(Z2)2, 32/33 and 32/35. In order to fill the last gap, we conclude this
section showing that 32/35 is 1-affine complete. We omit the details of the proof.

Let G be the group 〈a, b, c; 4a, 4b, 2c = 2a, [a, b], ac = −a, bc = −b〉.
The subgroup M := 〈2a〉 is normal. The quotient G/M is isomorphic to

Q8×Z2, which is 1-affine complete. The sum of all normal subgroups having trivial
intersection with M is K = 〈a, b〉 and has index 2 in G. The polynomial function
x 7→ [3a, x] maps K to 0 and the second coset of K in G to 2a. This group is
1-affine complete.

9. Hamiltonian groups

Hamiltonian groups are groups of the type A×Q8×B, where Q8 is the eight
element quaternion group, A is an abelian group of odd order, and B is a group of
exponent at most 2.
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Since (|A|, |Q8×B|) = 1,

|P(A×Q8×B)| = |P(A)| · |P(Q8×B)|

and

|C(A×Q8×B)| = |C(A)| · |C(Q8×B)|.

Moreover the sizes of the near rings over A are odd, the sizes of the near rings over
Q8×B are a power of 2. Therefore such a group is 1-affine complete, if and only if
Q8×B is 1-affine complete and A is 1-affine complete.

We know, that |C(Q8)| = 211 and |P(Q8)| = 27, so Q8×B is not 1-affine
complete, if |B| = 1. Otherwise B is elementary abelian of exponent 2, and we
know Q8×B is 1-affine complete.

10. Dorda’s example

In Dorda [1977], Dorda shows that a 1-affine complete p-group of nilpotency
class 2 (p 6= 2) has at least p6 elements (recall Theorem 3.4) and constructs such a
group of order p6. The example shown is the group

〈a, b, c, d, e, f ; pa, pb, pc, pd, pe, pf,

[a, b] = d, [a, c] = e, [b, c] = f , all other generators commute〉.

The exponent of this group is p and the index of the center is p3, whence there are
p10 polynomial (compatible) functions on this group (c.f. Chapter 1).

11. The groups 16/9 and 16/10

In Section 5.14 of Chapter 3 we computed the number of compatible functions
on these groups as 29. From the results in Chapter 1 we know that there are 28

polynomial functions on each of these groups. So these groups are not 1-affine
complete. An alternative way would be to show that the function

ϕ : G→ G

g 7→

e if g ∈ Z(G),

0 otherwise

where e denotes the non-zero element of the 2-element derived subgroup of G,
is polynomial. (The function is compatible: it is compatible with every normal
subgroup of G containing G′, because its range is G′, and it is constant on the
cosets of the sum of all other normal subgroups, whence compatible with these).
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12. Results

3.11. Conjecture. I believe that the only non abelian 1-affine complete groups
of order at most 63 are the generalized dihedral groups of abelian 1-affine complete
groups, the groups Q8×(Z2)n (n ≥ 1) and the groups 32/33 and 32/35.

13. Other coincidences

Question: Is it possible to have

P(G) ≤ LP(G) < L2P(G) = C(G) = M(G) = L1P(G)(3.1)

for a group G?
Answer: For any finite group G, |G| > 2,

G is cyclic of prime order ⇐⇒ G fulfills (3.1).

Proof. Clearly,

C(G) = M(G) ⇐⇒ G is simple.

By [Aichinger, 1994, Corollary 4.17], a group fulfilling (3.1) must be abelian.

Question: Is there happening anything of interest in the series

C(G) ≤ LC(G) ≤ . . . ≤ L2C(G) ≤ L2C(G)?

Answer: No, from Lm(LnP(G)) = Lmin(m,n)P(G) (see Aichinger [1994]) and
L2P(G) = C(G), the following is obvious.

C(G) = L2C(G) ≤ L1C(G) = M(G)

So “locally compatible” functions are compatible functions.
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CHAPTER 4

Sundries

1. Finding the identity in a near ring of transformations

Let Γ be an arbitrary group and N ≤ M(Γ). Clearly, if the identity trans-
formation id is an element of N, the near ring has an identity and it is id. The
converse, in general, is not true, as the following example demonstrates:

4.1. Example. Let Γ = Z2 × Z2 and N = ({0̄, π1},+, ◦), where π1 is the
projection onto the first component of Γ. Then N is a near ring with identity π1

(in fact, N ∼= (Z2,+, ·)).

Nevertheless, the identity in N (if it exists) is not too far from the identity
transformation. In the sequel we give some necessary conditions for a transforma-
tion i to be the identity of N.

For all n ∈ N and all x ∈ Γ we have i(n(x)) = (in)(x) = n(x). Hence

i|N(Γ) = id|N(Γ)(4.1)

is a necessary condition for i to be the near ring’s identity. On N(Γ) it has to
behave like the identity mapping. (Remark: N(Γ) can be computed from a set of
generators of N (c.f. Aichinger et al. [2000a]).)

Furthermore for all n ∈ N and all x ∈ Γ we have n(i(x)) = (ni)(x) = n(x),
or equivalently i(x) ∈ n−1(n(x)). So i(x) ∈ Ix := N(Γ) ∩

⋂
n∈N n

−1(n(x)). If for
some x ∈ Γ the set Ix is empty, N clearly has no identity. On the other hand, if
Ix contains more than one element for some x ∈ Γ, also N has no identity. This
can be seen as follows: Suppose, a, b ∈ Ix and a 6= b. Then a, b ∈ N(Γ) and
∀ n ∈ N : n(a) = n(x) = n(b). In particular i(a) = i(b), but a and b are from N(Γ)
(whereupon i acts as identity transformation by (4.1)). So i(a) = a 6= b = i(b),
a contradiction. Fortunately, the condition n(i(x)) = n(x) only has to be tested
for a set of generators of N, because from n(i(x)) = n(x) and m(i(x)) = m(x),
we get immediately that m(n(i(x))) = m(n(x)) and (m + n)(i(x)) = (m + n)(x).
Summarizing, if N is generated by E,

∀ x ∈ Γ : |N(Γ) ∩
⋂
n∈E

n−1(n(x))| = 1.(4.2)

Conditions (4.1) and (4.2) uniquely determine i (or contradict the existence of
an identity). If in addition i ∈ N , then i is the identity of N. So, the problem of
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deciding whether a near ring of transformations on a group has an identity can be
reduced to the problem of deciding membership of a single transformation.

Algorithm 3 constructs the element i, if it exists.

Algorithm 3 Identity
Let N be a near ring of transformations on the group Γ.

Require: E a set of generators of N.
Ensure: Find an identity, if there is one.

for x ∈ Γ do

Ix :=
⋂
n∈E(N(Γ) ∩ n−1nx);

if |Ix| 6= 1 then

return (N has no identity);
end if

Define i(x) to be the unique element in Ix.
end for

if i ∈ N or N contains an identity then

return (i is the identity of N);
else

return (N has no identity);
end if



CHAPTER 5

Benchmarks

In this chapter we compare several methods for computing compatible functions
on groups.

Method A enumerates all compatible functions on a group. Given a partial
function on the group all possible extensions to a total function are computed.

Method B computes L2P(G), the 2-local near ring of the polynomial near ring
on the group G (Theorem 2.8).

Method C uses chains of lattice generators of the lattice of normal subgroups
of the group (Theorem 2.74).

Method D uses the lifting process from a cyclic factor in the abelian case (The-
orem 2.38, Theorem 2.39).

Method E uses the liftability and distributivity related results in the previous
chapters and assumes that all 1-affine complete nontrivial quotients are known
(Theorem 2.13, Theorem 2.30, Lemma 2.28).

Listed is the time needed to compute a strong generating set of the additive
group of the near ring of compatible functions. In case of method A, the time
needed to enumerate all compatible functions is listed, instead.

These benchmarks were computed on a Pentium II/333 with 512MB RAM
running under a Linux operating system. We have computed 45000 GAP-stones1

for this machine.

1A certain program running under GAP computes a number – the GAP-stones of the com-

puter – reflecting its speed. See GAP [1999] for more details



84 Benchmarks

group A B C D

Z2

Z3

Z4

(Z2)2

Z5

< 1 sec.

Z6 1 sec. 1.2 sec. < 1 sec.

Z7 35.7 sec. < 1 sec.

Z8 1.1 min. 2.9 sec.
Z2 × Z4 2.2 sec. 5.7 sec.
(Z2)3 < 1 sec. 9.0 sec.
Z9 11.5 min. 4.2 sec.

(Z3)2 1.6 sec. 8.0 sec.
Z10 5.5 min. 8.7 sec.
Z11 - 25.8 sec.

< 1 sec.

Z12 1.5 min. 1.7 min. 1.5 sec. < 1 sec.

Z2 × Z6 31.5 sec. 34.7 sec.
Z13 - 1.5 min. < 1 sec.

Z14 - 3.5 min. 2.2 sec. 0.7 sec.

Z15 - 5.4 min. 2.4 sec. 1.2 sec.

Z16 - 13.9 min. 1.5 sec. 0.8 sec.

Z2 × Z8 16.6 min. 13.7 min. 8.0 sec. 0.2 sec.

Z4 × Z4 20.0 sec. 9.2 min. 6.0 sec. 0.02 sec.

(Z2)2 × Z4 21.8 sec. 15.0 min. 18.0 sec. 0.02 sec.

(Z2)4 10.3 sec. 24.5 min. 44.0 sec. 0.03 sec.

Z17 - 9.0 min. < 1 sec.

Z18 - 22.5 min. 4.9 sec. 1.6 sec.

Z3 × Z6 44.0 sec. 19.2 min. 7.3 sec. 0.1 sec.
Table 5.1. Running times for the computation of C(G). Abelian
groups of orders 2–18
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group C D E

Z19 < 1 sec. 1.4 sec.

Z20 6.6 sec. 2.6 sec. 2.1 sec.

Z2 × Z10 8.1 sec. 0.2 sec. 1.5 sec.

Z21 8.6 sec. 3.4 sec. 0.5 sec.

Z22 10.5 sec. 4.7 sec. 0.4 sec.

Z23 < 1 sec.

Z24 14.0 sec. 6.1 sec. 1.3 sec.

Z2 × Z12 26.0 sec. 0.3 sec. 1.8 sec.

(Z2)3 × Z3 35.0 sec. 0.3 sec. 2.0 sec.

Z25 3.2 sec. 5.4 sec. 0.4 sec.

(Z5)2 4.7 min. 0.05 sec. 12.3 sec.

Z26 22.0 sec. 9.5 sec. 0.6 sec.

Z27 6.0 sec. 7.3 sec. 0.7 sec.

Z3 × Z9 42 sec. 0.3 sec. 0.8 sec.

(Z3)3 1.5 min. 0.06 sec. 1.0 sec.

Z28 27.0 sec. 11.0 sec. 0.8 sec.

Z2 × Z14 27.0 sec. 0.5 sec. 1.3 sec.

Z29 < 1 sec.

Z30 53.0 sec. 19.5 sec. 0.9 sec.

Z31 < 1 sec.

Z32 10.0 sec. 11.7 sec. 1.6 sec.

Z2 × Z16 2.8 min. 1.0 sec. 2.2 min.

Z4 × Z8 2.5 min. 0.07 sec. 3.2 sec.

(Z2)2 × Z8 6.4 min. 0.5 sec. 4.2 sec.

Z2 × (Z4)2 5.5 min. 0.1 sec. 4.4 sec.

(Z2)3 × Z4 11.0 min. 0.5 sec. 6.2 sec.

(Z2)5 21.3 min. 0.08 sec. 8.3 sec.
Table 5.2. Running times for the computation of C(G). Abelian
groups of orders 19–32
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group B C E

6/2 1.0 sec. 1.3 sec. 0.7 sec.

8/4 5.6 sec. 0.9 sec. 0.8 sec.

8/5 5.0 sec. 0.6 sec. 0.4 sec.

10/2 10.4 sec. 0.1 sec. 0.1 sec.

12/3 35.0 sec. 1.3 sec. 0.4 sec.

12/4 22.8 sec. 0.4 sec. 0.9 sec.

12/5 1.9 min. 1.3 sec. 0.6 sec.

14/2 55.3 sec. 0.2 sec. 0.2 sec.

16/6 4.1 min. 5.3 sec. 1.7 sec.

16/7 15.8 min. 12.5 sec. 1.0 sec.

16/8 16.6 min. 14.0 sec. 1.4 sec.

16/9 16.6 min. 7.5 sec. 1.3 sec.

16/10 15.0 min. 6.9 sec. 1.0 sec.

16/11 13.4 min. 9.5 sec. 1.0 sec.

16/12 10.5 min. 5.7 sec. 1.7 sec.

16/13 13.7 min. 8.4 sec. 1.1 sec.

16/14 15.1 min. 7.7 sec. 1.0 sec.

18/3 13.9 min. 2.6 sec. 0.6 sec.

18/4 22.1 min. 1.4 sec. 0.4 sec.

18/5 30.8 min. 9.5 sec. 7.9 sec.

20/3 43.3 min. 7.7 sec. 1.2 sec.

20/4 48.6 min. 7.4 sec. 0.6 sec.

20/5 47.3 min. 1.5 sec. 0.5 sec.
Table 5.3. Running times for the computation of C(G). Non
abelian groups of orders 2–20
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group B C E

21/2 50.6 min. 1.9 sec. 0.3 sec.

22/2 1.0 hrs 1.9 sec. 0.2 sec.

24/4 3.2 hrs 33.4 sec. 1.5 sec.

24/5 2.2 hrs 9.4 sec. 0.9 sec.

24/6 3.4 hrs 19.0 sec. 1.6 sec.

24/7 2.7 hrs 16.7 sec. 2.4 sec.

24/8 3.1 hrs 14.8 sec. 1.7 sec.

24/9 - 18.9 sec. 1.0 sec.

24/10 - 17.8 sec. 1.2 sec.

24/11 - 28.3 sec. 1.1 sec.

24/12 - 1.0 sec. 0.9 sec.

24/13 - 3.4 sec. 0.8 sec.

24/14 - 14.8 sec. 1.3 sec.

24/15 - 33.2 sec. 1.9 sec.

26/2 - 2.9 sec. 0.3 sec.

27/4 - 77.3 sec. 1.1 sec.

27/5 - 69.3 sec. 0.7 sec.

28/3 - 31.3 sec. 0.7 sec.

28/4 - 29.0 sec. 0.6 sec.

30/2 - 10.8 sec. 0.6 sec.

30/3 - 11.9 sec. 0.7 sec.

30/4 - 22.1 sec. 0.6 sec.
Table 5.4. Running times for the computation of C(G). Non
abelian groups of orders 21–30
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group C E

32/8 8.3 min. 7.4 sec.

32/9 7.7 min. 6.1 sec.

32/10 7.0 min. 6.1 sec.

32/11 6.1 min. 4.2 sec.

32/12 4.8 min. 3.2 sec.

32/13 4.5 min. 4.3 sec.

32/14 4.2 min. 3.6 sec.

32/15 3.9 min. 3.6 sec.

32/16 4.1 min. 3.9 sec.

32/17 6.6 min. 5.3 sec.

32/18 2.5 min. 3.4 sec.

32/19 2.1 min. 3.1 sec.

32/20 1.9 min. 1.7 min.

32/21 1.7 min. 1.4 min.

32/22 4.1 min. 2.3 sec.

32/23 4.4 min. 3.9 min.

32/24 4.1 min. 3.7 min.

32/25 4.0 min. 3.6 min.

32/26 8.5 min. 3.2 sec.

32/27 2.3 min. 2.0 min.

32/28 2.1 min. 1.9 min.

32/29 2.1 min. 1.8 min.

group C E

32/30 2.1 min. 1.8 min.

32/31 3.0 min. 2.5 sec.

32/32 2.8 min. 2.2 sec.

32/33 4.2 min. 3.8 min.

32/34 4.1 min. 3.7 min.

32/35 3.6 min. 3.6 sec.

32/36 4.8 min. 3.5 min.

32/37 3.6 min. 3.6 sec.

32/38 3.8 min. 3.4 min.

32/39 3.8 min. 3.4 min.

32/40 3.5 min. 4.1 sec.

32/41 3.5 min. 3.2 min.

32/42 6.6 min. 6.5 sec.

32/43 8.9 min. 6.4 sec.

32/44 6.2 min. 3.5 sec.

32/45 6.2 min. 4.4 sec.

32/46 3.3 min. 2.7 sec.

32/47 3.2 min. 2.5 sec.

32/48 3.1 min. 2.4 sec.

32/49 2.7 min. 2.1 sec.

32/50 2.7 min. 2.1 sec.

32/51 2.5 min. 2.1 sec.
Table 5.5. Running times for the computation of C(G). Non
abelian groups of order 32



APPENDIX A

Small Groups

A complete list of the small groups of order at most 32 has been published by
Thomas and Wood in Thomas and Wood [1980]. We use their notation, whenever
we name a small group, which has no general-known name, in particular, if the
group is a semidirect product, which we do not want to describe explicitely. Below,
we list some of the most commonly used names for the small groups in Thomas
and Wood [1980].
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2/1 Z2

3/1 Z3

4/1 Z4

4/2 (Z2)2, V4

5/1 Z5

6/1 Z6

6/2 S3, Hol(Z3)

7/1 Z7

81 Z8

8/2 Z2 × Z4

8/3 (Z2)3

8/4 D8, Hol(Z4)

8/5 Q8

9/1 Z9

9/2 (Z3)2

10/1 Z10

10/2 D10

11/1 Z11

12/1 Z12

12/2 (Z2)2 × Z3

12/3
D12, Z2 × S3, Hol(Z6),
Aut((Z2)2×Z3), Aut(Q12)

12/4 A4

12/5 Q12

13/1 Z13

14/1 Z14

14/2 D14

15/1 Z15

16/1 Z16

16/2 Z2 × Z8

16/3 (Z4)2

16/4 (Z2)2 × Z4

16/5 (Z2)5

16/6 Z2 ×D8, Aut(Z2 × Z8)

16/7 Z2 ×Q8

16/8 (Z2 × Z4)o Z2

16/9 (Z2 × Z4)o Z2

16/10 Z4 o Z4

16/11 Z8 o Z2

16/12 D16

16/13 Z8 o Z2

16/14 Q16

17/1 Z17

18/1 Z18

18/2 Z2 × (Z3)2

18/3 Z3 × S3

18/4 D18

18/5 Dih((Z3)2)

19/1 Z19

20/1 Z20

20/2 (Z2)2 × Z5

20/3 D20

20/4 Q20

20/5 Hol(Z5), Aut(D10)

21/1 Z21

21/2 Z7 o Z3

22/1 Z22

22/2 D22

23/1 Z23
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24/1 Z24

24/2 (Z2 × Z4)× Z3

24/3 (Z2)3 × Z3

24/4
Z2 × D12, (Z2)2 × S3,
Dih((Z2)2×Z3), Aut(Z4×S3)

24/5 Z2 ×A4

24/6 Z2 ×Q12

24/7 Z3 ×D8

24/8 Z3 ×Q8

24/9 Z4 × S3

24/10 D24

24/11 Q24

24/12 S4, Aut(A4), Hol((Z2)2)

24/13 SL(2, 3)

24/14 Z3 o Z8

24/15 Q12oZ2, Z3 oD8

25/1 Z25

25/2 (Z5)2

26/1 Z26

26/2 D26

27/1 Z27

27/2 Z3 × Z9

27/3 (Z3)3

27/4 (Z3)2
o Z3

27/5 Z9 o Z3

28/1 Z28

28/2 (Z2)2 × Z7

28/3 D28

28/4 Q28

29/1 Z29

30/1 Z30

30/2 Z3 ×D10

30/3 Z5 × S3

30/4 D30

31/1 Z31

32/1 Z32

32/2 Z2 × Z16

32/3 Z4 × Z8

32/4 (Z2)2 × Z8

32/5 Z2 × (Z4)2

32/6 (Z2)3 × Z4

32/7 (Z2)5

32/8 (Z2)2 ×D8

32/9 (Z2)2 ×Q8

32/10 Z2 × 16/8

32/11 Z2 × 16/9

32/12 Z2 × 16/10

32/13 Z2 × 16/11

32/14 Z4 ×D8

32/15 Z4 ×Q8

32/16 (Z4)2
o Z2

32/17 (Z2 × Z8)o Z2

32/18 (Z2 × Z4)o Z4

32/19 Z8 o Z4

32/20 (Z2 × Z8)o Z2

32/21 Z4 o Z8

32/22 Z16 o Z2

32/23 Z2 ×D16

32/24 Z2 × 16/13

32/25 Z2 ×Q16

32/26 (Z2 × Z8)o Z2

32/27 (Z2 × Z8)o Z2

32/29 Z8 o Z4

32/30 Z8 o Z4

32/31 (Z4)2
o Z2

32/33 Aut(16/9), (Z2)4
o Z2

32/34 Dih((Z4)2)

32/39 (Z4)2
o Z2

32/44 Hol(Z8), Aut(Q16)

32/47 16/11o Z2

32/49 D32

32/50 Z16 o Z2

32/51 Q32
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ing near-rings. Submitted.
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Dorda, A. (1977). Über Vollständigkeit bei endlichen Gruppen. Ph.D. dissertation,
Techn. Universität Wien, Vienna. (German).

Ecker, J. (1998). On the number of polynomial functions on nilpotent groups of
class 2. In Contributions to general algebra, 10 (Klagenfurt, 1997), pages 133–
137. Heyn, Klagenfurt.



94 Bibliography

Fong, Y. (1979). The Endomorphism Near-rings of the Symmetric Groups. Ph.D.
dissertation, Univ. of Edinb., Edinburgh.

Fong, Y. and Kaarli, K. (1995). Unary polynomials on a class of groups. Acta Sci.
Math. (Szeged), 61(1-4), 139–154.

Fong, Y. and Meldrum, J. D. P. (1981a). The endomorphism near-ring of the
symmetric group of degree four. Tamkang J. Math., 12(2), 193–203.

Fong, Y. and Meldrum, J. D. P. (1981b). The endomorphism near-rings of the
symmetric groups of degree at least five. J. Austral. Math. Soc. Ser. A, 30(1),
37–49.
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Lausch, H. and Nöbauer, W. (1973). Algebra of polynomials. North-Holland Pub-

lishing Co., Amsterdam. North-Holland Mathematical Library, Vol. 5.
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abelian group, 20, 42, 71

alternating group, 45

An, see alternating group

annihilating polynomial, 7

benchmarks, 83

center, 2

C(G), see compatible function

CMpn , 52

commutator, 1

compatible function, 25

CompN(G), 27

Zn, 1

cyclic group, 42, 43

D2n, see dihedral group

decomposable

G-H–decomposable, 3

derived subgroup, 1

dicyclic group, 21, 55

Dih(A), see generalized dihedral group

dihedral group, 21, 46

generalized dihedral group, 21, 52

distributive element, 39

Dorda’s group, 78

dually distributive element, 39

general linear group, 57

generalized dihedral group, 73

generalized quaternion group, 21, 51

generated

normal subgroup, 1

subgroup, 1

GL(m, q), see general linear group

[g], 1

G′, see derived subgroup

〈g〉, 1

Hamiltonian group, 9, 77

holomorph, 58

Ki(G), 1

λ(G), 7

length

of a group, 7

of a polynomial, 7

of a polynomial function, 7

lifting, 28

R-lifting, 28

LnP(G), 27

M(G), 2

minimum polynomial, 7

(N : G)P(G), 22

nice, 33

nilpotency class, 1

nilpotent, 1

Noetherian quotient, 22, 28

P(G), 5

ϕN, 28

polynomial, 5

near ring of polynomial functions, 5

polynomially complete, 71

PSL(m, q), 57

Q2n , see generalized quaternion group

Q4n, see dicyclic group

quasi-nilpotent, 34

SD2n , see semi-dihedral group

semi-dihedral group, 50
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simple group

non-abelian, 21

simple group

non-abelian, 71

SL(m, q), see special linear group

[S], 1

Sn, see symmetric group

special linear group, 57

〈S〉, 1

standard element, 39

super-perfect, 3

symmetric group, 21, 46, 72

Z(G), see center
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∗
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